Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine)

Size: px
Start display at page:

Download "Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine)"

Transcription

1 Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine) Jennifer G Duan, PhD., PE Principal, KKC Engineering (UA Tech Launch) Associate Professor Delbert R. Lewis Distinguished Professor Civil Engineering and Engineering Mechanics

2 Background There is no defined drainage path in urban watershed resided in alluvial fan. Modeling surface flow over watershed needs to simulate both overland flow and channel flow. The depth of overland flow is much shallower than that of channel flow. Natural Alluvial Fan Urbanized Alluvial Fan -Reno

3 Background Santa Cruz River 2006 Flood Base Base Flow 110 cfs Flood Flow 2006 Q=37,900 cfs

4 Demands and Regulations Government requires all the buildings (residential/commercial) out of flood zone determined by hydro-models, such as CHRE2D. The flood zones are changing with development and natural changes. The model itself is always needed by water resource consulting industry. Flood insurances are needed for properties within the flood zones. Otherwise, the buildings can not be occupied by business or residence.

5 Problems in Current Practice Current practices are using several commercial models, such as Flo2D, HEC-RAS. Those models have to use special treatments to handle large watershed scaled modeling. Our model is the most robust and capable one than those. Current practices are limited by funding constrains or city/county limits, so individual project is conducted by separate companies. The approach is piece by piece, which doesn t allow the integration of projects for an entire system. Therefore, many projects failed because of negative impacts on other regions. Current practices have poor archived records, so many projects need to be re-do or repeated after several years. Current practices have minor public participation through public meetings.

6 RealFlood Innovation of Water Resource Engineering Profession RealFlood is an internet based engine that allows the real-time visualization of flood generated from each rainfall event. RealFlood runs on the state-of-art computational model, CHRE2D, a licensed software developed by Dr. Duan s research group. RealFlood aims to provide free information service to public regarding their property in case of flood event through google earth platform state-of-art computational models for water resource engineering consulting most convenient, secure, auto-archived water resource, infrastructure, emergency, and property management system to governmental agencies (local, state, federal)

7 Realflood - Capability Provide a realistic and complete flood inundation map for an entire basin (or county) directly from the precipitation Provide a simple and efficient tool for post-flood analysis using the alert gauge recorded data Enable flood forecast in real-time using NWS digital forecasted precipitation map

8 Service to Public Provide county/city planners with a complete picture of existing flood drainage system in development/undevelopment regions, which can be used to plan current urban improvement (e.g., green infrastructures) and future growth. Allow flood managers to access the modeling results through web-enabled platform to efficiently identify flooding zones, issue specific flood warnings at street level, and implement flood hazard preventive measures. Provide a calibrated and verified flood risk map to the public to raise public awareness of flood and erosion hazards of their properties.

9 CHRE2D Model (Univ of Arizona licensed) CHRE2D is a two-dimensional Hydrodynamic and Sediment transport model that simulates surface flow routing and sediment transport using numerical solutions of shallow water equations and the kinematic or diffusion wave approximation. The shallow water equations are discretized by the first-order Godunov-type finite volume method. An approximate solution to the momentum equation, kinematic or diffusion wave approximation, was introduced to overcome the difficulties in simulating very shallow overland (e.g m). The resulted CHRE2D model is capable of simulating both hydrological flow (e.g. surface flow routing) and hydraulic flow (e.g. dam break), which has not been achieved in similar commercial software, such as FLO2D, ARM2D. Additionally, the CHRE2D model implemented the Grass-type sediment transport formula to simulate the total sediment load in both overland flow and channel flow.

10 and the momentum conservation equations are: Methodology Governing Equation for Flow Simulation - Shallow water equations: mass conservation and momentum equations h ( hu) ( hv) i t x y 0 ( hu) huv ( hu gh ) ghs0x C f u u t x 2 y ( hv) huv ( hv gh ) ghs0 y C f u v t x y 2

11 SWEs in Vector Form Q F G S 0 S f S t x y h hu hv 2 2 Q hu F hu gh /2 G huv 2 2 hv huv hv gh /2 0 0 i0 S0 ghs0x S f C f u u Sr 0 ghs 0 y C 0 f v u r

12 Variable Density Flow Model The governing equations for variable density flow model is based on the two-phrase flow theory and treated sediment-laden flow density as a spatial and temporal variable. h ( hu) ( hv) S t x y ( h) ( hu) ( hv) bs t x y b ( hu) 1 2 ( huv) ( huu gh ) ghs0x C f u u t x 2 y ( hv) ( hvu) 1 2 ( hvv gh ) ghs0y C f u v t x y 2 b

13 Vector Form of Variable Density Equations Q F ( ) ( ) x Q Fy Q S0 ( U) S f ( U) Sb( U) t x y h h hu hv h hu hv U, Q Fx( Q), ( ) 2 u hu 1 Fy Q hvu huu gh v hv hvv gh huv Sb 0 0 bsb S0 ( U), S f ( U), b( ) ghs C 0x f u S U u 0 ghs 0y C 0 f v u

14 Test Case 1 Goodwin Creek Experimental Watershed The Goodwin Creek Experimental Watershed resides in the Panola County, Mississippi. As a tributary of Long Creek, it flows into the Yocona River, Yazoo River Basin. The watershed drainage area is 21.3 km 2. The watershed elevation ranges from 71 m to 128 m above the sea level. The DEM resolution used in the test is 30 m by 30 m. The rainfall event of Oct. 17, 1981, was simulated. Soil type, land use, precipitation and DEM data was based on published NRCS report.

