condition w i B i S maximum u i

Size: px
Start display at page:

Download "condition w i B i S maximum u i"

Transcription

1 ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility u i Z +. Our task is to fid the most valuable set of items with respect to the utility fuctio uder the costrait that the kapsack has a fixed capacity of B. Fid S U satisfyig: coditio maximum w i B i S i S u i 10.2 Types of Polyomial Algorithms This sectio preset three types of polyomial algorithms. Each defiitio cotais a example ru time for the Kapsack problem if such a algorithm existed. Defiitio 1 Polyomial algorithm Ruig time Poly(Istace size) P oly( i log w i + i log u i ) Defiitio 2 Strogly polyomial Ruig time Poly(#umbers i istace) P oly() Defiitio 3 Pseudo polyomial Ruig time Poly(magitude of umbers). Where umbers are writte i uary ecodig. Uary ecodig for 0 is +1 cosecutive oes, e.g. 5 = P oly( i w i + i u i ) 10.3 Dyamic Programmig We have a istace I of a problem we like to solve usig dyamic programmig. Now create sub-istaces S = {I 1, I 2,..., I k }. The dyamic program the does: 1

2 1. It puts a total (or partial) order o S. 2. First sub-istace is easily solvable. (total order) All miimal istaces are easily solvable. (partial order) 3. The last istace is your origial istace. (total order) The maximum istace is your origial istace. (partial order) 4. Take ay istace I m S If you kow the solutios of the previous istaces the a solutio of I m ca be computed easily. For the partial orderig you must kow the solutios of the lower istaces Dyamic Programmig for Kapsack Problem We will here apply the previous four steps of a dyamic programmig algorithm o the kapsack problem. First defie a sub-istace A(i, w) which is the maximum utility usig oly items {a 1, a 2,..., a i } ad with a maximum capacity of w. The secod item is simply a questio of whether we are able to pick the oly item with regard to the maximum capacity, i.e. A(, B). { 0 w < a1 A(1, w) = u 1 w a 1 Our fial solutio, which correspods to item three, is the sub-istace over all items usig the origial capacity. We ca show item four by iductio. We ca determie the solutio to a sub-istace usig oly previous/lesser sub-istaces. A(i, w) A(i, w ) i i, w w where at least i < i or w < w The additio of oe more item is similar to the case where we oly had oe item. We either add it to the previous sub-istace with room for the ew item or we do t pick it at all. { ui + A(i 1, w w A(i, w) = max i ) w w i A(i 1, w) otherwise The ruig time for this dyamic programmig algorithm is B. It is also pseudo polyomial i B if all iputs are give i uary Kapsack Miimizatio Problem The ruig time of the previous algorithm depeds o B which might be large. We rather wat it to be pseudo polyomial i i u i. Rewrite the sub-istaces to be A(i, U) which is the miimum weight usig oly items {a 1, a 2,..., a i } ad a utility of at least U. The recursio the looks like 2

3 { wi + A(i 1, U u A(i, U) = mi i ) U u i A(i 1, U) otherwise This dyamic programmig algorithm has a ruig time of i U u i. The exact solutios of the two differet recursive formulatios of the kapsack problems are equivalet. I the approximatio case they are differet Approximatio Scheme Defiitio 4 A α-approximatio algorithm produces a solutio satisfyig. 1. Miimizatio problem, α 1 solutio α OPT 2. Maximizatio problem, α 1 solutio α OPT 10.7 A Approximatio Scheme 1. Miimizatio problem 1 + ɛ approximatio algorithm for every ɛ > 0 2. Maximizatio problem 1 ɛ approximatio algorithm for every ɛ > 0 A polyomial time approximatio scheme (PTAS) is a (1+ɛ)-approximatio with a rutime that is polyomial i the istace size. Here follows a couple of examples of ru times ad whether or ot they are algorithms polyomial i the istace size. ɛ, 2 ɛ, 1 ɛ, 2 1 ɛ ok ( 1 ɛ ) ot ok A fully polyomial time approximatio scheme (FPTAS) is a PTAS where the ru time is polyomial is 1 ɛ too. Proof 1 We have a iteger valued maximizatio problem such that OPT > 2 P oly(istace) 1 for all istaces. Now choose ɛ =. Assume there 2 P oly(istace)+1 exists a FPTAS, i.e. there exists a (1 ɛ)-approximatio algorithm with the ruig time P oly(istace, 1 ɛ ). (1 ɛ)op T > OP T ɛ2 P oly(istace) = OP T oly(istace) 2P > OP T 1 2P oly(istace)+1 Our approximatio is therefore a optimal solutio with the ruig time P oly(p oly(istace uity )). The algorithm is hece pseudo polyomial. 3

