NTH, GEOMETRIC, AND TELESCOPING TEST

Size: px
Start display at page:

Download "NTH, GEOMETRIC, AND TELESCOPING TEST"

Transcription

1 NTH, GEOMETRIC, AND TELESCOPING TEST Sectio 9. Calculus BC AP/Dual, Revised 08 /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test

2 SUMMARY OF TESTS FOR SERIES Lookig at the first few terms of the sequece of partial sums may ot help us much so we will lear the followig te tests to determie covergece or divergece: P A R R T I N G C p-series: Is the series i the form P? Alteratig series: Does the series alterate? If it does, are the terms gettig smaller, ad is the th term 0? Ratio Test: Does the series cotai thigs that grow very large as icreases (expoetials or factorials)? Root Test: Does the series cotai a radical? Telescopig series: Will all but a couple of the terms i the series cacel out? Itegral Test: Ca you easily itegrate the expressio that defie the series? th Term divergece Test: Is the th term somethig other tha zero? Geometric series: Is the series of the form, σ =0 a r Compariso Tests: Is the series almost aother kid of series (e.g. p-series or geometric)? Which would be better to use: Direct or Limit Compariso Test? /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test

3 DEFINITIONS A. Series is the sum of the terms i a sequece. B. Fiite sequeces ad series have defied first ad last terms, whereas ifiite sequeces ad series cotiue idefiitely. C. A series ca be writte with summatio symbol sigma, σ, the Greek letter S. D. S is ofte called a th partial sum, sice it ca represet the sum of a certai part of a sequece. E. Ifiite series coverges if the sequece of partial sums coverges to some umber, S. F. If the sequece of partial sums diverges, the the series diverges. /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 3

4 WHAT IS SIGMA NOTATION? Upper Limit Lower Limit Kow as idex Summatio Fuctio "The summatio from to of + ": /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 4

5 EXAMPLE Give the series σ = +, fid the first five terms of the sequece of partial sums, ad list them below. The, evaluate. Is the sequece of partial sums has a limit or boud? 3, 6,,8, /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 5

6 GEOMETRIC SERIES TEST A. Geometric series is i the form, σ = a (r) ; a 0 σ =0. a is the Iitial term of the series. r is the commo ratio B. Covergece vs. Divergece a (r) or. The geometric series coverges if r < to the sum of S = a r. The geometric series diverges if r /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 6

7 EXAMPLE Determie whether the followig series coverge or diverge, σ = it coverges, idetify the sum If a r 3 r /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 7

8 EXAMPLE Determie whether the followig series coverge or diverge, σ = it coverges, idetify the sum. 3 S r a S r Series is Coverget by GST; Sum is 3 3. If /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 8

9 EXAMPLE 3 Determie whether the followig series coverge or diverge, σ = 3 r 3 r 3 Series is Diverget by GST /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 9

10 EXAMPLE 4 Determie whether the followig series coverge or diverge, σ = /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test

11 EXAMPLE 4 Determie whether the followig series coverge or diverge, σ = a S r 3 5 S Series is Coverget by GST; sum is 3+ 5 /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test

12 YOUR TURN Determie whether the followig series coverge or diverge, σ = 3. If it coverges, idetify the sum. r a S r 3 S 4 Series is Coverget by GST; Sum is /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test

13 NTH TERM TEST FOR DIVERGENCE A. Oe Way Test (Divergece Oly) B. If lim a 0, the the series σ = a diverges C. Therefore, if lim a = 0, the the series DOES NOT coverge D. If the test does ot pass, the test is INCONCLUSIVE ad aother test must be used E. Use this test FIRST before others, due to time costraits /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 3

14 EXAMPLE 5 Determie whether the followig series coverge or diverge, σ = If it coverges, idetify the sum. 3 lim 3 5 lim Series Diverges by the th term Test /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 4

15 EXAMPLE 6 Determie whether the followig series coverge or diverge, σ =!!+. If it coverges, idetify the sum.! lim! x lim x x lim x 0 Series Diverges by the th term Test /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 5

16 EXAMPLE 7 Determie whether the followig series coverge or diverge, σ =.. lim. /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 6 S B 0 lim 0 a S r 0

17 EXAMPLE 7 Determie whether the followig series coverge or diverge, σ =.. 00 S Series Coverges by the GST; Sum is /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 7

