Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found

Size: px
Start display at page:

Download "Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found"

Transcription

1

2 Searching Tools Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found Example: Find a route from Tasi to Arad A simplified map of Romania (taken from AIMA, Russel&Norvig)

3 Searching Tools Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found Example: Find a route from Tasi to Arad State: location ( at Sibiu ) Connections: neighboring locations Current state: at Tasi Goal state: at Arad

4 Searching Tools Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found This is done by building a search tree at Tasi 1

5 Searching Tools Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found This is done by building a search tree at Tasi 1 at Neamt at Vaslui

6 Searching Tools Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found This is done by building a search tree at Tasi 1 at Neamt at Vaslui 2

7 Searching Tools Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found This is done by building a search tree at Tasi 1 at Neamt at Vaslui 2 at Tasi at Urziceni

8 Searching Tools Search = the exploration of a search space, which is a collection of search states and connections between them, until a goal state is found This is done by building a search tree Building the search tree is searching Different strategies of selecting the next state for building the search tree correspond to different types of search (e.g. breadth first, depth first,..) Several nodes in the search tree can point to the same state in search space ( repeated states )

9 Searching Tools Current state (where we currently are at) Successor function (where we can go from there) Goal test function (are we at the goal state?) Queue or fringe of tree frontier A strategy to select the next current state from the fringe at Tasi 1 at Neamt at Vaslui 2 at Tasi at Urziceni Problem Solution

10 Searching Tools Current state (where we currently are at) Successor function (where we can go from there) Goal test function (are we at the goal state?) Queue or fringe of tree frontier A strategy to select the next current state from the fringe

11 Searching Tools Example 1: Depth first search? Example 2: Breadth first search?

12 Searching Tools Example 1: Depth first search Example 2: Breadth first search

13 Requires extra information, e.g. straight line distance between locations Then we not append or prepend new states to states, but sort them according to how promising they look Extra information: Straight-line distance to goal (Bucharest)

14 Requires extra information, e.g. straight line distance between locations Then we not append or prepend new states to states, but sort them according to how promising they look

15 Properties of the search strategies Completeness (is a solution always found?) Optimality (is the best solution found first, e.g. the shortest path?) Time complexity e.g. in terms of branching factor b and the solution depth d, and the max tree depth m Space complexity Breadth First Depth First Complete??? Optimal??? Time Complexity?? Space Complexity??

16 Properties of the search strategies Completeness (is a solution always found?) Optimality (is the best solution found first, e.g. the shortest path?) Time complexity e.g. in terms of branching factor b and the solution depth d, and the max tree depth m Space complexity Breadth First Complete? Optimal? Time Complexity Space Complexity Exponential!! YES YES, if each action has equal cost b+b2+...+bd = O(bd) O(bd) Depth First YES, if finite search tree NO O(bm) O(bm)

17 In between breadth-first and depth first: Beam Search Notice: - If beam-width = infinity best-first search - If beam-width = 1 depth-first search without backup or hill climbing

18 An Example: planning a trip...

19 An Example: planning a trip...

20 An Example: planning a trip...

21 San Francisco Denver rg h Pi tts bu Kansas city In di Reno Grand Junction an ap o lis An Example: planning a trip... Boston

22 An Example: planning a trip... and back

23 San Francisco Flagstaff Denver rg h lis an ap o Kansas city Pi tts bu Reno Grand Junction In di C hi ca g o An Example: planning a trip...and back Boston

24 Denver rg h lis an ap o Kansas city Pi tts bu Reno Grand Junction In di C hi ca g o An Example: planning a trip...and back San Francisco Flagstaff => Instead of minimizing the (estimated) distance left to travel, we should minimize the (estimates) total distance i.e. distance traveled so far + (estimated) left to travel Boston

25 Minimizing the total (estimated) distance Consider again:

26 Minimizing the total (estimated) distance Consider again: => we can keep cost information in a state data structure provided that the functions Goal-p, successors and cost-fn are modified to work on state data structure

27 Good choice: states as nodes in the search tree (= paths): Then we turn the successors function into a function that works on paths and returns a list of paths instead of ordinary states :

28 => minimizing the total (estimated) distance

29 Specializing search So far, all search strategies were built upon tree-search Almost anything can be represented as a tree However, often advantage can (and should) be taken of additional structure in the search space Example: graph search Some nodes in the search tree point to the same search space state Huge pruning opportunities possible by checking for repeated states