4 10.8 Approximatio of Kapsack A approximatio algorithm ca ofte be created by roudig off the least sigificat bits of the iput umbers. The amout of roudig is determied by 1 ɛ ad some error threshold. Here follows a (1 ɛ)-factor algorithm for the Kapsack problem. The solutio A (1 ɛ)opt ad the allowed ru time is P oly(, 1 ɛ ). Now assume that all u i B, if ot, throw the item away sice it caot be picked. The take the largest u i ɛ ad scale all weights by 1 ɛ ad tur ito a iteger. Ad the ew weight the becomes. f = ɛ u max u i = ui f Ad the ruig time is i U u i where each u i is bouded by so we get a pseudo polyomial algorithm. Proof 2 et OPT optimal solutio OPT value of OPT solutio with u i weight fuctio A OPTimum solutio to out rouded istace with utility fuctio u i A Value of out solutio with respect to origial utilities The followig holds A OPT A fa From which this follows u i f u i + 1 u i fu i + f OPT fopt + f fa + f A + f Which gives us the result OPT f A OPT u max A Ad sice u max OPT we get OPT ɛopt A which proves that our approximatio is withi a factor (1 ɛ). 4

5 10.9 Travelig Salesma Problem (TSP) For som dimesio d, we got vertices a 1, a 2,..., a R d. Fid the shortest legth tour visitig all the vertices. The distace fuctio is the vector orm defied as x, y R d : d (x i y i ) 2 i=1 emma 1 A optimum TSP tour is a o self-itersectig polygo o a 1, a 2,..., a. ets start by showig that the tour is a polygo. The example tour a 1, a 2, a 5, a 3, a 2, a 6,... visits the vertex a 2 multiple times ad sice the triagle iequality holds, i.e. distace(a 3, a 6 ) distace(a 3, a 2 ) + distace(a 2, a 6 ) We ca remove the vertex a 2 from the tour ad thereby decreasig the total legth which meas that the tour was t optimal to start with. This gives us that the tour is a polygo. What if we have crossig edges? Remove them ad recoect the two compoets. This will decrease the legth of the tour so the optimal solutio has o crossigs. The decrease i legth is give by the triagle iequality which ca be applied to the vertices ad the midpoit. a1 a3 a1 a3 a7 a5 a7 a5 a1 a3 a7 a5 Figure 1: Remove crossig ad recoect compoets Polyomial Time Approximatio Scheme for TSP Create a boudig box for all vertices. That is, create the smallest axis parallel box cotaiig all the poits. Now, without loss of geerality, assume the width ad height are = 4 2. Assume further, without loss of geerality, that = 2 k. Approximate by creatig a uit grid for the boudig box ad move poits to ceter of the square. 5

6 y x Figure 2: Approximatio of TSP tour. Gray tour is exact ad black approximated. emma 2 OPT is the origial optimal solutio ad let OPT be the optimum solutio, i.e. the same tour, for the rouded istace. ɛ > 0 : OPT (1 + ɛ)opt Which holds if is big eough, > 1 ɛ. Goig to the ceter ad goig back to the origial vertex adds a maximum distace of 4 for each square. OPT OPT + 4 OPT + 42 OPT + OPT = (1 + 1 )OPT Divide the boudig box ito four square areas ad place i a tree, see figure 3. Keep dividig ad addig square areas so that the leaf odes of the tree are uit squares. The height of the tree will become log(4). T y.. x Figure 3: Divisio ito square areas I each box we solve the problem of miimizig path legths with the give etry ad exit poits. The miimum path that covers all poits will be o self-itersectig due to the lemma. Add etry ad exit portals to each uit square, see figure 4. Edges will be rouded to eter/exit from the closest portal. ets create m portals o each 6