15 Simulated Results

16 Flow Depth Flow Depth (m) Flow Depth (m) G-2 Measured SWE-KWA Time (s) G-5 Measured SWE-KWA Time (s) Flow Depth (m) Flow Depth (m) G-3 Measured SWE-KWA Time (s) G-6 Measured SWE-KWA Time (s) Flow Depth (m) Flow Depth (m) 0.1 G Measured SWE-KWA Time (s) G-7 Measured SWE-KWA Time (s)

17

18 Test Case 2: Tucson, Arizona, July 27th to Aug. 4 rd, 2006 Event Santa Cruz Basin (62 miles x 24 miles)

19 Test Case 2: Tucson, Arizona, July 27th to Aug. 4 rd, 2006 Event Rillito Basin, 60 x 40 mile

20 Test Case 2: Tucson, Arizona, July 27th to Aug. 4 rd, 2006 Event Rillito Basin, 60 x 40 mile T = 75 hrs T = 81 hrs T = 85 hrs

21 Past Event Flow Discharge and Depth

22 Past Event Street View T= 31 hrs

23 Test #3: State of Arizona Hypothetical Case: 1.0 inch precipitation over the State of Arizona for a few hours (10 hrs) T= 6 hrs

24 Test Case 3: State of Arizona Hypothetical 1 inch precipitation T = 6 hrs T = 12 hrs T = 20 hrs

25 Test Case 3: State of Arizona Phoenix Area T = 6 hrs T = 12 hrs T = 20 hrs

26 Test Case 4: 1996 Lake Ha! Ha! Catastrophic Flood Event The 1996 Lake Ha! Ha! catastrophic flood event occurred in the Saguenay region of Quebec, Canada. From July 18 to 21, 1996, an extreme precipitation event affected the Saguenay region of Quebec, Canada. At the Ha! Ha! Lake, an earthfill dyke was being overtopped by up to 0.26 m of water, and a new outlet channel formed. The failure of the dyke resulted in a peak discharge of 8 times the 100-year flood. The Ha! Ha! River was severely damaged by the resulting flood flow [Brooks and Lawrence, 1999].

27 Simulation Domain The numerical simulation started with the digital elevation model (DEM) of the Ha! Ha! River, which was surveyed in May 1994 [Capart et al., 2007]. The spatial data is based on the Modified Transverse Mercator (MTM) projection, zone 7 coordinates (NAD83). The DEM data: 275,000 < x < 282,000m on the east-west direction, 5,318,000 < y < 5,354,000 m in north-south direction. The numerical simulation started with the digital elevation model (DEM) of the Ha! Ha! River, which was surveyed in May 1994 [Capart et al., 2007]. The spatial data is based on the Modified Transverse Mercator (MTM) projection, zone 7 coordinates (NAD83).

28 Selected Cross Section Changes Bed Elevation Changes

29 Logitudinal Profile Fig 16. Measured and calculated thalwegs of test case 4: (a) 0 12 km; (b) km; (c) km. (b) (a) (c)

30 Conclusions CHRE2D model is a robust surface flow routing and sediment transport model, which is capable of simulating hydrodynamics of unsteady flow, surface flow over watershed, and sediment transport processes. The performance of the model was verified by many laboratory and field cases. For flow simulation, the model predicted accurately peak flows and flow hydrographs. The sediment module predicted reasonable changes of river cross sections and thalweg caused by a realistic dam break flow. The accuracy and simplicity of the proposed model, together with the robust implementation of well-balanced numerical scheme, makes this model suitable for practical hydraulic engineering applications. CHRE2D is licensed by the University of Arizona for Application Use.

31 Publications Duan, J. G., Bai, Y, Dominguez, F., Rivera, E., Meixner, T. (2017) Framework for incorporating climate change on flood magnitude and frequency analysis in the upper Santa Cruz River, Journal of Hydrology, 549, Yu, C. and Duan, J. G. (2017), Simulation of surface runoff using hydrodynamic model, Journal of Hydrologic Engineering, Vol. 22, No. 6, article No: , doi: /(asce)he Yu, C.S. and Duan, J.G. (2014) High Resolution Numerical Schemes for Solving Kinematic Wave Equation, Journal of Hydrology, DOI: /j.jhydrol Yu, C.S. and Duan, J.G. (2014) Two-dimensional hydrodynamic model for surface flow routing, Journal of Hydraulic Engineering, DOI: /(ASCE).HY Bai, Y. and Duan, J.G. (2014) Simulating unsteady flow and sediment transport in vegetated channel network, J. of Hydrol., Zhang, S., Duan, J. G., and Strelkoff, T. S. (2013) Gain-scale non-equilibrium sediment transport model for unsteady flow. Journal of Hydraulic Engineering, 139(1), Yu, C.S. and Duan, J.G. (2012) Two-dimensional depth-averaged unsteady turbulent flow model over obstacles, Journal of Hydraulic Research, 50:6,

32 Acknowledgement These studies are supported by funding from NSF Career Program, NSF WCS (Water and Climate Sustainability) Program, USDA Arid Land Research Center, and Pima County Government. Thank you! Questions?