18 YOUR TURN Determie whether the followig series coverge or diverge, σ = If it coverges, idetify the sum. 3 lim 3 3 lim lim Series Diverges by the th term Test /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 8

19 TELESCOPING TEST A. Kow as the terms collapse to oe term or several terms B. Uses the associative property of additio C. Series collapses to a fiite sum D. To get the sum, start pluggig i umbers E. Hit: Geerally has two ratios associated with Telescopig Series whe geeratig the sum /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 9

20 EXAMPLE 8 Determie whether the followig series coverge or diverge, σ = + +3 Start Pluggig i Numbers for. If it coverges, idetify the sum Series Coverges by the Telescopig Test; Sum is 3 /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 0

21 EXAMPLE 9 Determie whether the followig series coverge or diverge, σ = If it coverges, idetify the sum a b 3 a 3 b /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test

22 EXAMPLE 9 Determie whether the followig series coverge or diverge, σ = If it coverges, idetify the sum. a 3 b, a 3 a a 3, b 3 b b /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test

23 EXAMPLE 9 Determie whether the followig series coverge or diverge, σ = If it coverges, idetify the sum /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 3

24 EXAMPLE 9 Determie whether the followig series coverge or diverge, σ = If it coverges, idetify the sum Series Coverges by the Telescopig Test; Sum is /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 4

25 YOUR TURN Determie whether the followig series coverge or diverge, σ = +. If it coverges, idetify the sum. Series Coverges by the Telescopig Test; Sum is /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 5

26 AP MULTIPLE CHOICE PRACTICE QUESTION What is the value of (A) (B) 4 (C) 6 = (D) The series diverges (NON-CALCULATOR) + 3? /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 6

27 AP MULTIPLE CHOICE PRACTICE QUESTION What is the value of = (NON-CALCULATOR) + 3? Vocabulary Coectios ad Process Aswer Geometric Series k0 k0 3 3 S B /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 7 k0 3 k03 r 3 a r 3 3

28 ASSIGNMENT Page odd, 5-3 odd, 4-53 odd /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test 8

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

Ch 9.3 Geometric Sequences and Series Lessons

Ch 9.3 Geometric Sequences and Series Lessons Ch 9.3 Geometric Sequeces ad Series Lessos SKILLS OBJECTIVES Recogize a geometric sequece. Fid the geeral, th term of a geometric sequece. Evaluate a fiite geometric series. Evaluate a ifiite geometric

More information

Test 4 Review. dy du 9 5. sin5 zdz. dt. 5 Ê. x 2 È 1, 3. 2cos( x) dx is less than using Simpson's. ,1 t 5 t 2. ft () t2 4.

Test 4 Review. dy du 9 5. sin5 zdz. dt. 5 Ê. x 2 È 1, 3. 2cos( x) dx is less than using Simpson's. ,1 t 5 t 2. ft () t2 4. Name: Class: Date: ID: A Test Review Short Aswer. Fid the geeral solutio of the differetial equatio below ad check the result by differetiatio. dy du 9 u. Use the error formula to estimate the error i

More information

It just came to me that I 8.2 GRAPHS AND CONVERGENCE

It just came to me that I 8.2 GRAPHS AND CONVERGENCE 44 Chapter 8 Discrete Mathematics: Fuctios o the Set of Natural Numbers (a) Take several odd, positive itegers for a ad write out eough terms of the 3N sequece to reach a repeatig loop (b) Show that ot

More information

WebAssign Lesson 6-1b Geometric Series (Homework)

WebAssign Lesson 6-1b Geometric Series (Homework) WebAssig Lesso 6-b Geometric Series (Homework) Curret Score : / 49 Due : Wedesday, July 30 204 :0 AM MDT Jaimos Skriletz Math 75, sectio 3, Summer 2 204 Istructor: Jaimos Skriletz. /2 poitsrogac alcet2

More information

Taylor Series and Applications - (8.7)(8.8) b n!x # c" n for x # c " R.!x # c" # f %%!c" 2! T!x"! 1 # x # x2 2! # x3. 3! n!