7 side of the square ad have double portals o the corers. Pick m = O( log ɛ ). Eumeratig all pairigs of portals the takes time Which is polyomial i. 2 m log O( 2 ɛ ) O( 1 ɛ ) m Figure 4: Etry ad exit portals o square Assumptio 1 There is a tour of cost at most (1 + ɛ )OPT such that the tour eter or exit a square from the portals. Proof will be preseted o ext lecture. 7

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpeCourseWare http://ocw.mit.edu 6.854J / 18.415J Advaced Algorithms Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advaced Algorithms

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem Exact Miimum Lower Boud Algorithm for Travelig Salesma Problem Mohamed Eleiche GeoTiba Systems mohamed.eleiche@gmail.com Abstract The miimum-travel-cost algorithm is a dyamic programmig algorithm to compute

More information

Lecture 2: Spectra of Graphs

Lecture 2: Spectra of Graphs Spectral Graph Theory ad Applicatios WS 20/202 Lecture 2: Spectra of Graphs Lecturer: Thomas Sauerwald & He Su Our goal is to use the properties of the adjacecy/laplacia matrix of graphs to first uderstad

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

Counting the Number of Minimum Roman Dominating Functions of a Graph

Counting the Number of Minimum Roman Dominating Functions of a Graph Coutig the Number of Miimum Roma Domiatig Fuctios of a Graph SHI ZHENG ad KOH KHEE MENG, Natioal Uiversity of Sigapore We provide two algorithms coutig the umber of miimum Roma domiatig fuctios of a graph

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

Counting Regions in the Plane and More 1

Counting Regions in the Plane and More 1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September 016 1. Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Lecture Notes on Integer Linear Programming

Lecture Notes on Integer Linear Programming Lecture Notes o Iteger Liear Programmig Roel va de Broek October 15, 2018 These otes supplemet the material o (iteger) liear programmig covered by the lectures i the course Algorithms for Decisio Support.

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

arxiv: v2 [cs.ds] 24 Mar 2018

arxiv: v2 [cs.ds] 24 Mar 2018 Similar Elemets ad Metric Labelig o Complete Graphs arxiv:1803.08037v [cs.ds] 4 Mar 018 Pedro F. Felzeszwalb Brow Uiversity Providece, RI, USA pff@brow.edu March 8, 018 We cosider a problem that ivolves

More information

Hard to Solve Instances of the Euclidean Traveling Salesman Problem

Hard to Solve Instances of the Euclidean Traveling Salesman Problem Hard to Solve Istaces of the Euclidea Travelig Salesma Problem Stefa Hougardy ad Xiaghui Zhog Research Istitute for Discrete Mathematics Uiversity of Bo Leéstr. 2, 53113 Bo, Germay October 2, 2018 Abstract

More information

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed.

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed. MASSACHUSETTS INSTITUTE of TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.161 Moder Optics Project Laboratory 6.637 Optical Sigals, Devices & Systems Problem Set No. 1 Geometric optics

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures Uiversity of Waterloo Departmet of Electrical ad Computer Egieerig ECE 250 Algorithms ad Data Structures Midterm Examiatio ( pages) Istructor: Douglas Harder February 7, 2004 7:30-9:00 Name (last, first)

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000.

