weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

Size: px
Start display at page:

Download "weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces."

Transcription

1 weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction: has the ability to handle complicated topology and geometry as well as noise and non-uniformity of the data. the constructed surface is a good approximation of the data set and has some smoothness. has a data structure that is good for static rendering as well as dynamic deformation and other operations. extends to high dimensions. 34

2 previous approaches explicit representation: find f s.t. Γ = f(u, v). triangulated surfaces using Voronoi diagram and Delaunay triangulations. parametric surfaces, such as NURBS. variational and PDE formulation. membrane model: min f 2 dx subject to: f(x i )=f i implicit representation: find φ(x) s.t. Γ={x φ(x) =const.} the scalar function is a combination of basis functions. the scalar function is a signed distance function. 35

3 our approach Define a minimal surface model and a convection model on the continuous level using variational formulation and PDEs. Develop efficient numerical algorithms based on rectangular grids for processing data, computing distance and defining the initial surface. Construct the final surface Γ, as an implicit surface by continuous deformation using the level set method, i.e., construct a signed distance function φ(x) s.t. Γ ={x : φ(x) = 0}. 36

4 the weighted minimal surface model Let S denote a general data set and d(x) =dist(x, S). Variational formulation: Minimize E(Γ) = [ ]1 p Γ dp (x)ds. 1 p, The energy functional: uses distance which is independent of parametrization and is invariant under rotation and translation. if p<, E(Γ) Γ dp (x)ds, a weighted surface area. if p =, E(Γ) = maxx Γ d(x) p = 1, scale invariant E(Γ) = Γ d(x)ds 37

5 geodesic model for image segmentation Denote I(x) to be the intensity function. Define the boundary to be the curve Γ that minimizes Γ g( I)ds where g( I) is an edge detection function, e.g. The gradient flow is: g( I) =(1+ I p ) 1 v n = (g( I)n) = g n gκ where n is the unit normal and κ is the curvature. 38

6 the gradient descent flow [ ]1 dγ dt = p 1 Γ dp (x)ds d p 1 (x)[ d(x) n+ 1p ] d(x)κ n, balance between attraction d n and surface tension dκ scaled by distance, where κ is the mean curvature. [ ]1 p 1 Γ dp (x)ds d p 1 (x) scales the motion of Γ, where if p 1, [ ]1 [ p 1 Γ dp (x)ds d p 1 d(x) (x) d max =max x Γ d(x) [ Γ dp (x)ds] 1/p d max ] p 1 In practice, we often use p = 1 (scale invariant) or p =2 (least square). 39

7 the Euler-Lagrange equation The minimizer satisfies the weighted minimal surface equation: d p 1 (x) [ d(x) n + 1p ] d(x)κ =0, The rigidity is adapted to the local sampling density. d(x) n + 1 pd(x)κ =0 local sampling condition. 40

8 mathematical questions if d(x) =dist(x, Γ 0 ), Γ 0 is a smooth surface, E(Γ) = 0 when Γ=Γ 0 or Γ =. if d(x) =dist(x, S), S is a discrete set, E(Γ)=0whenΓ=. Questions: 1. Existence and uniqueness of a local minimum, i.e., a weighted minimal surface attached to the data set? 2. How to find it? 41

9 2D results If p 1, Lemma1: Proof: Polygon with vertices in S is a local minimum. 1. d p 1 (x)[ d(x) n + 1 pd(x)κ] =0 a.e. 2. it is a local minimum by perturbation analysis. Lemma2: If a curve passes a data point it will not leave the point. Remark: It is more complicated in 3D and depends on the sampling density in general. 42

10 continuous deformation Deform an initial surface that encloses S following the gradient flow (a weighted mean curvature flow): [ ]1 dγ dt = p 1 Γ dp (x)ds d p 1 (x) [ d(x) n+ 1p ] d(x)κ n, Numerical Challenges: 1. topological changes during the deformation. 2. convergence and CFL condition t = O( x 2 ). Solutions: 1. the level set method provides a powerful numerical tool for the deformation and construction of implicit surfaces. 2. Starting with a good initial guess. 43

