Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Size: px
Start display at page:

Download "Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science."

Transcription

1 Professor William Hoff Dept of Electrical Engineering &Computer Science 1

2 Object Recognition in Large Databases Some material for these slides comes from 2

3 Object Recognition We have seen methods to do object recognition by matching a query image to a database image: Extract features from each image Match their descriptors Impose a constraint (such as a homography or the fundamental matrix) to eliminate mismatches If a sufficient number of matches remain, we have found our object! Problem: as the database gets large, the time it takes to match a new image against each database image can become prohibitive

4 Example Application: Location Recognition Match a new image to a database of images to determine where the camera was when it took the picture What uses can this have? 4

5 GPS not available indoors Indoor Localization 5 Chris Card, Qualitative Image Based Localization In A Large Building, MS Thesis, 2015

6 In a large building, there can be many locations that have a similar appearance Walls and floors often have little or no texture and doors look very similar Similarity of Appearance 6

7 Brown Hall Mapping (Chris Card) 1st, 2nd, and 3rd floors of Brown Hall 1,382 images taken at known locations Given a new image, match to an image in the database C. Card and W. Hoff, "Qualitative Image Based Localization in a Large Building," Proc. of 19th International Conference on Image Processing,, & Pattern Recognition,

8 8

9 9

10 Approach Instead of comparing the query image to every image in the database, one at a time, first narrow down the search to a few likely images Then use a more detailed verification stage on those Candidate matching images 10

11 Approach Create an index of feature descriptors It is a table containing the features, along with the images where the features appeared Similar to the index in a text document We ll look at two methods: Hashing Bag of words 11

12 Hashing Transform a feature descriptor into a shorter key that indexes into a table Store the feature keypoint there, along with the image id that it came from Image 3 Hash table Feature 11, image 3 Feature 21, image 7 Image 7 Feature 65, image 7 12

13 Matching To match a query image, extract feature descriptors and map them into the hash table Retrieve the stored features (and their corresponding image id s) from those locations in the table Images with a high number of matching features are taken to be candidate matching images Problem: Image noise can perturb a feature descriptor so that it no longer exactly matches the feature descriptor from the corresponding database image This can cause the hash function to map the query descriptor to a completely different location in the hash table 13

14 Locality Sensitive Hashing (LSH) In LSH, the hash function preserves the locality of feature descriptors If two features are close in feature space then their hashes will also be close Difference between hashes is equivalent to distance in feature space [1] If noise perturbs a query feature descriptor, it will map to a location in the hash table that is close to the correct location So when mapping a query descriptor to the hash table, you should also retrieve entries from the table that are near to the mapped location [1] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality sensitive hashing scheme based on p stable distributions, in Proceedings of the 20th Annual Symposium on Computational Geometry, pp (2004) 14

15 Example Features: ORB ORB consists of a feature detector and descriptor FAST is the feature detector BRIEF is the feature descriptor Descriptor is 32 bytes per feature SURF uses 64, SIFT uses

16 Feature Matching Ratio test When matching a query feature, the closest matching feature from one database image must be 80% closer then the second closest feature from the same database image (in feature space) Spatial consistency Neighbors of the query point (in image space) should have matches that are neighbors of the database point. 16

17 Verification The N database images with the highest number of matches are candidate images (N=2 in Card s work) Each candidate image is then sent through a verification step, by fitting a fundamental matrix using RANSAC 17

18 Evaluation 1,382 images; 1,073,903 feature points Test set of 70 images Vary the threshold for the number of inliers to the fundamental matrix For a threshold of 16: TPR is 94% FPR is 17% 18

19 Examples of True Positives Corresponding epipolar lines Query 19

20 Examples of True Positives Query 20

21 Examples of True Positives Query 21

22 Examples of True Positives Query 22

23 Example of False Negative Query 23

24 Example of False Positives Query 24

25 Example of False Positives Query 25

26 Example of False Positives Query 26

27 Bag of Words In a large database, there can be a lot of features to store Instead of storing all of them, we can quantize the descriptors into visual words The number of possible words (the vocabulary ) is relatively small Then, each image can be described by a histogram of the visual words (i.e., a bag of words 27

28 Visual words: main idea Extract some local features from a number of images e.g., SIFT descriptor space: each point is 128-dimensional Slide credit: D. Nister, CVPR 2006