30

31 graph search with paths = A* search If a successor state already occurs in states or in old-states, keep only the best (lowest cost) state in states => requires lookup of states in paths, comparing paths and addition and deletion of paths

32 (defun a*-search (paths goal-p successors cost-fn cost-left-fn &optional (state= #'eql) old-paths) (cond ((null paths) fail) ((funcall goal-p (path-state (first paths))) (first paths)) (t (let* ((path (pop paths)) (state (path-state path))) (setf old-paths (insert-path path old-paths)) (dolist (state2 (funcall successors state)) (let* ((cost (+ (path-cost-so-far path) (funcall cost-fn state state2))) (cost2 (funcall cost-left-fn state2)) (path2 (make-path :state state2 :previous path :cost-so-far cost :total-cost (+ cost cost2))) (old nil)) (cond ((setf old (find-path state2 paths state=)) (when (better-path path2 old) (setf paths (insert-path path2 (delete old paths))))) ((setf old (find-path state2 old-paths state=)) (when (better-path path2 old) (setf paths (insert-path path2 paths)) (setf old-paths (delete old old-paths)))) (t (setf paths (insert-path path2 paths)))))) (a*-search paths goal-p successors cost-fn cost-left-fn state= old-paths)))))

33 The 3-block's world search space

34 Recall: (defun GPS (state goals &optional (*ops* *ops*)) "General Problem Solver: from state, achieve goals using *ops*." (find-all-if #'action-p (achieve-all (cons '(start) state) goals nil))) State is a list of predicates Goal is achieved if goals is a subset of the state As a cost function we can take the number of actions taken so far plus the number of unsatisfied predicates

35

36

37 GPS as search easily solves the Sussman anomaly: Note: Now we search forward from the start state to the goal state Question: How could means-ends analysis be implemented as search?

38

39 Eliza Developed by Joseph Weizenbaum in 1965 Note: Now we search forward from the start state to the goal state Question: How could means-ends analysis be implemented as search?

40 Eliza Developed by Joseph Weizenbaum in 1965 One of the first programs to feature English output and input Named after the heroine of Pygmalion, who fooled others into believing she was upper class after being taught proper English by a professor Example dialogue (Eliza output in capitals):

41 Eliza Appears to show exhibit true understanding, but this is an illusion: It is merely recognizing, transforming and echoing pieces of the input E.g.: When given the word same or alike, it outputs a question about similarity When given an input I need X, it outputs What would it mean to you if you got X

42 Eliza Appears to show exhibit true understanding, but this is an illusion: It is merely recognizing, transforming and echoing pieces of the input E.g.: When given the word same or alike, it outputs a question about similarity When given an input I need X, it outputs What would it mean to you if you got X When given the input I need this like a whole in the head, Eliza responds with What would it mean to you if you got this like a whole in the head? Eliza programmed to simulate a psychotherapist Parry programmed to simulate Paranoid behavior

43 Programming Eliza (1) Read input (2) Find a pattern that matches the input (3) Transform the pattern to a response (4) Print the response

44 Programming Eliza (1) Read input (read list-of-symbols) (2) Find a pattern that matches the input

45 Programming Eliza (1) Read input (read list-of-symbols) (2) Find a pattern that matches the input Match i with i, need with need etc.:

46 Variables and bindings

47 Variables and bindings OK, but we will also need the variable bindings in the transformation: Exercise: search the 5 (!) bugs in the above function

48 Variables and bindings (eql pattern input) may return T, which is not a list NIL indicates both failure and success with no bindings The case of failure should be caught (and not just appended) If a variable appears several times in the pattern, the bindings should match 5. If the first doesn't match, the rest should not be cheched anymore

49 Variables and bindings

50 Variables and bindings

51 Variables and bindings

52

53

54

55 Programming Eliza (1) Read input (read list-of-words) (2) Find a pattern that matches the input (3) Transform the pattern to a response

56 Programming Eliza (1) Read input (read list-of-words) (2) Find a pattern that matches the input (3) Transform the pattern to a response

57 Programming Eliza (1) Read input (read list-of-words) (2) Find a pattern that matches the input (3) Transform the pattern to a response (4) Print the response print

58

59

60

61 The original Eliza: Had more rules Alias method for associating several words with the same pattern (e.g. both mother and father with family Synonymy mechanism (e.g. don't = do not, everybody = everyone ) Separate response calculated for comma-separated sub phrases Set of outputs in case of no match (e.g. Tell me more about X, with X an earlier input) What is important is the technique of pattern matching and rul-based translation. => Next week: a more general pattern matching utility and STUDENT

(defvar *state* nil "The current state: a list of conditions.")