Taylor Series and Applications - (8.7)(8.8) b n!x # c n for x # c  R.!x # c # f %%!c 2! T!x! 1 # x # x2 2! # x3. 3! n! Taylor Series ad Applicatios - (8.7)(8.8). Taylor ad Maclauri Series: For a give fuctio f!x, how ca we fid its power series represetatio? If f has a power series represetatio at a umber a, that is, if

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

1.8 What Comes Next? What Comes Later?

1.8 What Comes Next? What Comes Later? 35 1.8 What Comes Next? What Comes Later? A Practice Uderstadig Task For each of the followig tables, CC BY Hiroaki Maeda https://flic.kr/p/6r8odk describe how to fid the ext term i the sequece, write

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

1. The lines intersect. There is one solution, the point where they intersect. The system is called a consistent system.

1. The lines intersect. There is one solution, the point where they intersect. The system is called a consistent system. Commo Core Math 3 Notes Uit Day Systems I. Systems of Liear Equatios A system of two liear equatios i two variables is two equatios cosidered together. To solve a system is to fid all the ordered pairs

More information

An (or ) is a sequence in which each term after the first differs from the preceding term by a fixed constant, called the.

An (or ) is a sequence in which each term after the first differs from the preceding term by a fixed constant, called the. Sectio.2 Arithmetic Sequeces ad Series -.2 Arithmetic Sequeces ad Series Arithmetic Sequeces Arithmetic Series Key Terms: arithmetic sequece (arithmetic progressio), commo differece, arithmetic series

More information

Math 3201 Notes Chapter 4: Rational Expressions & Equations

Math 3201 Notes Chapter 4: Rational Expressions & Equations Learig Goals: See p. tet.. Equivalet Ratioal Epressios ( classes) Read Goal p. 6 tet. Math 0 Notes Chapter : Ratioal Epressios & Equatios. Defie ad give a eample of a ratioal epressio. p. 6. Defie o-permissible

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Recursion. Recursion. Mathematical induction: example. Recursion. The sum of the first n odd numbers is n 2 : Informal proof: Principle:

Recursion. Recursion. Mathematical induction: example. Recursion. The sum of the first n odd numbers is n 2 : Informal proof: Principle: Recursio Recursio Jordi Cortadella Departmet of Computer Sciece Priciple: Reduce a complex problem ito a simpler istace of the same problem Recursio Itroductio to Programmig Dept. CS, UPC 2 Mathematical

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

MATH 152: Calculus 2, SET8 EXAMPLES [Belmonte, 2018] 6 Applications of Integration. 5.5 The Substitution Rule. 6.2 Volumes. 6.1 Areas Between Curves

MATH 152: Calculus 2, SET8 EXAMPLES [Belmonte, 2018] 6 Applications of Integration. 5.5 The Substitution Rule. 6.2 Volumes. 6.1 Areas Between Curves MATH 5: Calculus, SET8 EXAMPLES [Belmote, 8] 6 Applicatios of Itegratio 55 The Substitutio Rule [48/6] Evaluate the itegral t + dt by makig the substitutio u = t + [48/8] Evaluate x e x3 dx via the Substitutio

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1 COSC 1P03 Ch 7 Recursio Itroductio to Data Structures 8.1 COSC 1P03 Recursio Recursio I Mathematics factorial Fiboacci umbers defie ifiite set with fiite defiitio I Computer Sciece sytax rules fiite defiitio,

More information

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

Civil Engineering Computation

Civil Engineering Computation Civil Egieerig Computatio Fidig Roots of No-Liear Equatios March 14, 1945 World War II The R.A.F. first operatioal use of the Grad Slam bomb, Bielefeld, Germay. Cotets 2 Root basics Excel solver Newto-Raphso

More information

Protected points in ordered trees

Protected points in ordered trees Applied Mathematics Letters 008 56 50 www.elsevier.com/locate/aml Protected poits i ordered trees Gi-Sag Cheo a, Louis W. Shapiro b, a Departmet of Mathematics, Sugkyukwa Uiversity, Suwo 440-746, Republic

More information

Algorithm. Counting Sort Analysis of Algorithms

Algorithm. Counting Sort Analysis of Algorithms Algorithm Coutig Sort Aalysis of Algorithms Assumptios: records Coutig sort Each record cotais keys ad data All keys are i the rage of 1 to k Space The usorted list is stored i A, the sorted list will

More information

Abstract. Chapter 4 Computation. Overview 8/13/18. Bjarne Stroustrup Note:

Abstract. Chapter 4 Computation. Overview 8/13/18. Bjarne Stroustrup   Note: Chapter 4 Computatio Bjare Stroustrup www.stroustrup.com/programmig Abstract Today, I ll preset the basics of computatio. I particular, we ll discuss expressios, how to iterate over a series of values

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Evaluation scheme for Tracking in AMI

Evaluation scheme for Tracking in AMI A M I C o m m u i c a t i o A U G M E N T E D M U L T I - P A R T Y I N T E R A C T I O N http://www.amiproject.org/ Evaluatio scheme for Trackig i AMI S. Schreiber a D. Gatica-Perez b AMI WP4 Trackig:

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

Lecture 2: Spectra of Graphs

Lecture 2: Spectra of Graphs Spectral Graph Theory ad Applicatios WS 20/202 Lecture 2: Spectra of Graphs Lecturer: Thomas Sauerwald & He Su Our goal is to use the properties of the adjacecy/laplacia matrix of graphs to first uderstad

More information

Thompson s Group F (p + 1) is not Minimally Almost Convex

Thompson s Group F (p + 1) is not Minimally Almost Convex Thompso s Group F (p + ) is ot Miimally Almost Covex Claire Wladis Thompso s Group F (p + ). A Descriptio of F (p + ) Thompso s group F (p + ) ca be defied as the group of piecewiseliear orietatio-preservig

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES SEQUENCES AND SERIES U N I The umber of gifts set i the popular Christmas Carol days of Christmas form a sequece. A part of the sog goes this way O the th day of Christmas my true love gave to me drummers

More information

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions CS 111: Program Desig I Lecture # 7: First Loop, Web Crawler, Fuctios Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago September 18, 2018 What will this prit? x = 5 if x == 3: prit("hi!")

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 5 Fuctios for All Subtasks Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 5.1 void Fuctios 5.2 Call-By-Referece Parameters 5.3 Usig Procedural Abstractio 5.4 Testig ad Debuggig

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Data Structures and Algorithms. Analysis of Algorithms

Data Structures and Algorithms. Analysis of Algorithms Data Structures ad Algorithms Aalysis of Algorithms Outlie Ruig time Pseudo-code Big-oh otatio Big-theta otatio Big-omega otatio Asymptotic algorithm aalysis Aalysis of Algorithms Iput Algorithm Output

More information

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract O Ifiite Groups that are Isomorphic to its Proper Ifiite Subgroup Jaymar Talledo Baliho Abstract Two groups are isomorphic if there exists a isomorphism betwee them Lagrage Theorem states that the order

More information

Computers and Scientific Thinking

Computers and Scientific Thinking Computers ad Scietific Thikig David Reed, Creighto Uiversity Chapter 15 JavaScript Strigs 1 Strigs as Objects so far, your iteractive Web pages have maipulated strigs i simple ways use text box to iput

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Section 7.2: Direction Fields and Euler s Methods

Section 7.2: Direction Fields and Euler s Methods Sectio 7.: Directio ields ad Euler s Methods Practice HW from Stewart Tetbook ot to had i p. 5 # -3 9-3 odd or a give differetial equatio we wat to look at was to fid its solutio. I this chapter we will

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions:

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions: CS 604 Data Structures Midterm Sprig, 00 VIRG INIA POLYTECHNIC INSTITUTE AND STATE U T PROSI M UNI VERSI TY Istructios: Prit your ame i the space provided below. This examiatio is closed book ad closed

More information

Filter design. 1 Design considerations: a framework. 2 Finite impulse response (FIR) filter design

Filter design. 1 Design considerations: a framework. 2 Finite impulse response (FIR) filter design Filter desig Desig cosideratios: a framework C ı p ı p H(f) Aalysis of fiite wordlegth effects: I practice oe should check that the quatisatio used i the implemetatio does ot degrade the performace of

More information

3n

3n Prctice Set 6 Sequeces d Series Clcultor Required Objectives Alyze ptters i sequeces to determie subsequet terms. Fid the first four terms of sequece give equtio for. Fid expressio for give sequece. Expd

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

Takashi Tsuboi Graduate School of Mathematical Sciences, the University of Tokyo, Japan