29 Visual words: main idea

30 Visual words: main idea

31 Visual words: main idea

32 Each point is a local descriptor, e.g. SIFT vector.

33

34 Visual words Map high dimensional descriptors to tokens/words by quantizing the feature space Quantize via clustering, let cluster centers be the prototype words Word #2 Descriptor s feature space Determine which word to assign to each new image region by finding the closest cluster center. Kristen Grauman

35 Example: each group of patches belongs to the same visual word Visual words Figure from Sivic & Zisserman, ICCV 2003 Kristen Grauman

36 Similarity to textons First explored for texture and material representations Texton = cluster center of filter responses over collection of images Describe textures and materials based on distribution of prototypical texture elements. Leung & Malik 1999; Varma & Zisserman, 2002 Kristen Grauman

37 Texture representation example Windows with primarily horizontal edges Dimension 2 (mean d/dy value) Dimension 1 (mean d/dx value) Windows with small gradient in both directions Both Windows with primarily vertical edges mean d/dx value mean d/dy value Win. # Win.# Win.# statistics to summarize patterns in small windows Kristen Grauman

38 Inverted file index Database images are loaded into the index, mapping words to image numbers Kristen Grauman

39 Inverted file index A new query image is mapped to indices of database images that share a word. Kristen Grauman

40 Matching Images Once we have extracted visual words from a query image, how to find matching images in the database? One way is to simply look at the image id s of the matching features, and retrieve those images whose id s occurred most often (i.e., Chris Card s method) Another way is to look at the distribution (histogram) of the visual words in each image The histograms from the query image and the matching database image should be very similar

41 Analogy to documents Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brain from our eyes. For a long time it was thought that the sensory, retinal image brain, was transmitted point by point visual, to centers perception, in the brain; the cerebral cortex was a movie screen, so to speak, upon which retinal, the image cerebral in the eye was cortex, projected. Through the discoveries eye, cell, of Hubel optical and Wiesel we now know that behind the origin of the visual perception in the brain nerve, there image is a considerably more complicated Hubel, course of Wiesel events. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have been able to demonstrate that the message about the image falling on the retina undergoes a step wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image. China is forecasting a trade surplus of $90bn ( 51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with a 18% rise in imports to $660bn. China, The trade, figures are likely to further annoy surplus, the US, which commerce, has long argued that China's exports are unfairly helped by a deliberately exports, undervalued imports, yuan. Beijing US, agrees the surplus yuan, is too high, bank, but says domestic, the yuan is only one factor. Bank of China governor Zhou Xiaochuan said foreign, the country increase, also needed to do more to boost domestic trade, demand value so more goods stayed within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value. ICCV 2005 short course, L. Fei-Fei

42

43 Bags of visual words Summarize entire image based on its distribution (histogram) of word occurrences. Analogous to bag of words representation commonly used for documents.

44 Comparing bags of words Rank frames by normalized scalar product between their (possibly weighted) occurrence counts nearest neighbor search for similar images. [ ] [ ],, d j q for vocabulary of V words Kristen Grauman

45 tf idf weighting Term frequency inverse document frequency Describe frame by frequency of each word within it, downweight words that appear often in the database (Standard weighting for text retrieval) Number of occurrences of word i in document d Number of words in document d Total number of documents in database Number of documents word i occurs in, in whole database Kristen Grauman

46 Bags of words for content-based image retrieval Sivic, Josef, and Andrew Zisserman. "Efficient visual search of videos cast as text retrieval." IEEE transactions on pattern analysis and machine intelligence 31.4 (2009): Slide from Andrew Zisserman Sivic & Zisserman, ICCV 2003

47 Slide from Andrew Zisserman School of Mines Sivic &Colorado Zisserman, ICCV 2003

48 Additional Checks Stop words Create a stop list of the most common visual words These words are dropped from further consideration Spatial consistency For every matching feature, count the number of k = 15 nearest adjacent features that also match between the two documents This is added to the score 48

49 Video Google System 1. Collect all words within query region 2. Inverted file index to find relevant frames 3. Compare word counts 4. Spatial verification Sivic & Zisserman, ICCV 2003 Demo online at : /vgoogle/index.html Query region Retrieved frames K. Computer Grauman, Vision B. Leibe 49