The CaMa-Flood model description

The CaMa-Flood model description Japan Agency for Marine-Earth cience and Technology The CaMa-Flood model description Dai Yamazaki JAMTEC Japan Agency for Marine-Earth cience and Technology 4 th ep, 2015 Concepts of the CaMa-Flood development

More information

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Tom Molls 1, Gary Brunner 2, & Alejandro Sanchez 2 1. David Ford Consulting Engineers, Inc., Sacramento, CA 2. USACE Hydrologic Engineering

More information

2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota. Eli Gruber, PE Brooke Conner, PE

2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota. Eli Gruber, PE Brooke Conner, PE 2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota Eli Gruber, PE Brooke Conner, PE Project Acknowledgments FEMA Region 8 Staff: Brooke Conner, PE Casey Zuzak, GISP Ryan

More information

25 Using Numerical Methods, GIS & Remote Sensing 1

25 Using Numerical Methods, GIS & Remote Sensing 1 Module 6 (L22 L26): Use of Modern Techniques es in Watershed Management Applications of Geographical Information System and Remote Sensing in Watershed Management, Role of Decision Support System in Watershed

More information

Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results

Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results Prabharanjani Madduri, P.E., CFM Mathini Sreetharan, Ph.D., P.E., CFM Hydraulic modeling of urban areas and issues Modeling

More information

2-D Hydraulic Modeling Theory & Practice

2-D Hydraulic Modeling Theory & Practice 2-D Hydraulic Modeling Theory & Practice Author: Maged A. Aboelata, PhD, PE, CFM Presenter: Heather Zhao, PE, CFM October 2017 Presentation Outline * 1-D vs. 2-D modeling * Theory of 2-D simulation * Commonly

More information

Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5

Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5 5 Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5 Karen Finney, Rob James, William James and Tiehong Xiao An advantage of USEPA s SWMM5 is its capability to dynamically model

More information

HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling?

HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling? HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling? Rishab Mahajan, Emily Campbell and Matt Bardol March 8, 2017 Outline Reasons for hydraulic modeling 1D Modeling 2D Modeling-

More information

Hydrologic modelling at a continuous permafrost site using MESH. S. Pohl, P. Marsh, and S. Endrizzi

Hydrologic modelling at a continuous permafrost site using MESH. S. Pohl, P. Marsh, and S. Endrizzi Hydrologic modelling at a continuous permafrost site using MESH S. Pohl, P. Marsh, and S. Endrizzi Purpose of Study Test the latest version of MESH at a continuous permafrost site Model performance will

More information

A Robust Numerical Algorithm for Efficient Overland-Flow Routing

A Robust Numerical Algorithm for Efficient Overland-Flow Routing th International Conference on Hydroscience & Engineering November -1,, Tainan, Taiwan. A Robust Numerical Algorithm for Efficient Overland-Flow Routing Pin-Chun Huang, Kwan Tun Le Department of River

More information

2D Hydraulic Modeling, Steering Stream Restoration Design

2D Hydraulic Modeling, Steering Stream Restoration Design 2D Hydraulic Modeling, Steering Stream Restoration Design PREPARED FOR: EcoStream 2018 Stream Ecology & Restoration Conference Presented By: Matthew D. Gramza, P.E., CFM, CPESC Civil & Environmental Consultants,

More information

Generalisation of Topographic resolution for 2D Urban Flood Modelling. Solomon D. Seyoum Ronald Price Zoran Voijnovic

Generalisation of Topographic resolution for 2D Urban Flood Modelling. Solomon D. Seyoum Ronald Price Zoran Voijnovic Generalisation of Topographic resolution for 2D Urban Flood Modelling Solomon D. Seyoum Ronald Price Zoran Voijnovic Outline Introduction Urban Flood Modelling and Topographic data DTM Generalisation Remedial

More information

2D Model Implementation for Complex Floodplain Studies. Sam Crampton, P.E., CFM Dewberry

2D Model Implementation for Complex Floodplain Studies. Sam Crampton, P.E., CFM Dewberry 2D Model Implementation for Complex Floodplain Studies Sam Crampton, P.E., CFM Dewberry 2D Case Studies Case Study 1 Rain-on-Grid 2D floodplain simulation for unconfined flat topography in coastal plain

More information

Connecting 1D and 2D Domains

Connecting 1D and 2D Domains Connecting 1D and 2D Domains XP Solutions has a long history of Providing original, high-performing software solutions Leading the industry in customer service and support Educating our customers to be

More information

Application of 2-D Modelling for Muda River Using CCHE2D

Application of 2-D Modelling for Muda River Using CCHE2D Application of 2-D Modelling for Muda River Using CCHE2D ZORKEFLEE ABU HASAN, Lecturer, River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia, Engineering Campus, Seri

More information

2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA

2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA 2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA HEC-RAS Overview, History, & Future How HEC-RAS Works Model Development Standard FEMA Assumptions Building A Model FEMA Levels

More information

River inundation modelling for risk analysis

River inundation modelling for risk analysis River inundation modelling for risk analysis L. H. C. Chua, F. Merting & K. P. Holz Institute for Bauinformatik, Brandenburg Technical University, Germany Abstract This paper presents the results of an

More information

Introduction to MIKE FLOOD

Introduction to MIKE FLOOD Introduction to MIKE FLOOD HYDROEUROPE, Sophia-Antipolis, February 2011 Julie Landrein, DHI Denmark Introduction to MIKE FLOOD - Introduction to MIKE FLOOD - 1D Modelling: MIKE 11, MIKE URBAN - 2D Modelling:

More information

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two 41.4 Routing The computation of a flood wave resulting from a dam break basically involves two problems, which may be considered jointly or seperately: 1. Determination of the outflow hydrograph from the

More information

Two-dimensional numerical models for overland flow simulations

Two-dimensional numerical models for overland flow simulations River Basin Management V 37 Two-dimensional numerical models for overland flow simulations P. Costabile, C. Costanzo & F. Macchione LAMPIT, Dipartimento di Difesa del Suolo, University of Calabria, Italy