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000. 5-23 The course that gives CM its Zip Memory Maagemet II: Dyamic Storage Allocatio Mar 6, 2000 Topics Segregated lists Buddy system Garbage collectio Mark ad Sweep Copyig eferece coutig Basic allocator

More information

Data Structures and Algorithms. Analysis of Algorithms

Data Structures and Algorithms. Analysis of Algorithms Data Structures ad Algorithms Aalysis of Algorithms Outlie Ruig time Pseudo-code Big-oh otatio Big-theta otatio Big-omega otatio Asymptotic algorithm aalysis Aalysis of Algorithms Iput Algorithm Output

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Combination Labelings Of Graphs

Combination Labelings Of Graphs Applied Mathematics E-Notes, (0), - c ISSN 0-0 Available free at mirror sites of http://wwwmaththuedutw/ame/ Combiatio Labeligs Of Graphs Pak Chig Li y Received February 0 Abstract Suppose G = (V; E) is

More information

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015.

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015. Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Hash Tables xkcd. http://xkcd.com/221/. Radom Number. Used with permissio uder Creative

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis Outlie ad Readig Aalysis of Algorithms Iput Algorithm Output Ruig time ( 3.) Pseudo-code ( 3.2) Coutig primitive operatios ( 3.3-3.) Asymptotic otatio ( 3.6) Asymptotic aalysis ( 3.7) Case study Aalysis

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a 4. [10] Usig a combiatorial argumet, prove that for 1: = 0 = Let A ad B be disjoit sets of cardiality each ad C = A B. How may subsets of C are there of cardiality. We are selectig elemets for such a subset

More information

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON Roberto Lopez ad Eugeio Oñate Iteratioal Ceter for Numerical Methods i Egieerig (CIMNE) Edificio C1, Gra Capitá s/, 08034 Barceloa, Spai ABSTRACT I this work

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

Lecture 18. Optimization in n dimensions

Lecture 18. Optimization in n dimensions Lecture 8 Optimizatio i dimesios Itroductio We ow cosider the problem of miimizig a sigle scalar fuctio of variables, f x, where x=[ x, x,, x ]T. The D case ca be visualized as fidig the lowest poit of

More information

Lower Bounds for Sorting

Lower Bounds for Sorting Liear Sortig Topics Covered: Lower Bouds for Sortig Coutig Sort Radix Sort Bucket Sort Lower Bouds for Sortig Compariso vs. o-compariso sortig Decisio tree model Worst case lower boud Compariso Sortig

More information

Recursion. Recursion. Mathematical induction: example. Recursion. The sum of the first n odd numbers is n 2 : Informal proof: Principle:

Recursion. Recursion. Mathematical induction: example. Recursion. The sum of the first n odd numbers is n 2 : Informal proof: Principle: Recursio Recursio Jordi Cortadella Departmet of Computer Sciece Priciple: Reduce a complex problem ito a simpler istace of the same problem Recursio Itroductio to Programmig Dept. CS, UPC 2 Mathematical

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

One advantage that SONAR has over any other music-sequencing product I ve worked

One advantage that SONAR has over any other music-sequencing product I ve worked *gajedra* D:/Thomso_Learig_Projects/Garrigus_163132/z_productio/z_3B2_3D_files/Garrigus_163132_ch17.3d, 14/11/08/16:26:39, 16:26, page: 647 17 CAL 101 Oe advatage that SONAR has over ay other music-sequecig

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

6.851: Advanced Data Structures Spring Lecture 17 April 24

6.851: Advanced Data Structures Spring Lecture 17 April 24 6.851: Advaced Data Structures Sprig 2012 Prof. Erik Demaie Lecture 17 April 24 Scribes: David Bejami(2012), Li Fei(2012), Yuzhi Zheg(2012),Morteza Zadimoghaddam(2010), Aaro Berstei(2007) 1 Overview Up

More information

Perhaps the method will give that for every e > U f() > p - 3/+e There is o o-trivial upper boud for f() ad ot eve f() < Z - e. seems to be kow, where