50 Video Google System Query region Retrieved frames K. Computer Grauman, Vision B. Leibe 50

51 Scoring retrieval quality Query Database size: 10 images Relevant (total): 5 images Results (ordered): precision = #relevant / #returned recall = #relevant / #total relevant precision recall Slide credit: Ondrej Chum

52 Vocabulary Trees A very large vocabulary can be organized into a tree for greater efficiency Each descriptor vector is compared to several prototypes at a given level in the vocabulary tree and the branch with the closest prototype is selected for further refinement Only a few comparisons at each level are needed for quantizing each descriptor 52

53 Vocabulary Trees: hierarchical clustering for large vocabularies Tree construction: [Nister & Stewenius, CVPR 06] Slide credit: David Nister

54 54

55 Bags of words: pros and cons + flexible to geometry / deformations / viewpoint + compact summary of image content + provides vector representation for sets + very good results in practice basic model ignores geometry must verify afterwards, or encode via features background and foreground mixed when bag covers whole image optimal vocabulary formation remains unclear

56 Summary Matching local invariant features: useful not only to provide matches for multi view geometry, but also to find objects and scenes. Bag of words representation: quantize feature space to make discrete set of visual words Summarize image by distribution of words Index individual words Inverted index: pre compute index to enable faster search at query time

Indexing local features and instance recognition May 15 th, 2018

Indexing local features and instance recognition May 15 th, 2018 Indexing local features and instance recognition May 15 th, 2018 Yong Jae Lee UC Davis Announcements PS2 due next Monday 11:59 am 2 Recap: Features and filters Transforming and describing images; textures,

More information

Indexing local features and instance recognition May 16 th, 2017

Indexing local features and instance recognition May 16 th, 2017 Indexing local features and instance recognition May 16 th, 2017 Yong Jae Lee UC Davis Announcements PS2 due next Monday 11:59 am 2 Recap: Features and filters Transforming and describing images; textures,

More information

By Suren Manvelyan,

By Suren Manvelyan, By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan,

More information

Indexing local features and instance recognition May 14 th, 2015

Indexing local features and instance recognition May 14 th, 2015 Indexing local features and instance recognition May 14 th, 2015 Yong Jae Lee UC Davis Announcements PS2 due Saturday 11:59 am 2 We can approximate the Laplacian with a difference of Gaussians; more efficient

More information

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Classification 3: Bag of Words Aaron Bobick School of Interactive Computing Administrivia PS 6 is out. Due Tues Nov 25th, 11:55pm. One more assignment after that Mea culpa This

More information

Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping

Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Motivation: Analogy to Documents O f a l l t h e s e

More information

Distances and Kernels. Motivation

Distances and Kernels. Motivation Distances and Kernels Amirshahed Mehrtash Motivation How similar? 1 Problem Definition Designing a fast system to measure the similarity il it of two images. Used to categorize images based on appearance.

More information

Pattern recognition (3)

Pattern recognition (3) Pattern recognition (3) 1 Things we have discussed until now Statistical pattern recognition Building simple classifiers Supervised classification Minimum distance classifier Bayesian classifier Building

More information

Recognizing Object Instances. Prof. Xin Yang HUST

Recognizing Object Instances. Prof. Xin Yang HUST Recognizing Object Instances Prof. Xin Yang HUST Applications Image Search 5 Years Old Techniques Applications For Toys Applications Traffic Sign Recognition Today: instance recognition Visual words quantization,

More information

Lecture 14: Indexing with local features. Thursday, Nov 1 Prof. Kristen Grauman. Outline

Lecture 14: Indexing with local features. Thursday, Nov 1 Prof. Kristen Grauman. Outline Lecture 14: Indexing with local features Thursday, Nov 1 Prof. Kristen Grauman Outline Last time: local invariant features, scale invariant detection Applications, including stereo Indexing with invariant

More information

Recognizing object instances

Recognizing object instances Recognizing object instances UT-Austin Instance recognition Motivation visual search Visual words quantization, index, bags of words Spatial verification affine; RANSAC, Hough Other text retrieval tools

More information

Today. Main questions 10/30/2008. Bag of words models. Last time: Local invariant features. Harris corner detector: rotation invariant detection