More information

Advanced 1D/2D Modeling Using HEC-RAS

Advanced 1D/2D Modeling Using HEC-RAS Advanced 1D/2D Modeling Using HEC-RAS Davis, California Objectives This is an advanced course in applying computer program HEC-RAS. The course provides participants with the knowledge to effectively use

More information

Verification and Validation of HEC-RAS 5.1

Verification and Validation of HEC-RAS 5.1 Verification and Validation of HEC-RAS 5.1 Gary Brunner 1, P.E., D. WRE, M.ASCE Dr. Alex Sanchez 1 Dr. Tom Molls 2 Dr. David Parr 3 1. USACE Hydrologic Engineering Center, Davis, CA 2. David Ford Consulting

More information

GLOBAL DESIGN OF HYDRAULIC STRUCTURES OPTIMISED WITH PHYSICALLY BASED FLOW SOLVERS ON MULTIBLOCK STRUCTURED GRIDS

GLOBAL DESIGN OF HYDRAULIC STRUCTURES OPTIMISED WITH PHYSICALLY BASED FLOW SOLVERS ON MULTIBLOCK STRUCTURED GRIDS GLOBAL DESIGN OF HYDRAULIC STRUCTURES OPTIMISED WITH PHYSICALLY BASED FLOW SOLVERS ON MULTIBLOCK STRUCTURED GRIDS S. ERPICUM, P. ARCHAMBEAU, S. DETREMBLEUR, B. DEWALS,, C. FRAIKIN,, M. PIROTTON Laboratory

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CONTENTS 1. Flow Classification 2. Chezy s and Manning Equation 3. Specific Energy 4. Surface Water Profiles 5. Hydraulic Jump 6. HEC-RAS 7. HEC-HMS

More information

v. 9.1 WMS 9.1 Tutorial Watershed Modeling HEC-1 Interface Learn how to setup a basic HEC-1 model using WMS

v. 9.1 WMS 9.1 Tutorial Watershed Modeling HEC-1 Interface Learn how to setup a basic HEC-1 model using WMS v. 9.1 WMS 9.1 Tutorial Learn how to setup a basic HEC-1 model using WMS Objectives Build a basic HEC-1 model from scratch using a DEM, land use, and soil data. Compute the geometric and hydrologic parameters

More information

Integrated Water Resources Science and Services (IWRSS)

Integrated Water Resources Science and Services (IWRSS) TOO MUCH POOR QUALITY TOO LITTLE Integrated Water Resources Science and Services (IWRSS) Collaborative Science, Services and Tools to Support Integrated and Adaptive Water Resources Management April, 2011

More information

Day 1. HEC-RAS 1-D Training. Rob Keller and Mark Forest. Break (9:45 am to 10:00 am) Lunch (12:00 pm to 1:00 pm)

Day 1. HEC-RAS 1-D Training. Rob Keller and Mark Forest. Break (9:45 am to 10:00 am) Lunch (12:00 pm to 1:00 pm) Day 1 HEC-RAS 1-D Training Rob Keller and Mark Forest Introductions and Course Objectives (8:00 am to 8:15 am) Introductions: Class and Content Module 1 Open Channel Hydraulics (8:15 am to 9:45 am) Lecture

More information

Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County)

Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County) Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County) Presented by: April 27, 2017 Matthew Zeve, P.E., CFM Harris County

More information

INTRODUCTION TO HEC-RAS

INTRODUCTION TO HEC-RAS INTRODUCTION TO HEC-RAS HEC- RAS stands for Hydrologic Engineering Center s River Analysis System By U.S. Army Corps of Engineers One dimensional analysis of : 1. Steady flow 2. Unsteady flow 3. Sediment

More information

Flood Routing for Continuous Simulation Models

Flood Routing for Continuous Simulation Models Improving Life through Science and Technology Flood Routing for Continuous Simulation Models J. Williams, W. Merkel, J. Arnold, J. Jeong 11 International SWAT Conference, Toledo, Spain, June 15-17, 11

More information

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Uncertainty Analysis: Parameter Estimation Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Outline ADH Optimization Techniques Parameter space Observation

More information

Watershed Modeling HEC-HMS Interface

Watershed Modeling HEC-HMS Interface v. 10.1 WMS 10.1 Tutorial Learn how to set up a basic HEC-HMS model using WMS Objectives Build a basic HEC-HMS model from scratch using a DEM, land use, and soil data. Compute the geometric and hydrologic

More information

Introduction Surface Water Modeling System (SMS) & Case Study using SMS 2D Modeling Software

Introduction Surface Water Modeling System (SMS) & Case Study using SMS 2D Modeling Software A.D. Latornell Conservation Symposium November 18, 2015 Introduction Surface Water Modeling System (SMS) & Case Study using SMS 2D Modeling Software Dr. Bahar SM P.Geo.(Ltd), P Eng 1 Topics Education,

More information

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Developing a GSSHA Model Using the Hydrologic Modeling Wizard in WMS Learn how to setup a basic GSSHA model using the hydrologic modeling wizard Objectives

More information

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Journal of the Persian Gulf (Marine Science)/Vol.1/No.1/September 2010/6/45-50 Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Sabbagh-Yazdi,

More information

Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois

Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois Patrick Lach, P.E., CFM, Hey and Associates, Inc. Steve Vinezeano, ICMA CM, LEED AP Assistant Village Manager Three Geographic