11 local analysis in the continuous limit If Γ 0 beasmoothclosedsurface,letd(x) be the signed distance function to Γ 0 (d is negative inside Γ 0 )and Γ d = {x d(x) =d}, then and F (d) def = E(Γ d )= [ Γ d d p ds ]1 p = d [ Γ d ds ]1 p def L (d) = κds = χ(d). Γ d So sign(d)f (d) =L 1 p 1 (d) [L(d)+ dp ] χ(d) = L 1 p 1 (d) = d L 1 p(d) Γ d ( 1 dκ p ) ds Remark: dκ < 1 until singularity develops. In 2D χ(a) = winding number. 44

12 aconvectionmodel The surface is convected in the potential field defined by the distance function d(x). Γ t = d(x) Properties: 1. v n = d n Each point on Γ is attracted by its closest data point except those equal distant points. 3. Linear convection equation, t = O( x) in numerical computations. The final construction is like piecewise linear. 45

13 x 2 3 x 5 x x 6 x 1 x 4

14 the level set method Two key steps for the level set method: 1. Embed the surface: find a level set function φ s.t. Γ={x : φ(x) =0}. Geometric properties of the surface Γ can be easily computed using φ, e.g. n = φ φ, κ = φ φ. 2. Embed the motion: derive the time evolution PDE for φ s.t. Γ(t) ={x : φ(x,t)=0}. dφ(γ(t),t) = φ t + v φ =0 dt where v is a velocity field that agrees with the motion of Γ. Remark: Reinitialization is usually needed to keep φ close to the signed distance function, i.e., φ 1. 47

15 advantages of the level set method Geometric problem becomes a PDE problem. Capture the moving interface on a fixed Cartesian grid. Handle topological changes easily. Efficient numerical schemes are available. Local level set method reduces the computation cost. Remark: The level set method and implicit surfaces provide a general framework for the modeling, analysis and simulation of surfaces. 48

16 the level set formulation for our problems embed the motion: gradient flow for the minimal surface model: [ φ t = φ ]1 [ d p p 1 1 δ(φ) φ dx d p 1 d φ φ + 1 φ d p φ ] the convection model φ t = d(x) φ standard finite difference scheme for the level set method. reinitialization. 49

17 numerical algorithms Three most important ingredients: Computing the unsigned distance function to an arbitrary data set. Finding a good initial surface. Solving the PDEs for the level set method. 50

18 finding a good initial surface 1. Start with the outer distance contour d = ɛ, 2. Push the initial surface even closer to the data set using a fast tagging algorithm. marching boundary distance contour data point Remark: The fast tagging algorithm can be regarded as a crude upwind scheme for the convection model. 51

19 a fast tagging algorithm the final surface = an appropriate boundary between the exterior and the interior regions. We start with an exterior region and use the following fast tagging algorithm to move the temporary boundary inward. 1. Heapsort the boundary points according to the distance. 2. for the furthest boundary point, (a) if it has an interior neighbor that has a larger distance, tag this boundary point as a final boundary point and remove it from the temporary boundary point. (b) otherwise move the point to the exterior and put its neighboring interior points to the temporary boundary. Repeat this process until either the temporary boundary is empty or all points in the temporary boundary have distance less that some tolerance, which are then put in the final boundary. Signed distance function to the final boundary is then computed using the previous fast sweeping algorithm. 52

20 Tagging algorithm Hongkai Zhao

21 A good initial surface is important for the efficiency of the PDE based method. On a rectangular grid, we view an implicit surface as an interface with some regularity thatt separates the exterior grid points from the interior grid points. In other words, volumetric rendering requires identifying all exterior (interior) grid points correctly. A novel, extremely efficient tagging algorithm that tries to identifyif asmanycorrectexterior grid points as possible and hence provide a good initial implicit surface.

22 Start from any initial exterior region that is a subset of the true exterior region. All grid points that are not in the initial exterior region are labeled as interior points. Those interior grid points that have at least one exterior neighbor are labeled as temporary boundary points. N th f ll i d t h th Now we use the following procedure to march the temporary boundary inward toward the data set.

23 We put all the temporary boundary points in a heapsort binary tree structure t sortingaccording to distance values. Take the temporary boundary point that has the largest distance (which is on the heap top) and check to see if it has an interior neighbor that has a larger or equal distance value. If it does not have such an interior neighbor, turn this temporary boundary point into an exterior point, take this point out of the heap, add all this point s interior neighbors into the heap and resort according to distance values. If it does have such an interior neighbor, we turn this temporary boundary point into a final boundary point, take it out of the heap and re sort the heap. None of its neighbors are added to the heap.