Today. Main questions 10/30/2008. Bag of words models. Last time: Local invariant features. Harris corner detector: rotation invariant detection Today Indexing with local features, Bag of words models Matching local features Indexing features Bag of words model Thursday, Oct 30 Kristen Grauman UT-Austin Main questions Where will the interest points

More information

Instance recognition

Instance recognition Instance recognition Thurs Oct 29 Last time Depth from stereo: main idea is to triangulate from corresponding image points. Epipolar geometry defined by two cameras We ve assumed known extrinsic parameters

More information

Recognition with Bag-ofWords. (Borrowing heavily from Tutorial Slides by Li Fei-fei)

Recognition with Bag-ofWords. (Borrowing heavily from Tutorial Slides by Li Fei-fei) Recognition with Bag-ofWords (Borrowing heavily from Tutorial Slides by Li Fei-fei) Recognition So far, we ve worked on recognizing edges Now, we ll work on recognizing objects We will use a bag-of-words

More information

Recognizing object instances. Some pset 3 results! 4/5/2011. Monday, April 4 Prof. Kristen Grauman UT-Austin. Christopher Tosh.

Recognizing object instances. Some pset 3 results! 4/5/2011. Monday, April 4 Prof. Kristen Grauman UT-Austin. Christopher Tosh. Recognizing object instances Some pset 3 results! Monday, April 4 Prof. UT-Austin Brian Bates Christopher Tosh Brian Nguyen Che-Chun Su 1 Ryu Yu James Edwards Kevin Harkness Lucy Liang Lu Xia Nona Sirakova

More information

Feature Matching + Indexing and Retrieval

Feature Matching + Indexing and Retrieval CS 1699: Intro to Computer Vision Feature Matching + Indexing and Retrieval Prof. Adriana Kovashka University of Pittsburgh October 1, 2015 Today Review (fitting) Hough transform RANSAC Matching points

More information

Object Classification for Video Surveillance

Object Classification for Video Surveillance Object Classification for Video Surveillance Rogerio Feris IBM TJ Watson Research Center rsferis@us.ibm.com http://rogerioferis.com 1 Outline Part I: Object Classification in Far-field Video Part II: Large

More information

Recognition. Topics that we will try to cover:

Recognition. Topics that we will try to cover: Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) Object classification (we did this one already) Neural Networks Object class detection Hough-voting techniques

More information

Visual Navigation for Flying Robots. Structure From Motion

Visual Navigation for Flying Robots. Structure From Motion Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Structure From Motion Dr. Jürgen Sturm VISNAV Oral Team Exam Date and Time Student Name Student Name Student Name Mon, July

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 19 Object Recognition II Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering Lab

More information

Patch Descriptors. CSE 455 Linda Shapiro

Patch Descriptors. CSE 455 Linda Shapiro Patch Descriptors CSE 455 Linda Shapiro How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

Lecture 12 Visual recognition

Lecture 12 Visual recognition Lecture 12 Visual recognition Bag of words models for object recognition and classification Discriminative methods Generative methods Silvio Savarese Lecture 11 17Feb14 Challenges Variability due to: View

More information

EECS 442 Computer vision. Object Recognition

EECS 442 Computer vision. Object Recognition EECS 442 Computer vision Object Recognition Intro Recognition of 3D objects Recognition of object categories: Bag of world models Part based models 3D object categorization Computer Vision: Algorithms

More information

Keypoint-based Recognition and Object Search

Keypoint-based Recognition and Object Search 03/08/11 Keypoint-based Recognition and Object Search Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Notices I m having trouble connecting to the web server, so can t post lecture

More information

Visual Object Recognition

Visual Object Recognition Perceptual and Sensory Augmented Computing Visual Object Recognition Tutorial Visual Object Recognition Bastian Leibe Computer Vision Laboratory ETH Zurich Chicago, 14.07.2008 & Kristen Grauman Department

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 16: Bag-of-words models Object Bag of words Announcements Project 3: Eigenfaces due Wednesday, November 11 at 11:59pm solo project Final project presentations:

More information

Patch Descriptors. EE/CSE 576 Linda Shapiro

Patch Descriptors. EE/CSE 576 Linda Shapiro Patch Descriptors EE/CSE 576 Linda Shapiro 1 How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

The bits the whirl-wind left out..