Perhaps the method will give that for every e > U f() > p - 3/+e There is o o-trivial upper boud for f() ad ot eve f() < Z - e. seems to be kow, where ON MAXIMUM CHORDAL SUBGRAPH * Paul Erdos Mathematical Istitute of the Hugaria Academy of Scieces ad Reu Laskar Clemso Uiversity 1. Let G() deote a udirected graph, with vertices ad V(G) deote the vertex

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

Małgorzata Sterna. Mateusz Cicheński, Mateusz Jarus, Michał Miszkiewicz, Jarosław Szymczak

Małgorzata Sterna. Mateusz Cicheński, Mateusz Jarus, Michał Miszkiewicz, Jarosław Szymczak Małgorzata Stera Mateusz Cicheński, Mateusz Jarus, Michał Miszkiewicz, Jarosław Szymczak Istitute of Computig Sciece Pozań Uiversity of Techology Pozań - Polad Scope of the Talk Problem defiitio MP Formulatio

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

On (K t e)-saturated Graphs

On (K t e)-saturated Graphs Noame mauscript No. (will be iserted by the editor O (K t e-saturated Graphs Jessica Fuller Roald J. Gould the date of receipt ad acceptace should be iserted later Abstract Give a graph H, we say a graph

More information

Stability yields a PTAS for k-median and k-means Clustering

Stability yields a PTAS for k-median and k-means Clustering Stability yields a PTAS for -Media ad -Meas Clusterig Prajal Awasthi Caregie Mello Uiversity pawasthi@cs.cmu.edu Avrim Blum Caregie Mello Uiversity avrim@cs.cmu.edu Or Sheffet Caregie Mello Uiversity osheffet@cs.cmu.edu

More information

Graphs. Minimum Spanning Trees. Slides by Rose Hoberman (CMU)

Graphs. Minimum Spanning Trees. Slides by Rose Hoberman (CMU) Graphs Miimum Spaig Trees Slides by Rose Hoberma (CMU) Problem: Layig Telephoe Wire Cetral office 2 Wirig: Naïve Approach Cetral office Expesive! 3 Wirig: Better Approach Cetral office Miimize the total

More information

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com) wwwtheopguptacom wwwimathematiciacom For all the Math-Gya Buy books by OP Gupta A Compilatio By : OP Gupta (WhatsApp @ +9-9650 350 0) For more stuffs o Maths, please visit : wwwtheopguptacom Time Allowed

More information

1. Sketch a concave polygon and explain why it is both concave and a polygon. A polygon is a simple closed curve that is the union of line segments.

1. Sketch a concave polygon and explain why it is both concave and a polygon. A polygon is a simple closed curve that is the union of line segments. SOLUTIONS MATH / Fial Review Questios, F5. Sketch a cocave polygo ad explai why it is both cocave ad a polygo. A polygo is a simple closed curve that is the uio of lie segmets. A polygo is cocave if it

More information

Project 2.5 Improved Euler Implementation

Project 2.5 Improved Euler Implementation Project 2.5 Improved Euler Implemetatio Figure 2.5.10 i the text lists TI-85 ad BASIC programs implemetig the improved Euler method to approximate the solutio of the iitial value problem dy dx = x+ y,

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

15 UNSUPERVISED LEARNING

15 UNSUPERVISED LEARNING 15 UNSUPERVISED LEARNING [My father] advised me to sit every few moths i my readig chair for a etire eveig, close my eyes ad try to thik of ew problems to solve. I took his advice very seriously ad have

More information

CIS 121. Introduction to Trees

CIS 121. Introduction to Trees CIS 121 Itroductio to Trees 1 Tree ADT Tree defiitio q A tree is a set of odes which may be empty q If ot empty, the there is a distiguished ode r, called root ad zero or more o-empty subtrees T 1, T 2,

More information

Octahedral Graph Scaling

Octahedral Graph Scaling Octahedral Graph Scalig Peter Russell Jauary 1, 2015 Abstract There is presetly o strog iterpretatio for the otio of -vertex graph scalig. This paper presets a ew defiitio for the term i the cotext of