(defvar *state* nil The current state: a list of conditions.) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; GPS engine for blocks world ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defvar *dbg-ids* nil "Identifiers used by dbg") (defvar *state* nil "The current state: a list of conditions.")

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching CS486/686 University of Waterloo Sept 11, 2008 1 Outline Problem solving agents and search Examples Properties of search algorithms Uninformed search Breadth first Depth first

More information

CS486/686 Lecture Slides (c) 2015 P.Poupart

CS486/686 Lecture Slides (c) 2015 P.Poupart 1 2 Solving Problems by Searching [RN2] Sec 3.1-3.5 [RN3] Sec 3.1-3.4 CS486/686 University of Waterloo Lecture 2: May 7, 2015 3 Outline Problem solving agents and search Examples Properties of search algorithms

More information

CS486/686 Lecture Slides (c) 2014 P.Poupart

CS486/686 Lecture Slides (c) 2014 P.Poupart 1 2 1 Solving Problems by Searching [RN2] Sec 3.1-3.5 [RN3] Sec 3.1-3.4 CS486/686 University of Waterloo Lecture 2: January 9, 2014 3 Outline Problem solving agents and search Examples Properties of search

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

Chapter 3: Informed Search and Exploration. Dr. Daisy Tang

Chapter 3: Informed Search and Exploration. Dr. Daisy Tang Chapter 3: Informed Search and Exploration Dr. Daisy Tang Informed Search Definition: Use problem-specific knowledge beyond the definition of the problem itself Can find solutions more efficiently Best-first

More information

Informed Search. Topics. Review: Tree Search. What is Informed Search? Best-First Search

Informed Search. Topics. Review: Tree Search. What is Informed Search? Best-First Search Topics Informed Search Best-First Search Greedy Search A* Search Sattiraju Prabhakar CS771: Classes,, Wichita State University 3/6/2005 AI_InformedSearch 2 Review: Tree Search What is Informed Search?

More information

Informed search algorithms

Informed search algorithms Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

Overview. Path Cost Function. Real Life Problems. COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

Overview. Path Cost Function. Real Life Problems. COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search Overview Last time Depth-limited, iterative deepening and bi-directional search Avoiding repeated states Today Show how applying knowledge

More information

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3 9-04-2013 Uninformed (blind) search algorithms Breadth-First Search (BFS) Uniform-Cost Search Depth-First Search (DFS) Depth-Limited Search Iterative Deepening Best-First Search HW#1 due today HW#2 due

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Agents, Goal-Based Agents, Problem-Solving Agents Search Problems Blind Search Strategies Agents sensors environment percepts actions? agent effectors Definition. An agent

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Agents, Goal-Based Agents, Problem-Solving Agents Search Problems Blind Search Strategies Agents sensors environment percepts actions? agent effectors Definition. An agent

More information

Problem Solving Agents

Problem Solving Agents Problem Solving Agents Well-defined Problems Solutions (as a sequence of actions). Examples Search Trees Uninformed Search Algorithms Well-defined Problems 1. State Space, S An Initial State, s 0 S. A

More information

Today s s lecture. Lecture 2: Search - 1. Examples of toy problems. Searching for Solutions. Victor R. Lesser

Today s s lecture. Lecture 2: Search - 1. Examples of toy problems. Searching for Solutions. Victor R. Lesser Today s s lecture Lecture 2: Search - 1 Victor R. Lesser CMPSCI 683 Fall 2004 Why is search the key problem-solving technique in AI? Formulating and solving search problems. Understanding and comparing

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 Chapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems Uninformed search algorithms Informed search algorithms Chapter 3 2 Restricted

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Admissible Heuristics Graph Search Consistent Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 04 p.1/39 Informed Search and Exploration Chapter 4 Ch. 04 p.2/39 Outline Best-first search A search Heuristics IDA search Hill-climbing Simulated annealing Ch. 04 p.3/39 Review: Tree search function

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence hapter 1 hapter 1 1 Iterative deepening search function Iterative-Deepening-Search( problem) returns a solution inputs: problem, a problem for depth 0 to do result Depth-Limited-Search(

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Planning, Execution & Learning 1. Heuristic Search Planning