The bits the whirl-wind left out.. The bits the whirl-wind left out.. Reading: Szeliski Background: 1 Edge Features Reading: Szeliski - 1.1 + 4.2.1 (Background: Ch 2 + 3.1 3.3) Background: 2 Edges as Gradients Edge detection = differential

More information

Supervised learning. f(x) = y. Image feature

Supervised learning. f(x) = y. Image feature Coffer Illusion Coffer Illusion Supervised learning f(x) = y Prediction function Image feature Output (label) Training: Given a training set of labeled examples: {(x 1,y 1 ),, (x N,y N )} Estimate the

More information

Object Recognition and Augmented Reality

Object Recognition and Augmented Reality 11/02/17 Object Recognition and Augmented Reality Dali, Swans Reflecting Elephants Computational Photography Derek Hoiem, University of Illinois Last class: Image Stitching 1. Detect keypoints 2. Match

More information

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Bag-of-words models Object Bag of words Bag of Words Models Adapted from slides by Rob Fergus and Svetlana Lazebnik 1 Object Bag of words Origin 1: Texture Recognition

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

Video Google: A Text Retrieval Approach to Object Matching in Videos

Video Google: A Text Retrieval Approach to Object Matching in Videos Video Google: A Text Retrieval Approach to Object Matching in Videos Josef Sivic, Frederik Schaffalitzky, Andrew Zisserman Visual Geometry Group University of Oxford The vision Enable video, e.g. a feature

More information

Large-scale visual recognition The bag-of-words representation

Large-scale visual recognition The bag-of-words representation Large-scale visual recognition The bag-of-words representation Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline Bag-of-words Large or small vocabularies? Extensions for instance-level

More information

Large Scale Image Retrieval

Large Scale Image Retrieval Large Scale Image Retrieval Ondřej Chum and Jiří Matas Center for Machine Perception Czech Technical University in Prague Features Affine invariant features Efficient descriptors Corresponding regions

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech Image Features and Categorization Computer Vision Jia-Bin Huang, Virginia Tech Administrative stuffs Final project Proposal due 11:59 PM on Thursday, Oct 27 Submit via CANVAS Send a copy to Jia-Bin and

More information

The SIFT (Scale Invariant Feature

The SIFT (Scale Invariant Feature The SIFT (Scale Invariant Feature Transform) Detector and Descriptor developed by David Lowe University of British Columbia Initial paper ICCV 1999 Newer journal paper IJCV 2004 Review: Matt Brown s Canonical

More information

Lecture 12 Recognition. Davide Scaramuzza

Lecture 12 Recognition. Davide Scaramuzza Lecture 12 Recognition Davide Scaramuzza Oral exam dates UZH January 19-20 ETH 30.01 to 9.02 2017 (schedule handled by ETH) Exam location Davide Scaramuzza s office: Andreasstrasse 15, 2.10, 8050 Zurich

More information

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech Image Features and Categorization Computer Vision Jia-Bin Huang, Virginia Tech Administrative stuffs Final project Got your proposals! Thanks! Will reply with feedbacks this week. HW 4 Due 11:59pm on Wed,

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza http://rpg.ifi.uzh.ch/ 1 Lab exercise today replaced by Deep Learning Tutorial by Antonio Loquercio Room

More information

Image classification Computer Vision Spring 2018, Lecture 18

Image classification Computer Vision Spring 2018, Lecture 18 Image classification http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 18 Course announcements Homework 5 has been posted and is due on April 6 th. - Dropbox link because course

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Category Recognition. Jia-Bin Huang Virginia Tech ECE 6554 Advanced Computer Vision

Category Recognition. Jia-Bin Huang Virginia Tech ECE 6554 Advanced Computer Vision Category Recognition Jia-Bin Huang Virginia Tech ECE 6554 Advanced Computer Vision Administrative stuffs Presentation and discussion leads assigned https://docs.google.com/spreadsheets/d/1p5pfycio5flq

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

Local features and image matching. Prof. Xin Yang HUST

Local features and image matching. Prof. Xin Yang HUST Local features and image matching Prof. Xin Yang HUST Last time RANSAC for robust geometric transformation estimation Translation, Affine, Homography Image warping Given a 2D transformation T and a source