More information

Comparing 2D Approaches for Complex FEMA Studies

Comparing 2D Approaches for Complex FEMA Studies Comparing 2D Approaches for Complex FEMA Studies Presented by: Ted Cassidy, P.E., PH (STARR2-Dewberry) Sam Crampton, P.E., CFM (STARR2-Dewberry) Mike DePue, P.E., CFM (STARR2-Atkins) Agenda Introduction

More information

COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON

COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON Jennifer Bountry, Hydraulic Engineer, Bureau of Reclamation, Denver, CO, jbountry@do.usbr.gov;

More information

2D Hydrodynamic Model for Reservoirs: Case Study High Aswan Dam Reservoir

2D Hydrodynamic Model for Reservoirs: Case Study High Aswan Dam Reservoir D Hydrodynamic Model for Reservoirs: Case Study High Aswan Dam Reservoir M. M. Soliman 1, M. A. Gad, Ashraf M. El-Moustafa 3 Abstract High Aswan Dam (HAD) is one of the most important projects in the history

More information

Automatic Discretization and Parameterization of Watersheds using a Digital Elevation Model

Automatic Discretization and Parameterization of Watersheds using a Digital Elevation Model Automatic Discretization and Parameterization of Watersheds using a Digital Elevation Model Ellen Hachborn, Karen Finney, Rob James, Nandana Perera, Tiehong Xiao WaterTech 2017 Computational Hydraulics

More information

Ada L. Benavides, Deputy Chief South Pacific Division Regional Integration Team. May 5, US Army Corps of Engineers BUILDING STRONG

Ada L. Benavides, Deputy Chief South Pacific Division Regional Integration Team. May 5, US Army Corps of Engineers BUILDING STRONG Building Strong Collaborative Relationships for a Sustainable Water Resources Future The Federal Support Toolbox for Integrated Water Resources Management Ada L. Benavides, Deputy Chief South Pacific Division

More information

Comparison of One-Dimensional and Two- Dimensional Hydrodynamic Modeling Approaches For Red River Basin

Comparison of One-Dimensional and Two- Dimensional Hydrodynamic Modeling Approaches For Red River Basin Civil & Environmental Engineering and Construction Faculty Publications Civil & Environmental Engineering and Construction Engineering 12-1999 Comparison of One-Dimensional and Two- Dimensional Hydrodynamic

More information

Channel Conditions in the Onion Creek Watershed. Integrating High Resolution Elevation Data in Flood Forecasting

Channel Conditions in the Onion Creek Watershed. Integrating High Resolution Elevation Data in Flood Forecasting Channel Conditions in the Onion Creek Watershed Integrating High Resolution Elevation Data in Flood Forecasting Lukas Godbout GIS in Water Resources CE394K Fall 2016 Introduction Motivation Flooding is

More information

Hysteresis in River Discharge Rating Curves. Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013

Hysteresis in River Discharge Rating Curves. Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013 Hysteresis in River Discharge Rating Curves Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013 Marian Muste and Kyutae Lee IIHR Hydroscience & Engineering The University of

More information

Use of measured and interpolated crosssections

Use of measured and interpolated crosssections Use of measured and interpolated crosssections in hydraulic river modelling Y. Chen/, R. Crowded & R. A. Falconer^ ^ Department of Civil & Environmental Engineering, University ofbradford, Bradford, West

More information

Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24

Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24 Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24 One dimensional river models (1-D models) Assumptions Flow is one dimensional Streamline

More information

Web-Based Automated, Two-Dimensional Levee- Failure Flood Simulation using DSS-WISE Lite

Web-Based Automated, Two-Dimensional Levee- Failure Flood Simulation using DSS-WISE Lite Association of State Floodplain Managers (ASFPM) 2017 Annual Conference (41 st ) April 30 - May 5, 2017, Kansas City Convention Center, Kansas City, Missouri Web-Based Automated, Two-Dimensional Levee-

More information

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox v. 9.1 WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox

More information

Spatial Hydrologic Modeling HEC-HMS Distributed Parameter Modeling with the MODClark Transform

Spatial Hydrologic Modeling HEC-HMS Distributed Parameter Modeling with the MODClark Transform v. 9.0 WMS 9.0 Tutorial Spatial Hydrologic Modeling HEC-HMS Distributed Parameter Modeling with the MODClark Transform Setup a basic distributed MODClark model using the WMS interface Objectives In this

More information

Watershed Modeling Maricopa Predictive HEC-1 Model. Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model

Watershed Modeling Maricopa Predictive HEC-1 Model. Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model v. 10.1 WMS 10.1 Tutorial Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model Build a watershed model to predict hydrologic reactions based on land use development in Maricopa

More information

DESIGN AND SIMULATION OF SOIL SAVING DAMS IN THE MOUNTAINOUS AREAS BY USING GIS WITH DIGITAL ELEVATION MAP

DESIGN AND SIMULATION OF SOIL SAVING DAMS IN THE MOUNTAINOUS AREAS BY USING GIS WITH DIGITAL ELEVATION MAP DESIGN AND SIMULATION OF SOIL SAVING DAMS IN THE MOUNTAINOUS AREAS BY USING GIS WITH DIGITAL ELEVATION MAP KEY WORDS: Erosion,GIS,Hazard,Landslide ABSTRACT Masaaki SHIKADA and Junko YAMASHITA Kanazawa