Takashi Tsuboi Graduate School of Mathematical Sciences, the University of Tokyo, Japan TOPOLOGY Takashi Tsuboi Graduate School of Mathematical Scieces, the Uiversity of Tokyo, Japa Keywords: eighborhood, ope sets, metric space, covergece, cotiuity, homeomorphism, homotopy type, compactess,

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

. (b) Evaluate the sum given by. Exercise #1: A sequence is defined by the equation a n 2n

. (b) Evaluate the sum given by. Exercise #1: A sequence is defined by the equation a n 2n Nme: 453 Dte: SEQUENCES ALGEBRA WITH TRIGONOMETRY Sequeces, or ordered list of umbers, re extremely importt i mthemtics, both theoreticl d pplied A sequece is formlly defied s fuctio tht hs s its domi

More information

Convergence results for conditional expectations

Convergence results for conditional expectations Beroulli 11(4), 2005, 737 745 Covergece results for coditioal expectatios IRENE CRIMALDI 1 ad LUCA PRATELLI 2 1 Departmet of Mathematics, Uiversity of Bologa, Piazza di Porta Sa Doato 5, 40126 Bologa,

More information

CONTINUI TY. JEE-Mathematics. Illustration 1 : Solution : Illustration 2 : 1. CONTINUOUS FUNCTIONS :

CONTINUI TY. JEE-Mathematics. Illustration 1 : Solution : Illustration 2 : 1. CONTINUOUS FUNCTIONS : J-Mathematics. CONTINUOUS FUNCTIONS : CONTINUI TY A fuctio for which a small chage i the idepedet variable causes oly a small chage ad ot a sudde jump i the depedet variable are called cotiuous fuctios.

More information

Counting Regions in the Plane and More 1

Counting Regions in the Plane and More 1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September 016 1. Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o

More information

The Graphs of Polynomial Functions

The Graphs of Polynomial Functions Sectio 4.3 The Graphs of Polyomial Fuctios Objective 1: Uderstadig the Defiitio of a Polyomial Fuctio Defiitio Polyomial Fuctio 1 2 The fuctio ax a 1x a 2x a1x a0 is a polyomial fuctio of degree where

More information

ECE4050 Data Structures and Algorithms. Lecture 6: Searching

ECE4050 Data Structures and Algorithms. Lecture 6: Searching ECE4050 Data Structures ad Algorithms Lecture 6: Searchig 1 Search Give: Distict keys k 1, k 2,, k ad collectio L of records of the form (k 1, I 1 ), (k 2, I 2 ),, (k, I ) where I j is the iformatio associated

More information

FURTHER INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

FURTHER INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mathematics Revisio Guides More Trigoometric ad Log Itegrals Page of 7 MK HOME TUITION Mathematics Revisio Guides Level: AS / A Level AQA : C Edexcel: C OCR: C OCR MEI: C FURTHER INTEGRATION TECHNIQUES

More information

Algorithms Chapter 3 Growth of Functions

Algorithms Chapter 3 Growth of Functions Algorithms Chapter 3 Growth of Fuctios Istructor: Chig Chi Li 林清池助理教授 chigchi.li@gmail.com Departmet of Computer Sciece ad Egieerig Natioal Taiwa Ocea Uiversity Outlie Asymptotic otatio Stadard otatios

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Combination Labelings Of Graphs

Combination Labelings Of Graphs Applied Mathematics E-Notes, (0), - c ISSN 0-0 Available free at mirror sites of http://wwwmaththuedutw/ame/ Combiatio Labeligs Of Graphs Pak Chig Li y Received February 0 Abstract Suppose G = (V; E) is

More information

CS 11 C track: lecture 1

CS 11 C track: lecture 1 CS 11 C track: lecture 1 Prelimiaries Need a CMS cluster accout http://acctreq.cms.caltech.edu/cgi-bi/request.cgi Need to kow UNIX IMSS tutorial liked from track home page Track home page: http://courses.cms.caltech.edu/courses/cs11/material

More information

12-5A. Equivalent Fractions and Decimals. 1 Daily Common Core Review. Common Core. Lesson. Lesson Overview. Math Background

12-5A. Equivalent Fractions and Decimals. 1 Daily Common Core Review. Common Core. Lesson. Lesson Overview. Math Background Lesso -A Equivalet Fractios ad Decimals Commo Core Lesso Overview Domai Number ad Operatios Fractios Cluster Uderstad decimal otatio for fractios, ad compare decimal fractios. Stadards.NF. Use decimal