24 We repeat this procedure on the temporary boundary points until the maximum distance of the temporary boundary points is smaller than some tolerance, e.g. the size of a grid cell, which means all the temporary boundary points in the heap are close enough to the data set, which are then put in the final boundary. or the temporary boundary is empty. Finally, we turn these temporary boundary points into the final set of boundary points and our tagging procedure is finished. Now we have the final sets of interior, exterior and boundary points. Signed distance function to the final boundary is then computed using the previous fast sweeping algorithm.

25

26 multi-resolution There are two resolutions, i.e., the data set and the grid. The best scenario is when the two resolutions are comparable. Remark: The computation cost depends mainly on the grid resolution. Low resolution may be desirable when there are redundancies/noises and speed or memory limit. Hierarchical multi-resolution algorithm can be used to improve the efficiency. 53

27 Efficient storage and reconstruction Storage: Store the values and locations (indices) of those grid points that are next to the surface. (a thin shell around the surface) No connections and orderings are needed. For a reconstruction on a grid of size 290x206x134, storage of the whole grid: 118 MB, (44 MB compressed), storage of the thin shell: 15 MB (5 MB compressed). Reconstruction: Use the fast sweeping and tagging algorithm to reconstruct the signed distance function in O(N) operations. 54

28 results All computations are done on a PentiumIII 600Mhz PC with 1GB memory. The used data sets are from The Stanford 3D Scanning Repository, Georgia Institute of Technology s Large Geometric Models Archive. Model Data Grid CPU CPU points size (initial) (min) Rat brain x77x Torus x80x Buddha x350x Buddha x150x Dragon x212x Dragon x71x Hand x141x

29 (a) data points (b) starting surface (c) final reconstruction (a) data points (b) front view (c) side view (a) data curves (b) reconstruction

30 (a) high resolution reconstruction (b) low resolution reconstruction 57

31 58

Fast Surface Reconstruction Using the Level Set Method

Fast Surface Reconstruction Using the Level Set Method Fast Surface Reconstruction Using the Level Set Method Hong-Kai Zhao Stanley Osher y Ronald Fedkiw z Abstract In this paper we describe new formulations and develop fast algorithms for implicit surface

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

Geometric and Appearance Modeling of Vascular Structures in CT and MR

Geometric and Appearance Modeling of Vascular Structures in CT and MR Geometric and Appearance Modeling of Vascular Structures in CT and MR Qichuan Bai, Brittan Farmer, Eric Foxall, Xing (Margaret) Fu, Sunnie Joshi, Zhou Zhou August 11, 2011 1 Introduction Medical imaging

More information

Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges

Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges Level Sets & Snakes Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges Scale Space and PDE methods in image analysis and processing - Arjan

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

3D MORPHISM & IMPLICIT SURFACES

3D MORPHISM & IMPLICIT SURFACES 3D MORPHISM & IMPLICIT SURFACES ROMAIN BALP AND CHARLEY PAULUS Abstract. The purpose of this paper is to present a framework based on implicit surfaces that allows to visualize dynamic shapes, and see

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

Dr. Ulas Bagci

Dr. Ulas Bagci Lecture 9: Deformable Models and Segmentation CAP-Computer Vision Lecture 9-Deformable Models and Segmentation Dr. Ulas Bagci bagci@ucf.edu Lecture 9: Deformable Models and Segmentation Motivation A limitation

More information

Surface Reconstruction

Surface Reconstruction Eurographics Symposium on Geometry Processing (2006) Surface Reconstruction 2009.12.29 Some methods for surface reconstruction Classification 1. Based on Delaunay triangulation(or Voronoi diagram) Alpha

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

A Grid Based Particle Method for Evolution of Open Curves and Surfaces

A Grid Based Particle Method for Evolution of Open Curves and Surfaces A Grid Based Particle Method for Evolution of Open Curves and Surfaces Shingyu Leung a,, Hongkai Zhao b a Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong

More information

Level Set Method in a Finite Element Setting

Level Set Method in a Finite Element Setting Level Set Method in a Finite Element Setting John Shopple University of California, San Diego November 6, 2007 Outline 1 Level Set Method 2 Solute-Solvent Model 3 Reinitialization 4 Conclusion Types of

More information

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization M2DO Lab 1,2 1 Cardiff University 2 University of California, San Diego November 2017 A brief description of theory

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method

Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method Implicit Surface econstruction from D Scattered Points Based on Variational Level Set Method Hanbo Liu Department ofshenzhen graduate school, Harbin Institute oftechnology, Shenzhen, 58055, China liu_hanbo@hit.edu.cn

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Level Set Methods and Fast Marching Methods

Level Set Methods and Fast Marching Methods Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Geometrical Modeling of the Heart

Geometrical Modeling of the Heart Geometrical Modeling of the Heart Olivier Rousseau University of Ottawa The Project Goal: Creation of a precise geometrical model of the heart Applications: Numerical calculations Dynamic of the blood

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

The Pennsylvania State University. The Graduate School. Eberly College of Science A COMPUTATIONAL STUDY OF ROBUSTNESS IN

The Pennsylvania State University. The Graduate School. Eberly College of Science A COMPUTATIONAL STUDY OF ROBUSTNESS IN The Pennsylvania State University The Graduate School Eberly College of Science A COMPUTATIONAL STUDY OF ROBUSTNESS IN LEVEL SET SURFACE RECONSTRUCTION A Thesis in Mathematics by Matthew S. Baran 2012

More information

Level Set Models for Computer Graphics

Level Set Models for Computer Graphics Level Set Models for Computer Graphics David E. Breen Department of Computer Science Drexel University Ross T. Whitaker School of Computing University of Utah Ken Museth Department of Science and Technology

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

Dual Interpolants for Finite Element Methods

Dual Interpolants for Finite Element Methods Dual Interpolants for Finite Element Methods Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and Sciences University

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Level-set MCMC Curve Sampling and Geometric Conditional Simulation

Level-set MCMC Curve Sampling and Geometric Conditional Simulation Level-set MCMC Curve Sampling and Geometric Conditional Simulation Ayres Fan John W. Fisher III Alan S. Willsky February 16, 2007 Outline 1. Overview 2. Curve evolution 3. Markov chain Monte Carlo 4. Curve

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Fast 3D surface reconstruction from point clouds using graph-based fronts propagation

Fast 3D surface reconstruction from point clouds using graph-based fronts propagation Fast 3D surface reconstruction from point clouds using graph-based fronts propagation Abdallah El Chakik, Xavier Desquesnes, Abderrahim Elmoataz UCBN, GREYC - UMR CNRS 6972, 6.Bvd Marechal Juin, 14050

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Geometric and Solid Modeling. Problems

Geometric and Solid Modeling. Problems Geometric and Solid Modeling Problems Define a Solid Define Representation Schemes Devise Data Structures Construct Solids Page 1 Mathematical Models Points Curves Surfaces Solids A shape is a set of Points

More information

Level-set and ALE Based Topology Optimization Using Nonlinear Programming

Level-set and ALE Based Topology Optimization Using Nonlinear Programming 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level-set and ALE Based Topology Optimization Using Nonlinear Programming Shintaro Yamasaki

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

The Eikonal Equation

The Eikonal Equation The Eikonal Equation Numerical efficiency versus computational compleity Shu-Ren Hysing III Institute of Applied Mathematics LSIII University of Dortmund Level set - methodology By embedding an interface

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 4. Geometric Registration 4.1 Rigid Registration Range Scanning: Reconstruction Set of raw scans Reconstructed

More information

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008 645 A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution Yonggang Shi, Member, IEEE, and William Clem Karl, Senior

More information

Three-dimensional segmentation of bones from CT and MRI using fast level sets

Three-dimensional segmentation of bones from CT and MRI using fast level sets Three-dimensional segmentation of bones from CT and MRI using fast level sets Jakub Krátký and Jan Kybic Center for Machine perception, Faculty of Electrical Engineering, Czech Technical University, Prague,

More information

Variational Methods II

Variational Methods II Mathematical Foundations of Computer Graphics and Vision Variational Methods II Luca Ballan Institute of Visual Computing Last Lecture If we have a topological vector space with an inner product and functionals