Planning, Execution & Learning 1. Heuristic Search Planning Planning, Execution & Learning 1. Heuristic Search Planning Reid Simmons Planning, Execution & Learning: Heuristic 1 Simmons, Veloso : Fall 2001 Basic Idea Heuristic Search Planning Automatically Analyze

More information

Informed Search Algorithms. Chapter 4

Informed Search Algorithms. Chapter 4 Informed Search Algorithms Chapter 4 Outline Informed Search and Heuristic Functions For informed search, we use problem-specific knowledge to guide the search. Topics: Best-first search A search Heuristics

More information

TDT4136 Logic and Reasoning Systems

TDT4136 Logic and Reasoning Systems TDT4136 Logic and Reasoning Systems Chapter 3 & 4.1 - Informed Search and Exploration Lester Solbakken solbakke@idi.ntnu.no Norwegian University of Science and Technology 18.10.2011 1 Lester Solbakken

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03 p.1/47 Informed Search and Exploration Sections 3.5 and 3.6 Ch. 03 p.2/47 Outline Best-first search A search Heuristics, pattern databases IDA search (Recursive Best-First Search (RBFS), MA and

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03b p.1/51 Informed Search and Exploration Sections 3.5 and 3.6 Nilufer Onder Department of Computer Science Michigan Technological University Ch. 03b p.2/51 Outline Best-first search A search Heuristics,

More information

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search 1 Class Tests Class Test 1 (Prolog): Tuesday 8 th November (Week 7) 13:00-14:00 LIFS-LT2 and LIFS-LT3 Class Test 2 (Everything but Prolog)

More information

Search EECS 348 Intro to Artificial Intelligence

Search EECS 348 Intro to Artificial Intelligence Search EECS 348 Intro to Artificial Intelligence (slides from Oren Etzioni, based on Stuart Russell, Dan Weld, Henry Kautz, and others) What is Search? Search is a class of techniques for systematically

More information

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department (CHAPTER-3-PART3) PROBLEM SOLVING AND SEARCH Searching algorithm Uninformed

More information

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search 1 Class Tests Class Test 1 (Prolog): Friday 17th November (Week 8), 15:00-17:00. Class Test 2 (Everything but Prolog) Friday 15th December

More information

Informed search algorithms. Chapter 4, Sections 1 2 1

Informed search algorithms. Chapter 4, Sections 1 2 1 Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

Solving Problems using Search

Solving Problems using Search Solving Problems using Search Artificial Intelligence @ Allegheny College Janyl Jumadinova September 11, 2018 Janyl Jumadinova Solving Problems using Search September 11, 2018 1 / 35 Example: Romania On

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair, COMP9414/ 9814/ 3411: Artificial Intelligence 5. Informed Search Russell & Norvig, Chapter 3. COMP9414/9814/3411 15s1 Informed Search 1 Search Strategies General Search algorithm: add initial state to

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu 1 /1 Outline Problem-solving agents Problem types Problem formulation Example problems Basic

More information

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 4: Search 3 Victor R. Lesser CMPSCI 683 Fall 2010 First Homework 1 st Programming Assignment 2 separate parts (homeworks) First part due on (9/27) at 5pm Second part due on 10/13 at 5pm Send homework

More information

KI-Programmierung. Basic Search Algorithms

KI-Programmierung. Basic Search Algorithms KI-Programmierung Basic Search Algorithms Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2007/2008 B. Beckert: KI-Programmierung p.1 Example: Travelling in Romania Scenario On holiday in Romania;

More information

AGENTS AND ENVIRONMENTS. What is AI in reality?

AGENTS AND ENVIRONMENTS. What is AI in reality? AGENTS AND ENVIRONMENTS What is AI in reality? AI is our attempt to create a machine that thinks (or acts) humanly (or rationally) Think like a human Cognitive Modeling Think rationally Logic-based Systems

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 Chapter 3 1 How to Solve a (Simple) Problem 7 2 4 1 2 5 6 3 4 5 8 3 1 6 7 8 Start State Goal State Chapter 3 2 Introduction Simple goal-based agents can solve problems

More information

Introduction to Artificial Intelligence (G51IAI)

Introduction to Artificial Intelligence (G51IAI) Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu Heuristic Searches Blind Search vs. Heuristic Searches Blind search Randomly choose where to search in the search tree When problems get large,