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

UNIT 1 RECURRENCE RELATIONS

UNIT 1 RECURRENCE RELATIONS UNIT RECURRENCE RELATIONS Structure Page No.. Itroductio 7. Objectives 7. Three Recurret Problems 8.3 More Recurreces.4 Defiitios 4.5 Divide ad Coquer 7.6 Summary 9.7 Solutios/Aswers. INTRODUCTION I the

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5 Morga Kaufma Publishers 26 February, 28 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Set-Associative Cache Architecture Performace Summary Whe CPU performace icreases:

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

One advantage that SONAR has over any other music-sequencing product I ve worked

One advantage that SONAR has over any other music-sequencing product I ve worked *gajedra* D:/Thomso_Learig_Projects/Garrigus_163132/z_productio/z_3B2_3D_files/Garrigus_163132_ch17.3d, 14/11/08/16:26:39, 16:26, page: 647 17 CAL 101 Oe advatage that SONAR has over ay other music-sequecig

More information

c-dominating Sets for Families of Graphs

c-dominating Sets for Families of Graphs c-domiatig Sets for Families of Graphs Kelsie Syder Mathematics Uiversity of Mary Washigto April 6, 011 1 Abstract The topic of domiatio i graphs has a rich history, begiig with chess ethusiasts i the

More information

Chapter 3. More Flow of Control. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 3. More Flow of Control. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 3 More Flow of Cotrol Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 3.1 Usig Boolea Expressios 3.2 Multiway Braches 3.3 More about C++ Loop Statemets 3.4 Desigig Loops Copyright

More information

MR-2010I %MktBSize Macro 989. %MktBSize Macro

MR-2010I %MktBSize Macro 989. %MktBSize Macro MR-2010I %MktBSize Macro 989 %MktBSize Macro The %MktBSize autocall macro suggests sizes for balaced icomplete block desigs (BIBDs). The sizes that it reports are sizes that meet ecessary but ot sufficiet

More information

1&1 Next Level Hosting

1&1 Next Level Hosting 1&1 Next Level Hostig Performace Level: Performace that grows with your requiremets Copyright 1&1 Iteret SE 2017 1ad1.com 2 1&1 NEXT LEVEL HOSTING 3 Fast page loadig ad short respose times play importat

More information

Chapter 4. Procedural Abstraction and Functions That Return a Value. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 4. Procedural Abstraction and Functions That Return a Value. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 4 Procedural Abstractio ad Fuctios That Retur a Value Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 4.1 Top-Dow Desig 4.2 Predefied Fuctios 4.3 Programmer-Defied Fuctios 4.4

More information

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits:

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits: Itro Admiistrivia. Sigup sheet. prerequisites: 6.046, 6.041/2, ability to do proofs homework weekly (first ext week) collaboratio idepedet homeworks gradig requiremet term project books. questio: scribig?

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Task scenarios Outline. Scenarios in Knowledge Extraction. Proposed Framework for Scenario to Design Diagram Transformation

Task scenarios Outline. Scenarios in Knowledge Extraction. Proposed Framework for Scenario to Design Diagram Transformation 6-0-0 Kowledge Trasformatio from Task Scearios to View-based Desig Diagrams Nima Dezhkam Kamra Sartipi {dezhka, sartipi}@mcmaster.ca Departmet of Computig ad Software McMaster Uiversity CANADA SEKE 08

More information

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis Outlie ad Readig Aalysis of Algorithms Iput Algorithm Output Ruig time ( 3.) Pseudo-code ( 3.2) Coutig primitive operatios ( 3.3-3.) Asymptotic otatio ( 3.6) Asymptotic aalysis ( 3.7) Case study Aalysis

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen COP4020 Programmig Laguages Fuctioal Programmig Prof. Robert va Egele Overview What is fuctioal programmig? Historical origis of fuctioal programmig Fuctioal programmig today Cocepts of fuctioal programmig

More information

Recursion. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Review: Method Frames

Recursion. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Review: Method Frames Uit 4, Part 3 Recursio Computer Sciece S-111 Harvard Uiversity David G. Sulliva, Ph.D. Review: Method Frames Whe you make a method call, the Java rutime sets aside a block of memory kow as the frame of

More information