More information

DAM-BREAK FLOW IN A CHANNEL WITH A SUDDEN ENLARGEMENT

DAM-BREAK FLOW IN A CHANNEL WITH A SUDDEN ENLARGEMENT THEME C: Dam Break 221 DAM-BREAK FLOW IN A CHANNEL WITH A SUDDEN ENLARGEMENT Soares Frazão S. 1,2, Lories D. 1, Taminiau S. 1 and Zech Y. 1 1 Université catholique de Louvain, Civil Engineering Department

More information

Information Processing and Synthesis Tool (IPAST) Abstract

Information Processing and Synthesis Tool (IPAST) Abstract Information Processing and Synthesis Tool (IPAST) At left: Screenshots from IPAST By Nathan Pingel, PE, D.WRE 2015 David Ford Consulting Engineers, Inc. Abstract T he California Department of Water Resources

More information

Appendix E-1. Hydrology Analysis

Appendix E-1. Hydrology Analysis Appendix E-1 Hydrology Analysis July 2016 HYDROLOGY ANALYSIS For Tentative Tract 20049 City of Chino Hills County of San Bernardino Prepared For: 450 Newport Center Drive, Suite 300 Newport Beach, CA 92660

More information

Required: 486DX-33, 8MB RAM, HDD w. 20 MB free, VGA, Win95. Recommended: Pentium 60, 16 MB RAM, SVGA, Win95 or NT

Required: 486DX-33, 8MB RAM, HDD w. 20 MB free, VGA, Win95. Recommended: Pentium 60, 16 MB RAM, SVGA, Win95 or NT Evaluation Form Evaluator Information Name: Jeff Hagan Date: Feb. 17, 2000 Software Information Title of Software: Purpose: Publisher: CulvertMaster Culvert Hydraulic Design Haestad Methods, Inc. Version:

More information

Department of Civil Engineering, Faculty of Engineering, Suranaree University of Technology, Mueang, Nakhon Ratchasima, Thailand.

Department of Civil Engineering, Faculty of Engineering, Suranaree University of Technology, Mueang, Nakhon Ratchasima, Thailand. 0 0 Mapping temporal flood extent of Chiang Mai flooding using a coupled D and quasi D floodplain inundation modeling Chatchai Jothityangkoon and Kowit Boonrawd Department of Civil Engineering, Faculty

More information

Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model

Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model v. 9.0 WMS 9.0 Tutorial Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model Build a watershed model to predict hydrologic reactions based on land use development in Maricopa

More information

2D Modeling for Approximate Areas. Monica S. Urisko, P.E. CFM

2D Modeling for Approximate Areas. Monica S. Urisko, P.E. CFM 2D Modeling for Approximate Areas Monica S. Urisko, P.E. CFM Ferrin P. Affleck, P.E. CFM Outline Types of Modeling Available Steady vs Unsteady 1D vs 2D Software available Basics of 2D modeling Inputs

More information

Watershed Modeling Using Online Spatial Data to Create an HEC-HMS Model

Watershed Modeling Using Online Spatial Data to Create an HEC-HMS Model v. 10.1 WMS 10.1 Tutorial Watershed Modeling Using Online Spatial Data to Create an HEC-HMS Model Learn how to setup an HEC-HMS model using WMS online spatial data Objectives This tutorial shows how to

More information

Climate Change/Extreme Weather Vulnerability Risk Assessment:

Climate Change/Extreme Weather Vulnerability Risk Assessment: Climate Change/Extreme Weather Vulnerability Risk Assessment: Federal Highway Administration (FHWA) Pilot Study for the Dallas-Fort Worth Region June 4, 2014 2014 TxDOT Transportation Planning Conference

More information

Storm Drain Modeling HY-12 Rational Design

Storm Drain Modeling HY-12 Rational Design v. 10.1 WMS 10.1 Tutorial Learn how to design storm drain inlets, pipes, and other components of a storm drain system using FHWA's HY-12 storm drain analysis software and the WMS interface Objectives Define

More information

Flood Inundation Mapping using HEC-RAS

Flood Inundation Mapping using HEC-RAS Flood Inundation Mapping using HEC-RAS Goodell, C. 1 ; Warren, C. 2 WEST Consultants, 2601 25 th St SE, Suite 450, Salem, OR 97302. Abstract Flood inundation mapping is an important tool for municipal

More information

Development and Implementation of International and Regional Flash Flood Guidance (FFG) and Early Warning Systems. Project Brief

Development and Implementation of International and Regional Flash Flood Guidance (FFG) and Early Warning Systems. Project Brief Development and Implementation of International and Regional Flash Flood Guidance (FFG) and Early Warning Systems Project Brief 1 SUMMARY The purpose of this project is the development and implementation

More information

FLOODPLAIN MODELING USING HEC-RAS

FLOODPLAIN MODELING USING HEC-RAS H A E S T A D M E T H O D S FLOODPLAIN MODELING USING HEC-RAS F i r s t E d i t i o n Authors Haestad Methods Gary Dyhouse Jennifer Hatchett Jeremy Benn Managing Editor Colleen Totz Editors David Klotz,

More information

Module 9. Lecture 3: Major hydrologic models-hspf, HEC and MIKE

Module 9. Lecture 3: Major hydrologic models-hspf, HEC and MIKE Lecture 3: Major hydrologic models-hspf, HEC and MIKE Major Hydrologic Models HSPF (SWM) HEC MIKE Hydrological Simulation Program-Fortran (HSPF) Commercial successor of the Stanford Watershed Model (SWM-IV)

More information

RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME

RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME 1-DIMENSIONAL FLOW SIMULATIONS FOR THE KYRKÖSJÄRVI DAM BREAK HAZARD

More information

Implementation of channel-routing routines in the Water Erosion Prediction Project (WEPP) model