More information

CS 8520: Artificial Intelligence

CS 8520: Artificial Intelligence CS 8520: Artificial Intelligence Solving Problems by Searching Paula Matuszek Spring, 2013 Slides based on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are in turn based on Russell, aima.eecs.berkeley.edu/slides-pdf.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Search Marc Toussaint University of Stuttgart Winter 2015/16 (slides based on Stuart Russell s AI course) Outline Problem formulation & examples Basic search algorithms 2/100 Example:

More information

ARTIFICIAL INTELLIGENCE. Pathfinding and search

ARTIFICIAL INTELLIGENCE. Pathfinding and search INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Pathfinding and search Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Artificial Intelligence: Search Part 2: Heuristic search

Artificial Intelligence: Search Part 2: Heuristic search Artificial Intelligence: Search Part 2: Heuristic search Thomas Trappenberg January 16, 2009 Based on the slides provided by Russell and Norvig, Chapter 4, Section 1 2,(4) Outline Best-first search A search

More information

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3 CS 4700: Foundations of Artificial Intelligence Bart Selman Search Techniques R&N: Chapter 3 Outline Search: tree search and graph search Uninformed search: very briefly (covered before in other prerequisite

More information

Outline. Informed search algorithms. Best-first search. Review: Tree search. A search Heuristics. Chapter 4, Sections 1 2 4

Outline. Informed search algorithms. Best-first search. Review: Tree search. A search Heuristics. Chapter 4, Sections 1 2 4 Outline Best-first search Informed search algorithms A search Heuristics Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

Search EECS 395/495 Intro to Artificial Intelligence

Search EECS 395/495 Intro to Artificial Intelligence Search EECS 395/495 Intro to Artificial Intelligence Doug Downey (slides from Oren Etzioni, based on Stuart Russell, Dan Weld, Henry Kautz, and others) What is Search? Search is a class of techniques for

More information

Informed search algorithms

Informed search algorithms Artificial Intelligence Topic 4 Informed search algorithms Best-first search Greedy search A search Admissible heuristics Memory-bounded search IDA SMA Reading: Russell and Norvig, Chapter 4, Sections

More information

Graph Search. Chris Amato Northeastern University. Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA

Graph Search. Chris Amato Northeastern University. Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA Graph Search Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA What is graph search? Start state Goal state Graph search: find a path from start

More information

Introduction to Artificial Intelligence. Informed Search

Introduction to Artificial Intelligence. Informed Search Introduction to Artificial Intelligence Informed Search Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Best-first search A search Heuristics B. Beckert:

More information

TDDC17. Intuitions behind heuristic search. Recall Uniform-Cost Search. Best-First Search. f(n) =... + h(n) g(n) = cost of path from root node to n

TDDC17. Intuitions behind heuristic search. Recall Uniform-Cost Search. Best-First Search. f(n) =... + h(n) g(n) = cost of path from root node to n Intuitions behind heuristic search The separation property of GRAPH-SEARCH TDDC17 Seminar III Search II Informed or Heuristic Search Beyond Classical Search Find a heuristic measure h(n) which estimates

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 Some slide credits to Hwee Tou Ng (Singapore) Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Heuristics

More information

Week 3: Path Search. COMP9414/ 9814/ 3411: Artificial Intelligence. Motivation. Example: Romania. Romania Street Map. Russell & Norvig, Chapter 3.

Week 3: Path Search. COMP9414/ 9814/ 3411: Artificial Intelligence. Motivation. Example: Romania. Romania Street Map. Russell & Norvig, Chapter 3. COMP9414/9814/3411 17s1 Search 1 COMP9414/ 9814/ 3411: Artificial Intelligence Week 3: Path Search Russell & Norvig, Chapter 3. Motivation Reactive and Model-Based Agents choose their actions based only

More information

Downloaded from ioenotes.edu.np

Downloaded from ioenotes.edu.np Chapter- 3: Searching - Searching the process finding the required states or nodes. - Searching is to be performed through the state space. - Search process is carried out by constructing a search tree.