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

Algorithms for Disk Covering Problems with the Most Points

Algorithms for Disk Covering Problems with the Most Points Algorithms for Disk Coverig Problems with the Most Poits Bi Xiao Departmet of Computig Hog Kog Polytechic Uiversity Hug Hom, Kowloo, Hog Kog csbxiao@comp.polyu.edu.hk Qigfeg Zhuge, Yi He, Zili Shao, Edwi

More information

Appendix D. Controller Implementation

Appendix D. Controller Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Appedix D Cotroller Implemetatio Cotroller Implemetatios Combiatioal logic (sigle-cycle); Fiite state machie (multi-cycle, pipelied);

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

Math 3201 Notes Chapter 4: Rational Expressions & Equations

Math 3201 Notes Chapter 4: Rational Expressions & Equations Learig Goals: See p. tet.. Equivalet Ratioal Epressios ( classes) Read Goal p. 6 tet. Math 0 Notes Chapter : Ratioal Epressios & Equatios. Defie ad give a eample of a ratioal epressio. p. 6. Defie o-permissible

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

Chapter 4 The Datapath

Chapter 4 The Datapath The Ageda Chapter 4 The Datapath Based o slides McGraw-Hill Additioal material 24/25/26 Lewis/Marti Additioal material 28 Roth Additioal material 2 Taylor Additioal material 2 Farmer Tae the elemets that

More information

Algorithms Chapter 3 Growth of Functions

Algorithms Chapter 3 Growth of Functions Algorithms Chapter 3 Growth of Fuctios Istructor: Chig Chi Li 林清池助理教授 chigchi.li@gmail.com Departmet of Computer Sciece ad Egieerig Natioal Taiwa Ocea Uiversity Outlie Asymptotic otatio Stadard otatios

More information

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract O Ifiite Groups that are Isomorphic to its Proper Ifiite Subgroup Jaymar Talledo Baliho Abstract Two groups are isomorphic if there exists a isomorphism betwee them Lagrage Theorem states that the order

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5 Morga Kaufma Publishers 26 February, 28 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Set-Associative Cache Architecture Performace Summary Whe CPU performace icreases:

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

Adaptive Resource Allocation for Electric Environmental Pollution through the Control Network

Adaptive Resource Allocation for Electric Environmental Pollution through the Control Network Available olie at www.sciecedirect.com Eergy Procedia 6 (202) 60 64 202 Iteratioal Coferece o Future Eergy, Eviromet, ad Materials Adaptive Resource Allocatio for Electric Evirometal Pollutio through the

More information

The Magma Database file formats

The Magma Database file formats The Magma Database file formats Adrew Gaylard, Bret Pikey, ad Mart-Mari Breedt Johaesburg, South Africa 15th May 2006 1 Summary Magma is a ope-source object database created by Chris Muller, of Kasas City,

More information

Visualization of Gauss-Bonnet Theorem

Visualization of Gauss-Bonnet Theorem Visualizatio of Gauss-Boet Theorem Yoichi Maeda maeda@keyaki.cc.u-tokai.ac.jp Departmet of Mathematics Tokai Uiversity Japa Abstract: The sum of exteral agles of a polygo is always costat, π. There are

More information

Optimal Mapped Mesh on the Circle

Optimal Mapped Mesh on the Circle Koferece ANSYS 009 Optimal Mapped Mesh o the Circle doc. Ig. Jaroslav Štigler, Ph.D. Bro Uiversity of Techology, aculty of Mechaical gieerig, ergy Istitut, Abstract: This paper brigs out some ideas ad

More information

Redundancy Allocation for Series Parallel Systems with Multiple Constraints and Sensitivity Analysis

Redundancy Allocation for Series Parallel Systems with Multiple Constraints and Sensitivity Analysis IOSR Joural of Egieerig Redudacy Allocatio for Series Parallel Systems with Multiple Costraits ad Sesitivity Aalysis S. V. Suresh Babu, D.Maheswar 2, G. Ragaath 3 Y.Viaya Kumar d G.Sakaraiah e (Mechaical

More information