Implementation of channel-routing routines in the Water Erosion Prediction Project (WEPP) model Implementation of channel-routing routines in the Water Erosion Prediction Project (WEPP) model Li Wang Joan Q. Wu William J. Elliot Shuhui Dun Sergey Lapin Fritz R. Fiedler Dennis C. Flanagan Abstract

More information

The Impact of Climate Data Uncertainty on Calibration of the SWAT Model

The Impact of Climate Data Uncertainty on Calibration of the SWAT Model The Impact of Climate Data Uncertainty on Calibration of the SWAT Model SWAT conference, Toulouse, France, July 16-20- 2013 B. Kamali, Jamshid Mousavi, Karim Abbaspour, Hong Yang Eawag: Das Wasserforschungs-Institut

More information

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model v. 9.1 WMS 9.1 Tutorial Integrate stream flow with your GSSHA overland flow model Objectives Learn how to add hydraulic channel routing to your GSSHA model and how to define channel properties. Learn how

More information

Flood routing modelling with Artificial Neural Networks

Flood routing modelling with Artificial Neural Networks Adv. Geosci., 9, 131 136, 2006 Author(s) 2006. This work is licensed under a Creative Commons License. Advances in Geosciences Flood routing modelling with Artificial Neural Networks R. Peters, G. Schmitz,

More information

Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins.

Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins. v. 11.0 HEC-HMS WMS 11.0 Tutorial HEC-HMS Learn how to create multiple sub-basins using HEC-HMS Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins. Prerequisite

More information

Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015

Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015 Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015 Contents Introduction General Philosophy Overview of Capabilities Applications Computational

More information

UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING

UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING Alemseged T. H. a and T. H. M. Rientjes b a Department of Water Resources, ITC, P.O.Box 6, 7500AA, Enschede, The Netherlands. E-mail: haile07634@itc.nl

More information

Spatial Hydrologic Modeling Using NEXRAD Rainfall Data in an HEC-HMS (MODClark) Model

Spatial Hydrologic Modeling Using NEXRAD Rainfall Data in an HEC-HMS (MODClark) Model v. 10.0 WMS 10.0 Tutorial Spatial Hydrologic Modeling Using NEXRAD Rainfall Data in an HEC-HMS (MODClark) Model Learn how to setup a MODClark model using distributed rainfall data Objectives Read an existing

More information

WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS

WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS v. 10.0 WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS Objectives Define a conceptual schematic of the roadway, invert, and downstream

More information

Charter for the System Interoperability and Data Synchronization Requirements Team

Charter for the System Interoperability and Data Synchronization Requirements Team Charter for the System Interoperability and Data Synchronization Requirements Team Introduction and Background The National Weather Service (NWS), the U.S. Army Corps of Engineers (USACE), and the U.S.

More information

A Comparative Study of HEC-RAS 2D, TUFLOW, & Mike 21 Model Benchmark Testing

A Comparative Study of HEC-RAS 2D, TUFLOW, & Mike 21 Model Benchmark Testing A Comparative Study of HEC-RAS 2D, TUFLOW, & Mike 21 Model Benchmark Testing June 2016 Presented by: Murari Paudel, PhD, PE, CFM Soledad B Roman, EIT John Prichard, PE, CFM Wood Rodgers Inc. Sacramento,

More information

JAMSTEC Tsutao Oizumi

JAMSTEC Tsutao Oizumi JAMSTEC Tsutao Oizumi A study about optimization of NHM for using on K computer Background In the history, the NHM has been developed on the vector type computer. The architecture of the K super computer

More information

North Atlantic Coast Comprehensive Study: New Jersey Back Bays Focus Area Analysis

North Atlantic Coast Comprehensive Study: New Jersey Back Bays Focus Area Analysis North Atlantic Coast Comprehensive Study: New Jersey Back Bays Focus Area Analysis J. Bailey Smith, Regional Technical Specialist National Planning Center for Coastal Storm Risk Management U.S. Army Corps

More information

Outreach and Mitigation: A Convenient Partnership in Loss Reduction. Scott Schelling and Carver Struve, CFM

Outreach and Mitigation: A Convenient Partnership in Loss Reduction. Scott Schelling and Carver Struve, CFM Outreach and Mitigation: A Convenient Partnership in Loss Reduction Scott Schelling and Carver Struve, CFM Purpose = Program Transformation Goal = Process Integration Risk Identification Community Engagement

More information

The pre-assessment of the RRI model application capacity in the urban area Case study: Ho Chi Minh City

The pre-assessment of the RRI model application capacity in the urban area Case study: Ho Chi Minh City HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY (HCMUT) CENTER FOR DEVELOPING INFORMATION TECHNOLOGY GEOGRAPHIC INFORMATION SYSTEM (DITAGIS) The pre-assessment of the RRI model application capacity in the urban

More information

Appendix E. HEC-RAS and HEC-Ecosystem Functions Models

Appendix E. HEC-RAS and HEC-Ecosystem Functions Models Appendix E HEC-RAS and HEC-Ecosystem Functions Models 1 Appendix E: Modeled Reaches for the Connecticut River Watershed application of HEC-RAS Separate from the report for the Decision Support System of

More information

Curve Fit: a pixel level raster regression tool

Curve Fit: a pixel level raster regression tool a pixel level raster regression tool Timothy Fox, Nathan De Jager, Jason Rohweder* USGS La Crosse, WI a pixel level raster regression tool Working with multiple raster datasets that share a common theme