More information

CSE 473. Chapter 4 Informed Search. CSE AI Faculty. Last Time. Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search

CSE 473. Chapter 4 Informed Search. CSE AI Faculty. Last Time. Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search CSE 473 Chapter 4 Informed Search CSE AI Faculty Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search Last Time 2 1 Repeated States Failure to detect repeated states can turn a linear

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Informed Search Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Route planning / Search Movement Group behavior Decision making

Route planning / Search Movement Group behavior Decision making Game AI Where is the AI Route planning / Search Movement Group behavior Decision making General Search Algorithm Design Keep a pair of set of states: One, the set of states to explore, called the open

More information

DFS. Depth-limited Search

DFS. Depth-limited Search DFS Completeness? No, fails in infinite depth spaces or spaces with loops Yes, assuming state space finite. Time complexity? O(b m ), terrible if m is much bigger than d. can do well if lots of goals Space

More information

Informatics 2D: Tutorial 2 (Solutions)

Informatics 2D: Tutorial 2 (Solutions) Informatics 2D: Tutorial 2 (Solutions) Adversarial Search and Informed Search Week 3 1 Adversarial Search This exercise was taken from R&N Chapter 5. Consider the two-player game shown in Figure 1. Figure

More information

Artificial Intelligence. Informed search methods

Artificial Intelligence. Informed search methods Artificial Intelligence Informed search methods In which we see how information about the state space can prevent algorithms from blundering about in the dark. 2 Uninformed vs. Informed Search Uninformed

More information

4. Solving Problems by Searching

4. Solving Problems by Searching COMP9414/9814/3411 15s1 Search 1 COMP9414/ 9814/ 3411: Artificial Intelligence 4. Solving Problems by Searching Russell & Norvig, Chapter 3. Motivation Reactive and Model-Based Agents choose their actions

More information

Solving problems by searching

Solving problems by searching Solving problems by searching 1 C H A P T E R 3 Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Outline 2 Problem-solving agents 3 Note: this is offline

More information

Outline. Solving problems by searching. Problem-solving agents. Example: Romania

Outline. Solving problems by searching. Problem-solving agents. Example: Romania Outline Solving problems by searching Chapter 3 Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Systems 1 Systems 2 Problem-solving agents Example: Romania

More information

Solving Problem by Searching. Chapter 3

Solving Problem by Searching. Chapter 3 Solving Problem by Searching Chapter 3 Outline Problem-solving agents Problem formulation Example problems Basic search algorithms blind search Heuristic search strategies Heuristic functions Problem-solving

More information

Informed (Heuristic) Search. Idea: be smart about what paths to try.

Informed (Heuristic) Search. Idea: be smart about what paths to try. Informed (Heuristic) Search Idea: be smart about what paths to try. 1 Blind Search vs. Informed Search What s the difference? How do we formally specify this? A node is selected for expansion based on

More information

Algorithm. December 7, Shortest path using A Algorithm. Phaneendhar Reddy Vanam. Introduction. History. Components of A.

Algorithm. December 7, Shortest path using A Algorithm. Phaneendhar Reddy Vanam. Introduction. History. Components of A. December 7, 2011 1 2 3 4 5 6 7 The A is a best-first search algorithm that finds the least cost path from an initial configuration to a final configuration. The most essential part of the A is a good heuristic

More information

COMP219: Artificial Intelligence. Lecture 7: Search Strategies

COMP219: Artificial Intelligence. Lecture 7: Search Strategies COMP219: Artificial Intelligence Lecture 7: Search Strategies 1 Overview Last time basic ideas about problem solving; state space; solutions as paths; the notion of solution cost; the importance of using

More information

ARTIFICIAL INTELLIGENCE SOLVING PROBLEMS BY SEARCHING. Chapter 3

ARTIFICIAL INTELLIGENCE SOLVING PROBLEMS BY SEARCHING. Chapter 3 ARTIFICIAL INTELLIGENCE SOLVING PROBLEMS BY SEARCHING Chapter 3 1 PROBLEM SOLVING We want: To automatically solve a problem We need: A representation of the problem Algorithms that use some strategy to

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 Systems 1 Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Systems 2 Problem-solving agents Systems 3 Example:

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 CS 2710 1 Outline Problem-solving agents Problem formulation Example problems Basic search algorithms CS 2710 - Blind Search 2 1 Goal-based Agents Agents that take

More information

AGENTS AND ENVIRONMENTS. What is AI in reality?