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Bundling Features for Large Scale Partial-Duplicate Web Image Search

Bundling Features for Large Scale Partial-Duplicate Web Image Search Bundling Features for Large Scale Partial-Duplicate Web Image Search Zhong Wu, Qifa Ke, Michael Isard, and Jian Sun Microsoft Research Abstract In state-of-the-art image retrieval systems, an image is

More information

Visual Recognition and Search April 18, 2008 Joo Hyun Kim

Visual Recognition and Search April 18, 2008 Joo Hyun Kim Visual Recognition and Search April 18, 2008 Joo Hyun Kim Introduction Suppose a stranger in downtown with a tour guide book?? Austin, TX 2 Introduction Look at guide What s this? Found Name of place Where

More information

Texture. COS 429 Princeton University

Texture. COS 429 Princeton University Texture COS 429 Princeton University Texture What is a texture? Antonio Torralba Texture What is a texture? Antonio Torralba Texture What is a texture? Antonio Torralba Texture Texture is stochastic and

More information

Paper Presentation. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval

Paper Presentation. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval Paper Presentation Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval 02/12/2015 -Bhavin Modi 1 Outline Image description Scaling up visual vocabularies Search

More information

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013 Lecture 24: Image Retrieval: Part II Visual Computing Systems Review: K-D tree Spatial partitioning hierarchy K = dimensionality of space (below: K = 2) 3 2 1 3 3 4 2 Counts of points in leaf nodes Nearest

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

Large scale object/scene recognition

Large scale object/scene recognition Large scale object/scene recognition Image dataset: > 1 million images query Image search system ranked image list Each image described by approximately 2000 descriptors 2 10 9 descriptors to index! Database

More information

Local Image Features

Local Image Features Local Image Features Ali Borji UWM Many slides from James Hayes, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Overview of Keypoint Matching 1. Find a set of distinctive key- points A 1 A 2 A 3 B 3

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

From Structure-from-Motion Point Clouds to Fast Location Recognition

From Structure-from-Motion Point Clouds to Fast Location Recognition From Structure-from-Motion Point Clouds to Fast Location Recognition Arnold Irschara1;2, Christopher Zach2, Jan-Michael Frahm2, Horst Bischof1 1Graz University of Technology firschara, bischofg@icg.tugraz.at

More information

Compressed local descriptors for fast image and video search in large databases

Compressed local descriptors for fast image and video search in large databases Compressed local descriptors for fast image and video search in large databases Matthijs Douze2 joint work with Hervé Jégou1, Cordelia Schmid2 and Patrick Pérez3 1: INRIA Rennes, TEXMEX team, France 2:

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

6.819 / 6.869: Advances in Computer Vision

6.819 / 6.869: Advances in Computer Vision 6.819 / 6.869: Advances in Computer Vision Image Retrieval: Retrieval: Information, images, objects, large-scale Website: http://6.869.csail.mit.edu/fa15/ Instructor: Yusuf Aytar Lecture TR 9:30AM 11:00AM

More information

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 Image Features: Local Descriptors Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 [Source: K. Grauman] Sanja Fidler CSC420: Intro to Image Understanding 2/ 58 Local Features Detection: Identify

More information

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation CS 4495 Computer Vision Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing Administrivia PS 4: Out but I was a bit late so due date pushed back to Oct 29. OpenCV now has real SIFT

More information

Image Retrieval with a Visual Thesaurus

Image Retrieval with a Visual Thesaurus 2010 Digital Image Computing: Techniques and Applications Image Retrieval with a Visual Thesaurus Yanzhi Chen, Anthony Dick and Anton van den Hengel School of Computer Science The University of Adelaide

More information

SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY. Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang

SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY. Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang SEARCH BY MOBILE IMAGE BASED ON VISUAL AND SPATIAL CONSISTENCY Xianglong Liu, Yihua Lou, Adams Wei Yu, Bo Lang State Key Laboratory of Software Development Environment Beihang University, Beijing 100191,

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 6: Feature matching and alignment Szeliski: Chapter 6.1 Reading Last time: Corners and blobs Scale-space blob detector: Example Feature descriptors We know

More information

Efficient Representation of Local Geometry for Large Scale Object Retrieval

Efficient Representation of Local Geometry for Large Scale Object Retrieval Efficient Representation of Local Geometry for Large Scale Object Retrieval Michal Perďoch Ondřej Chum and Jiří Matas Center for Machine Perception Czech Technical University in Prague IEEE Computer Society

More information

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space.