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher. Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada

Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher. Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada Outline Review of Region-based Active Contour Models Mumford

More information

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere Ram Nair Computational and Information Systems Laboratory (CISL) National Center for Atmospheric Research

More information

Segmentation. Namrata Vaswani,

Segmentation. Namrata Vaswani, Segmentation Namrata Vaswani, namrata@iastate.edu Read Sections 5.1,5.2,5.3 of [1] Edge detection and filtering : Canny edge detection algorithm to get a contour of the object boundary Hough transform:

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things:

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things: Notes Added a 2D cross-section viewer for assignment 6 Not great, but an alternative if the full 3d viewer isn t working for you Warning about the formulas in Fedkiw, Stam, and Jensen - maybe not right

More information

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION TODD F. DUPONT AND YINGJIE LIU Abstract. We propose a method that significantly

More information

Two Algorithms for Adaptive Approximation of Bivariate Functions by Piecewise Linear Polynomials on Triangulations

Two Algorithms for Adaptive Approximation of Bivariate Functions by Piecewise Linear Polynomials on Triangulations Two Algorithms for Adaptive Approximation of Bivariate Functions by Piecewise Linear Polynomials on Triangulations Nira Dyn School of Mathematical Sciences Tel Aviv University, Israel First algorithm from

More information

City Research Online. Permanent City Research Online URL:

City Research Online. Permanent City Research Online URL: Slabaugh, G.G., Unal, G.B., Fang, T., Rossignac, J. & Whited, B. Variational Skinning of an Ordered Set of Discrete D Balls. Lecture Notes in Computer Science, 4975(008), pp. 450-461. doi: 10.1007/978-3-540-7946-8_34

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (1997) 77: 423 451 Numerische Mathematik c Springer-Verlag 1997 Electronic Edition Minimal surfaces: a geometric three dimensional segmentation approach Vicent Caselles 1, Ron Kimmel 2, Guillermo

More information

Non-Rigid Image Registration III

Non-Rigid Image Registration III Non-Rigid Image Registration III CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS6240) Non-Rigid Image Registration

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

Level Sets Methods in Imaging Science

Level Sets Methods in Imaging Science Level Sets Methods in Imaging Science Dr. Corina S. Drapaca csd12@psu.edu Pennsylvania State University University Park, PA 16802, USA Level Sets Methods in Imaging Science p.1/36 Textbooks S.Osher, R.Fedkiw,

More information

Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Part I : Solid geometry

Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Part I : Solid geometry Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Surfaces Part I : Solid geometry hachar Fleishman Tel Aviv University David Levin Claudio T.

More information

A Volumetric Method for Building Complex Models from Range Images

A Volumetric Method for Building Complex Models from Range Images A Volumetric Method for Building Complex Models from Range Images Brian Curless Marc Levoy Computer Graphics Laboratory Stanford University Introduction Goal Given a set of aligned, dense range images,

More information

Complex Models from Range Images. A Volumetric Method for Building. Brian Curless. Marc Levoy. Computer Graphics Laboratory. Stanford University

Complex Models from Range Images. A Volumetric Method for Building. Brian Curless. Marc Levoy. Computer Graphics Laboratory. Stanford University A Volumetric Method for Building Complex Models from Range Images Computer Graphics Laboratory Stanford University Brian Curless Marc Levoy Introduction Goal Given a set of aligned, dense range images,

More information

PARAMETRIC SHAPE AND TOPOLOGY OPTIMIZATION WITH RADIAL BASIS FUNCTIONS

PARAMETRIC SHAPE AND TOPOLOGY OPTIMIZATION WITH RADIAL BASIS FUNCTIONS PARAMETRIC SHAPE AND TOPOLOGY OPTIMIZATION WITH RADIAL BASIS FUNCTIONS Michael Yu Wang 1 and Shengyin Wang 1 Department of Automation and Computer-Aided Engineering The Chinese University of Hong Kong

More information

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Vikram Appia Anthony Yezzi Georgia Institute of Technology, Atlanta, GA, USA. Abstract We present an active

More information

Image Segmentation II Advanced Approaches

Image Segmentation II Advanced Approaches Image Segmentation II Advanced Approaches Jorge Jara W. 1,2 1 Department of Computer Science DCC, U. of Chile 2 SCIAN-Lab, BNI Outline 1. Segmentation I Digital image processing Segmentation basics 2.