More information

Watershed Modeling Rational Method Interface. Learn how to model urban areas using WMS' rational method interface

Watershed Modeling Rational Method Interface. Learn how to model urban areas using WMS' rational method interface v. 10.1 WMS 10.1 Tutorial Learn how to model urban areas using WMS' rational method interface Objectives Learn how to model urban areas using the Rational method, including how to compute rainfall intensity,

More information

Upper Trinity River Corridor Development Certificate Model Updates. Flood Management Task Force Meeting April 20, 2018

Upper Trinity River Corridor Development Certificate Model Updates. Flood Management Task Force Meeting April 20, 2018 Upper Trinity River Corridor Development Certificate Model Updates Flood Management Task Force Meeting April 20, 2018 Agenda Review of the Phase II Upper Trinity Watershed CDC Model Development Hydrology

More information

Hydrologic Modeling using HEC-HMS

Hydrologic Modeling using HEC-HMS Hydrologic Modeling using HEC-HMS CE 412/512 Spring 2017 Introduction The intent of this exercise is to introduce you to the structure and some of the functions of the HEC-Hydrologic Modeling System (HEC-HMS),

More information

WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results

WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results v. 9.1 WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results Objectives This tutorial demonstrates different ways of

More information

Using GIS To Estimate Changes in Runoff and Urban Surface Cover In Part of the Waller Creek Watershed Austin, Texas

Using GIS To Estimate Changes in Runoff and Urban Surface Cover In Part of the Waller Creek Watershed Austin, Texas Using GIS To Estimate Changes in Runoff and Urban Surface Cover In Part of the Waller Creek Watershed Austin, Texas Jordan Thomas 12-6-2009 Introduction The goal of this project is to understand runoff

More information

Floodplain Risk Analysis Using Flood Probability and Annual Exceedance Probability Maps

Floodplain Risk Analysis Using Flood Probability and Annual Exceedance Probability Maps Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2004-03-18 Floodplain Risk Analysis Using Flood Probability and Annual Exceedance Probability Maps Christopher M. Smemoe Brigham

More information

WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results

WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results Objectives This tutorial demonstrates different ways

More information

Numerical modeling of rapidly varying flows using HEC RAS and WSPG models

Numerical modeling of rapidly varying flows using HEC RAS and WSPG models DOI 10.1186/s40064-016-2199-0 TECHNICAL NOTE Open Access Numerical modeling of rapidly varying flows using HEC RAS and WSPG models Prasada Rao 1* and Theodore V. Hromadka II 2 *Correspondence: prasad@fullerton.edu

More information

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications N.J.P.L.S. An Introduction to LiDAR Concepts and Applications Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy Airborne Laser

More information

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations:

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: ENV3104 Hydraulics II 2017 Assignment 1 Assignment 1 Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: Examiner: Jahangir Alam Due Date: 27 Apr 2017 Weighting: 1% Objectives

More information

Numerical Simulation of Flow around a Spur Dike with Free Surface Flow in Fixed Flat Bed. Mukesh Raj Kafle

Numerical Simulation of Flow around a Spur Dike with Free Surface Flow in Fixed Flat Bed. Mukesh Raj Kafle TUTA/IOE/PCU Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 107 114 TUTA/IOE/PCU All rights reserved. Printed in Nepal Fax: 977-1-5525830 Numerical Simulation of Flow around a Spur Dike with

More information

Representing Detail in Large Hydraulic Models: Lower Thames and Humber Estuary. Neil Hunter, Kevin Haseldine and Matthew Scott

Representing Detail in Large Hydraulic Models: Lower Thames and Humber Estuary. Neil Hunter, Kevin Haseldine and Matthew Scott Representing Detail in Large Hydraulic Models: Lower Thames and Humber Estuary Neil Hunter, Kevin Haseldine and Matthew Scott Overview What do we mean by detail? Lower Thames Humber Estuary How is software

More information

NUMERICAL SOLUTION WITH GRAPH THEORY FOR FLOOD FLOW IN RIVER NETWORKS

NUMERICAL SOLUTION WITH GRAPH THEORY FOR FLOOD FLOW IN RIVER NETWORKS Annual Journal of Hydraulic Engineering, JSCE, VOL.45, 2001, February NUMERICAL SOLUTION WITH GRAPH THEORY FOR FLOOD FLOW IN RIVER NETWORKS Tuan NGUYEN Le1 and Satoru SUGIO2 Student Member of JSCE, Graduate

More information

HIGH RESOLUTION MODELLING OF URBAN FLOODING EVENTS

HIGH RESOLUTION MODELLING OF URBAN FLOODING EVENTS High Resolution Data Assimilation Meeting Royal Meteorological Society, Reading 19 April 2013 HIGH RESOLUTION MODELLING OF URBAN FLOODING EVENTS Slobodan Djordjević S.Djordjevic@exeter.ac.uk Outline Data

More information

PI System Rollout in Remote Hydroelectric System. Power Generation

PI System Rollout in Remote Hydroelectric System. Power Generation PI System Rollout in Remote Hydroelectric System Presented by Matt McPheeters Power Generation Power Generation Department operates the nation s largest privately-owned hydroelectric system. 68 powerhouses

More information

NASA-OU CREST 1.6c README

NASA-OU CREST 1.6c README NASA-OU CREST 1.6c README 27 May 2010 (Draft version) Table of Contents 1. A BRIEF DESCRIPTION OF THE MODEL 3 2. COMPILING ON LINUX 5 2.1 USING IFORT COMPILER 5 2.2 USING GFORTRAN COMPILER 5 3. COMPILING

More information