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space. Visual words Map high-dimensional descriptors to tokens/words by quantizing the feature space. Quantize via clustering; cluster centers are the visual words Word #2 Descriptor feature space Assign word

More information

Hamming embedding and weak geometric consistency for large scale image search

Hamming embedding and weak geometric consistency for large scale image search Hamming embedding and weak geometric consistency for large scale image search Herve Jegou, Matthijs Douze, and Cordelia Schmid INRIA Grenoble, LEAR, LJK firstname.lastname@inria.fr Abstract. This paper

More information

Perception IV: Place Recognition, Line Extraction

Perception IV: Place Recognition, Line Extraction Perception IV: Place Recognition, Line Extraction Davide Scaramuzza University of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Outline of Today s lecture Place recognition using

More information

Feature Matching and Robust Fitting

Feature Matching and Robust Fitting Feature Matching and Robust Fitting Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Project 2 questions? This

More information

IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1

IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1 IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1 : Presentation structure : 1. Brief overview of talk 2. What does Object Recognition involve? 3. The Recognition Problem 4. Mathematical background:

More information

CLSH: Cluster-based Locality-Sensitive Hashing

CLSH: Cluster-based Locality-Sensitive Hashing CLSH: Cluster-based Locality-Sensitive Hashing Xiangyang Xu Tongwei Ren Gangshan Wu Multimedia Computing Group, State Key Laboratory for Novel Software Technology, Nanjing University xiangyang.xu@smail.nju.edu.cn

More information

Instance recognition and discovering patterns

Instance recognition and discovering patterns Instance recognition and discovering patterns Tues Nov 3 Kristen Grauman UT Austin Announcements Change in office hours due to faculty meeting: Tues 2-3 pm for rest of semester Assignment 4 posted Oct

More information

ECS 189G: Intro to Computer Vision, Spring 2015 Problem Set 3

ECS 189G: Intro to Computer Vision, Spring 2015 Problem Set 3 ECS 189G: Intro to Computer Vision, Spring 2015 Problem Set 3 Instructor: Yong Jae Lee (yjlee@cs.ucdavis.edu) TA: Ahsan Abdullah (aabdullah@ucdavis.edu) TA: Vivek Dubey (vvkdubey@ucdavis.edu) Due: Wednesday,

More information

Three things everyone should know to improve object retrieval. Relja Arandjelović and Andrew Zisserman (CVPR 2012)

Three things everyone should know to improve object retrieval. Relja Arandjelović and Andrew Zisserman (CVPR 2012) Three things everyone should know to improve object retrieval Relja Arandjelović and Andrew Zisserman (CVPR 2012) University of Oxford 2 nd April 2012 Large scale object retrieval Find all instances of

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT. Recap and Outline

EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT. Recap and Outline EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT Oct. 15, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John Wawrzynek)

More information

CS 1674: Intro to Computer Vision. Midterm Review. Prof. Adriana Kovashka University of Pittsburgh October 10, 2016

CS 1674: Intro to Computer Vision. Midterm Review. Prof. Adriana Kovashka University of Pittsburgh October 10, 2016 CS 1674: Intro to Computer Vision Midterm Review Prof. Adriana Kovashka University of Pittsburgh October 10, 2016 Reminders The midterm exam is in class on this coming Wednesday There will be no make-up

More information

Detection of Cut-And-Paste in Document Images

Detection of Cut-And-Paste in Document Images Detection of Cut-And-Paste in Document Images Ankit Gandhi and C. V. Jawahar Center for Visual Information Technology, IIIT-Hyderabad, India Email: ankit.gandhiug08@students.iiit.ac.in, jawahar@iiit.ac.in

More information

CMPSCI 670: Computer Vision! Grouping

CMPSCI 670: Computer Vision! Grouping CMPSCI 670: Computer Vision! Grouping University of Massachusetts, Amherst October 14, 2014 Instructor: Subhransu Maji Slides credit: Kristen Grauman and others Final project guidelines posted Milestones