More information

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg,

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg, Dijkstra s algorithm, Fast marching & Level sets Einar Heiberg, einar@heiberg.se Looking back Medical image segmentation is (usually) selecting a suitable method from a toolbox of available approaches

More information

Converting Level Set Gradients to Shape Gradients

Converting Level Set Gradients to Shape Gradients Converting Level Set Gradients to Shape Gradients Siqi Chen 1, Guillaume Charpiat 2, and Richard J. Radke 1 1 Department of ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA chens@rpi.edu, rjradke@ecse.rpi.edu

More information

A NEW LEVEL SET METHOD FOR MOTION IN NORMAL DIRECTION BASED ON A FORWARD-BACKWARD DIFFUSION FORMULATION

A NEW LEVEL SET METHOD FOR MOTION IN NORMAL DIRECTION BASED ON A FORWARD-BACKWARD DIFFUSION FORMULATION A NEW LEVEL SET METHOD FOR MOTION IN NORMAL DIRECTION BASED ON A FORWARD-BACKWARD DIFFUSION FORMULATION KAROL MIKULA AND MARIO OHLBERGER Abstract. We introduce a new level set method for motion in normal

More information

Distance Functions 1

Distance Functions 1 Distance Functions 1 Distance function Given: geometric object F (curve, surface, solid, ) Assigns to each point the shortest distance from F Level sets of the distance function are trimmed offsets F p

More information

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey Extract Object Boundaries in Noisy Images using Level Set by: Quming Zhou Literature Survey Submitted to Professor Brian Evans EE381K Multidimensional Digital Signal Processing March 15, 003 Abstract Finding

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Geometric Representations. Stelian Coros

Geometric Representations. Stelian Coros Geometric Representations Stelian Coros Geometric Representations Languages for describing shape Boundary representations Polygonal meshes Subdivision surfaces Implicit surfaces Volumetric models Parametric

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

Submitted by Wesley Snyder, Ph.D. Department of Electrical and Computer Engineering. North Carolina State University. February 29 th, 2004.

Submitted by Wesley Snyder, Ph.D. Department of Electrical and Computer Engineering. North Carolina State University. February 29 th, 2004. Segmentation using Multispectral Adaptive Contours Final Report To U.S. Army Research Office On contract #DAAD-19-03-1-037 Submitted by Wesley Snyder, Ph.D. Department of Electrical and Computer Engineering

More information

A new Eulerian computational method for the propagation of short acoustic and electromagnetic pulses

A new Eulerian computational method for the propagation of short acoustic and electromagnetic pulses A new Eulerian computational method for the propagation of short acoustic and electromagnetic pulses J. Steinhoff, M. Fan & L. Wang. Abstract A new method is described to compute short acoustic or electromagnetic

More information

A MESH EVOLUTION ALGORITHM BASED ON THE LEVEL SET METHOD FOR GEOMETRY AND TOPOLOGY OPTIMIZATION

A MESH EVOLUTION ALGORITHM BASED ON THE LEVEL SET METHOD FOR GEOMETRY AND TOPOLOGY OPTIMIZATION A MESH EVOLUTION ALGORITHM BASED ON THE LEVEL SET METHOD FOR GEOMETRY AND TOPOLOGY OPTIMIZATION G. ALLAIRE 1 C. DAPOGNY 2,3, P. FREY 2 1 Centre de Mathématiques Appliquées (UMR 7641), École Polytechnique

More information

Correctness. The Powercrust Algorithm for Surface Reconstruction. Correctness. Correctness. Delaunay Triangulation. Tools - Voronoi Diagram

Correctness. The Powercrust Algorithm for Surface Reconstruction. Correctness. Correctness. Delaunay Triangulation. Tools - Voronoi Diagram Correctness The Powercrust Algorithm for Surface Reconstruction Nina Amenta Sunghee Choi Ravi Kolluri University of Texas at Austin Boundary of a solid Close to original surface Homeomorphic to original