AGENTS AND ENVIRONMENTS. What is AI in reality? AGENTS AND ENVIRONMENTS What is AI in reality? AI is our attempt to create a machine that thinks (or acts) humanly (or rationally) Think like a human Cognitive Modeling Think rationally Logic-based Systems

More information

S A E RC R H C I H NG N G IN N S T S A T T A E E G R G A R PH P S

S A E RC R H C I H NG N G IN N S T S A T T A E E G R G A R PH P S LECTURE 2 SEARCHING IN STATE GRAPHS Introduction Idea: Problem Solving as Search Basic formalism as State-Space Graph Graph explored by Tree Search Different algorithms to explore the graph Slides mainly

More information

COSC343: Artificial Intelligence

COSC343: Artificial Intelligence COSC343: Artificial Intelligence Lecture 18: Informed search algorithms Alistair Knott Dept. of Computer Science, University of Otago Alistair Knott (Otago) COSC343 Lecture 18 1 / 1 In today s lecture

More information

Chapter 2. Blind Search 8/19/2017

Chapter 2. Blind Search 8/19/2017 Chapter 2 1 8/19/2017 Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms 8/19/2017 2 8/19/2017 3 On holiday in Romania; currently in Arad. Flight leaves tomorrow

More information

TDDC17. Intuitions behind heuristic search. Best-First Search. Recall Uniform-Cost Search. f(n) =... + h(n) g(n) = cost of path from root node to n

TDDC17. Intuitions behind heuristic search. Best-First Search. Recall Uniform-Cost Search. f(n) =... + h(n) g(n) = cost of path from root node to n Intuitions behind heuristic search The separation property of GRAPH-SEARCH TDDC17 Seminar III Search II Informed or Heuristic Search Beyond Classical Search Find a heuristic measure h(n) which estimates

More information

GPS: The general problem solver. developed in 1957 by Alan Newel and Herbert Simon. (H. Simon, 1957)

GPS: The general problem solver. developed in 1957 by Alan Newel and Herbert Simon. (H. Simon, 1957) GPS: The general problem solver developed in 1957 by Alan Newel and Herbert Simon (H. Simon, 1957) GPS: The general problem solver developed in 1957 by Alan Newel and Herbert Simon - Was the first program

More information

521495A: Artificial Intelligence

521495A: Artificial Intelligence 521495A: Artificial Intelligence Search Lectured by Abdenour Hadid Associate Professor, CMVS, University of Oulu Slides adopted from http://ai.berkeley.edu Agent An agent is an entity that perceives the

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 Chapter 3 1 Problem formulation & examples Basic search algorithms Outline Chapter 3 2 On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

More information

Problem Solving and Search

Problem Solving and Search Artificial Intelligence Problem Solving and Search Dae-Won Kim School of Computer Science & Engineering Chung-Ang University Outline Problem-solving agents Problem types Problem formulation Example problems

More information

CS 771 Artificial Intelligence. Problem Solving by Searching Uninformed search

CS 771 Artificial Intelligence. Problem Solving by Searching Uninformed search CS 771 Artificial Intelligence Problem Solving by Searching Uninformed search Complete architectures for intelligence? Search? Solve the problem of what to do. Learning? Learn what to do. Logic and inference?

More information

Uninformed Search. Chapter 3. (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty)

Uninformed Search. Chapter 3. (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty) Uninformed Search Chapter 3 (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty) Agent s Knowledge Representation Type State representation

More information

Informed Search. Dr. Richard J. Povinelli. Copyright Richard J. Povinelli Page 1

Informed Search. Dr. Richard J. Povinelli. Copyright Richard J. Povinelli Page 1 Informed Search Dr. Richard J. Povinelli Copyright Richard J. Povinelli Page 1 rev 1.1, 9/25/2001 Objectives You should be able to explain and contrast uniformed and informed searches. be able to compare,

More information

CAP 4630 Artificial Intelligence

CAP 4630 Artificial Intelligence CAP 4630 Artificial Intelligence Instructor: Sam Ganzfried sganzfri@cis.fiu.edu 1 http://www.ultimateaiclass.com/ https://moodle.cis.fiu.edu/ 2 Solving problems by search 3 8-puzzle 4 8-queens 5 Search

More information

Solving Problems by Searching (Blindly)

Solving Problems by Searching (Blindly) Solving Problems by Searching (Blindly) R&N: Chap. 3 (many of these slides borrowed from Stanford s AI Class) Problem Solving Agents Decide what to do by finding a sequence of actions that lead to desirable

More information

Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu. Blind Searches

Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu. Blind Searches Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu Blind Searches Blind Searches Function GENERAL-SEARCH (problem, QUEUING-FN) returns a solution or failure nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))

More information

Uninformed Search Strategies

Uninformed Search Strategies Uninformed Search Strategies Alan Mackworth UBC CS 322 Search 2 January 11, 2013 Textbook 3.5 1 Today s Lecture Lecture 4 (2-Search1) Recap Uninformed search + criteria to compare search algorithms - Depth

More information

This should prevent residual sexism, racism, favoritism lurking in the unconscious of your professor & TA from biasing grading!!