More information

Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search

Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search Yan Zhang 1,2, Yao Zhao 1,2, Shikui Wei 3( ), and Zhenfeng Zhu 1,2 1 Institute of Information Science, Beijing Jiaotong

More information

Video Google faces. Josef Sivic, Mark Everingham, Andrew Zisserman. Visual Geometry Group University of Oxford

Video Google faces. Josef Sivic, Mark Everingham, Andrew Zisserman. Visual Geometry Group University of Oxford Video Google faces Josef Sivic, Mark Everingham, Andrew Zisserman Visual Geometry Group University of Oxford The objective Retrieve all shots in a video, e.g. a feature length film, containing a particular

More information

Scalable Recognition with a Vocabulary Tree

Scalable Recognition with a Vocabulary Tree Scalable Recognition with a Vocabulary Tree David Nistér and Henrik Stewénius Center for Visualization and Virtual Environments Department of Computer Science, University of Kentucky http://www.vis.uky.edu/

More information

Lecture 15: Object recognition: Bag of Words models & Part based generative models

Lecture 15: Object recognition: Bag of Words models & Part based generative models Lecture 15: Object recognition: Bag of Words models & Part based generative models Professor Fei Fei Li Stanford Vision Lab 1 Basic issues Representation How to represent an object category; which classification

More information

Local Image Features

Local Image Features Local Image Features Computer Vision Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Flashed Face Distortion 2nd Place in the 8th Annual Best

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

Visual Word based Location Recognition in 3D models using Distance Augmented Weighting

Visual Word based Location Recognition in 3D models using Distance Augmented Weighting Visual Word based Location Recognition in 3D models using Distance Augmented Weighting Friedrich Fraundorfer 1, Changchang Wu 2, 1 Department of Computer Science ETH Zürich, Switzerland {fraundorfer, marc.pollefeys}@inf.ethz.ch

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Introduction to Object Recognition & Bag of Words (BoW) Models

Introduction to Object Recognition & Bag of Words (BoW) Models : Introduction to Object Recognition & Bag of Words (BoW) Models Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Introduction to object recognition Representation Learning Recognition

More information

Grouping and Segmentation

Grouping and Segmentation Grouping and Segmentation CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Kristen Grauman ) Goals: Grouping in vision Gather features that belong together Obtain an intermediate representation

More information

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking Feature descriptors Alain Pagani Prof. Didier Stricker Computer Vision: Object and People Tracking 1 Overview Previous lectures: Feature extraction Today: Gradiant/edge Points (Kanade-Tomasi + Harris)

More information

Scalable Recognition with a Vocabulary Tree

Scalable Recognition with a Vocabulary Tree Scalable Recognition with a Vocabulary Tree David Nistér and Henrik Stewénius Center for Visualization and Virtual Environments Department of Computer Science, University of Kentucky http://www.vis.uky.edu/

More information

Large-scale Image Search and location recognition Geometric Min-Hashing. Jonathan Bidwell

Large-scale Image Search and location recognition Geometric Min-Hashing. Jonathan Bidwell Large-scale Image Search and location recognition Geometric Min-Hashing Jonathan Bidwell Nov 3rd 2009 UNC Chapel Hill Large scale + Location Short story... Finding similar photos See: Microsoft PhotoSynth

More information

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-21 April 2012, Tallinn, Estonia LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS Shvarts, D. & Tamre, M. Abstract: The

More information

Local Image Features

Local Image Features Local Image Features Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial This section: correspondence and alignment

More information

Binary SIFT: Towards Efficient Feature Matching Verification for Image Search

Binary SIFT: Towards Efficient Feature Matching Verification for Image Search Binary SIFT: Towards Efficient Feature Matching Verification for Image Search Wengang Zhou 1, Houqiang Li 2, Meng Wang 3, Yijuan Lu 4, Qi Tian 1 Dept. of Computer Science, University of Texas at San Antonio

More information

Min-Hashing and Geometric min-hashing

Min-Hashing and Geometric min-hashing Min-Hashing and Geometric min-hashing Ondřej Chum, Michal Perdoch, and Jiří Matas Center for Machine Perception Czech Technical University Prague Outline 1. Looking for representation of images that: is

More information