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

Chapter 11 Arc Extraction and Segmentation

Chapter 11 Arc Extraction and Segmentation Chapter 11 Arc Extraction and Segmentation 11.1 Introduction edge detection: labels each pixel as edge or no edge additional properties of edge: direction, gradient magnitude, contrast edge grouping: edge

More information

On the order of accuracy and numerical performance of two classes of finite volume WENO schemes

On the order of accuracy and numerical performance of two classes of finite volume WENO schemes On the order of accuracy and numerical performance of two classes of finite volume WENO schemes Rui Zhang, Mengping Zhang and Chi-Wang Shu November 29, 29 Abstract In this paper we consider two commonly

More information

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Ivan Christov Bojan Popov Department of Mathematics, Texas A&M University, College Station, Texas

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Let s start with occluding contours (or interior and exterior silhouettes), and look at image-space algorithms. A very simple technique is to render

Let s start with occluding contours (or interior and exterior silhouettes), and look at image-space algorithms. A very simple technique is to render 1 There are two major classes of algorithms for extracting most kinds of lines from 3D meshes. First, there are image-space algorithms that render something (such as a depth map or cosine-shaded model),

More information

Level Set Evolution without Reinitilization

Level Set Evolution without Reinitilization Level Set Evolution without Reinitilization Outline Parametric active contour (snake) models. Concepts of Level set method and geometric active contours. A level set formulation without reinitialization.

More information

Implicit Active Model using Radial Basis Function Interpolated Level Sets

Implicit Active Model using Radial Basis Function Interpolated Level Sets Implicit Active Model using Radial Basis Function Interpolated Level Sets Xianghua Xie and Majid Mirmehdi Department of Computer Science University of Bristol, Bristol BS8 1UB, England. {xie,majid}@cs.bris.ac.uk

More information

The Level Set Method applied to Structural Topology Optimization

The Level Set Method applied to Structural Topology Optimization The Level Set Method applied to Structural Topology Optimization Dr Peter Dunning 22-Jan-2013 Structural Optimization Sizing Optimization Shape Optimization Increasing: No. design variables Opportunity

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

A hybrid level-set method in two and three dimensions for modeling detonation and combustion problems in complex geometries

A hybrid level-set method in two and three dimensions for modeling detonation and combustion problems in complex geometries and Applied Mechanics University of Illinois at Urbana-Champaign TAM Report No. 1040 UILU-ENG-2004-6001 ISSN 0073-5264 A hybrid level-set method in two and three dimensions for modeling detonation and

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah Image Segmentation Ross Whitaker SCI Institute, School of Computing University of Utah What is Segmentation? Partitioning images/volumes into meaningful pieces Partitioning problem Labels Isolating a specific

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Global Minimization of the Active Contour Model with TV-Inpainting and Two-Phase Denoising

Global Minimization of the Active Contour Model with TV-Inpainting and Two-Phase Denoising Global Minimization of the Active Contour Model with TV-Inpainting and Two-Phase Denoising Shingyu Leung and Stanley Osher Department of Mathematics, UCLA, Los Angeles, CA 90095, USA {syleung, sjo}@math.ucla.edu

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah Image Segmentation Ross Whitaker SCI Institute, School of Computing University of Utah What is Segmentation? Partitioning images/volumes into meaningful pieces Partitioning problem Labels Isolating a specific

More information

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1 Numerical Methods for PDEs SSC Workgroup Meetings Juan J. Alonso October 8, 2001 SSC Working Group Meetings, JJA 1 Overview These notes are meant to be an overview of the various memory access patterns

More information

Ian Mitchell. Department of Computer Science The University of British Columbia

Ian Mitchell. Department of Computer Science The University of British Columbia CPSC 542D: Level Set Methods Dynamic Implicit Surfaces and the Hamilton-Jacobi Equation or What Water Simulation, Robot Path Planning and Aircraft Collision Avoidance Have in Common Ian Mitchell Department

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Point-Based Geometric Deformable Models for Medical Image Segmentation

Point-Based Geometric Deformable Models for Medical Image Segmentation Point-Based Geometric Deformable Models for Medical Image Segmentation Hon Pong Ho 1, Yunmei Chen 2, Huafeng Liu 1,3, and Pengcheng Shi 1 1 Dept. of EEE, Hong Kong University of Science & Technology, Hong

More information