This should prevent residual sexism, racism, favoritism lurking in the unconscious of your professor & TA from biasing grading!! NAME login: Signature: Computer Science and Engineering 150 Programming Languages for Artificial Intelligence Tuesday, November 5, 2002: DON T FORGET TO VOTE!!! FIRST MIDTERM EXAM DO NOT TURN THIS PAGE

More information

Object Oriented Programming (OOP)

Object Oriented Programming (OOP) Object Oriented Programming (OOP) o New programming paradigm o Actions Objects o Objects Actions o Object-oriented = Objects + Classes + Inheritance Imperative programming o OOP (Object-Oriented Programming)

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Berlin Chen 2004 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 3 1 Introduction Problem-Solving Agents vs. Reflex Agents Problem-solving

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence S:4420 rtificial Intelligence Spring 2018 Uninformed Search esare Tinelli The University of Iowa opyright 2004 18, esare Tinelli and Stuart Russell a a These notes were originally developed by Stuart Russell

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 3 Informed Search Sarah Gaggl Dresden, 22th April 2014 Agenda 1 Introduction 2 Uninformed Search

More information

PEAS: Medical diagnosis system

PEAS: Medical diagnosis system PEAS: Medical diagnosis system Performance measure Patient health, cost, reputation Environment Patients, medical staff, insurers, courts Actuators Screen display, email Sensors Keyboard/mouse Environment

More information

Robot Programming with Lisp

Robot Programming with Lisp 6. Search Algorithms Gayane Kazhoyan (Stuart Russell, Peter Norvig) Institute for University of Bremen Contents Problem Definition Uninformed search strategies BFS Uniform-Cost DFS Depth-Limited Iterative

More information

Lecture Plan. Best-first search Greedy search A* search Designing heuristics. Hill-climbing. 1 Informed search strategies. Informed strategies

Lecture Plan. Best-first search Greedy search A* search Designing heuristics. Hill-climbing. 1 Informed search strategies. Informed strategies Lecture Plan 1 Informed search strategies (KA AGH) 1 czerwca 2010 1 / 28 Blind vs. informed search strategies Blind search methods You already know them: BFS, DFS, UCS et al. They don t analyse the nodes

More information

CS 380: Artificial Intelligence Lecture #3

CS 380: Artificial Intelligence Lecture #3 CS 380: Artificial Intelligence Lecture #3 William Regli Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms 1 Problem-solving agents Example: Romania

More information

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search:

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search: Outline for today s lecture Informed Search II Informed Search Optimal informed search: A* (AIMA 3.5.2) Creating good heuristic functions Hill Climbing 2 Review: Greedy best-first search: f(n): estimated

More information

A.I.: Informed Search Algorithms. Chapter III: Part Deux

A.I.: Informed Search Algorithms. Chapter III: Part Deux A.I.: Informed Search Algorithms Chapter III: Part Deux Best-first search Greedy best-first search A * search Heuristics Outline Overview Informed Search: uses problem-specific knowledge. General approach:

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 3, 4/6/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes 4/6/2005 EE562 1 Today: Basic

More information

Uninformed Search. Chapter 3

Uninformed Search. Chapter 3 Uninformed Search Chapter 3 (Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, Richard Korf, and other UW-AI faculty) Agent s Knowledge Representation Type State

More information

Basic Search. Fall Xin Yao. Artificial Intelligence: Basic Search

Basic Search. Fall Xin Yao. Artificial Intelligence: Basic Search Basic Search Xin Yao Fall 2017 Fall 2017 Artificial Intelligence: Basic Search Xin Yao Outline Motivating Examples Problem Formulation From Searching to Search Tree Uninformed Search Methods Breadth-first

More information

INTRODUCTION TO HEURISTIC SEARCH

INTRODUCTION TO HEURISTIC SEARCH INTRODUCTION TO HEURISTIC SEARCH What is heuristic search? Given a problem in which we must make a series of decisions, determine the sequence of decisions which provably optimizes some criterion. What

More information

Problem Solving and Search. Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel

Problem Solving and Search. Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel Problem Solving and Search Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel What is problem solving? An agent can act by establishing goals

More information