Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Size: px
Start display at page:

Download "Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today"

Transcription

1 Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised learig: give labeled examples Uupervised learig: give data, i.e. examples, but o labels 1

2 Usupervised learig Usupervised learig applicatios lear clusters/groups without ay label customer segmetatio (i.e. groupig) image compressio bioiformatics: lear motifs fid importat features Give some example without labels, do somethig! Usupervised learig: clusterig Usupervised learig: modelig Raw data features f 1, f 2, f 3,, f Most frequetly, whe people thik of usupervised learig they thik clusterig extract features f 1, f 2, f 3,, f f 1, f 2, f 3,, f f 1, f 2, f 3,, f f 1, f 2, f 3,, f group ito classes/ clusters Clusters Aother category: learig probabilities/parameters for models without supervisio Lear a traslatio dictioary Lear a grammar for a laguage Lear the social graph No supervisio, we re oly give data ad wat to fid atural groupigs 2

3 11/25/13 Gee expressio data Clusterig Data from Garber et al. PNAS (98), Clusterig: the process of groupig a set of objects ito classes of similar objects Applicatios? Face Clusterig Face clusterig 3

4 Search result clusterig Google News Clusterig i search advertisig Clusterig applicatios bids Fid clusters of advertisers ad keywords Keyword suggestio Performace estimatio Fid clusters of users Targeted advertisig Exploratory aalysis Advertiser ~10M odes Bidded Keyword Who-messages-who IM/text/twitter graph ~100M odes Clusters of the Web Graph Distributed pagerak computatio 4

5 Data visualizatio A data set with clear cluster structure Wise et al, Visualizig the o-visual PNNL ThemeScapes, Cartia [Moutai height = cluster size] What are some of the issues for clusterig? What clusterig algorithms have you see/used? Issues for clusterig Represetatio for clusterig How do we represet a example features, etc. Similarity/distace betwee examples Flat clusterig or hierarchical Number of clusters Fixed a priori Data drive? Clusterig Algorithms Flat algorithms Usually start with a radom (partial) partitioig Refie it iteratively K meas clusterig Model based clusterig Spectral clusterig Hierarchical algorithms Bottom-up, agglomerative Top-dow, divisive 5

6 Hard vs. soft clusterig K-meas Hard clusterig: Each example belogs to exactly oe cluster Most well-kow ad popular clusterig algorithm: Soft clusterig: A example ca belog to more tha oe cluster (probabilistic) Makes more sese for applicatios like creatig browsable hierarchies You may wat to put a pair of seakers i two clusters: (i) sports apparel ad (ii) shoes Start with some iitial cluster ceters Assig/cluster each example to closest ceter Recalculate ceters as the mea of the poits i a cluster K-meas: a example K-meas: Iitialize ceters radomly 6

7 K-meas: assig poits to earest ceter K-meas: readjust ceters K-meas: assig poits to earest ceter K-meas: readjust ceters 7

8 K-meas: assig poits to earest ceter K-meas: readjust ceters K-meas: assig poits to earest ceter K-meas Assig/cluster each example to closest ceter Recalculate ceters as the mea of the poits i a cluster No chages: Doe How do we do this? 8

9 K-meas K-meas Assig/cluster each example to closest ceter iterate over each poit: - get distace to each cluster ceter - assig to closest ceter (hard cluster) Recalculate ceters as the mea of the poits i a cluster Assig/cluster each example to closest ceter iterate over each poit: - get distace to each cluster ceter - assig to closest ceter (hard cluster) Recalculate ceters as the mea of the poits i a cluster What distace measure should we use? Distace measures Clusterig documets (e.g. wie data) Euclidea: d(x, y) = (x i y i ) 2 Oe feature for each word. The value is the umber of times that word occurs. Documets are poits or vectors i this space good for spatial data 9

10 Whe Euclidea distace does t work Issues with Euclidia distace the Euclidea distace betwee q ad d 2 is large Which documet is closest to q usig Euclidia distace? Which do you thik should be closer? but, the distributio of terms i the query q ad the distributio of terms i the documet d 2 are very similar This is ot what we wat! cosie similarity cosie distace sim(x, y) = x y x y = x x y y = 2 x i x i y i 2 y i correlated with the agle betwee two vectors cosie similarity is a similarity betwee 0 ad 1, with thigs that are similar 1 ad ot 0 We wat a distace measure, cosie distace: d(x, y) =1 sim(x, y) - good for text data ad may other real world data sets - is computatioally friedly sice we oly eed to cosider features that have o-zero values both examples 10

11 K-meas Assig/cluster each example to closest ceter Recalculate ceters as the mea of the poits i a cluster K-meas Assig/cluster each example to closest ceter Recalculate ceters as the mea of the poits i a cluster Where are the cluster ceters? How do we calculate these? K-meas Assig/cluster each example to closest ceter Recalculate ceters as the mea of the poits i a cluster Mea of the poits i the cluster: where: µ(c) = 1 C x + y = x C x x i + y i x C = x i C K-meas loss fuctio K-meas tries to miimize what is called the k-meas loss fuctio: loss = d(x i,µ k ) 2 where µ k is cluster ceter for x i that is, the sum of the squared distaces from each poit to the associated cluster ceter 11

12 Miimizig k-meas loss Miimizig k-meas loss 1. Assig/cluster each example to closest ceter 2. Recalculate ceters as the mea of the poits i a cluster 1. Assig/cluster each example to closest ceter 2. Recalculate ceters as the mea of the poits i a cluster loss = d(x i,µ k ) 2 where µ k is cluster ceter for x i Does each step of k-meas move towards reducig this loss fuctio (or at least ot icreasig)? loss = d(x i,µ k ) 2 where µ k is cluster ceter for x i This is t quite a complete proof/argumet, but: 1. Ay other assigmet would ed up i a larger loss 2. The mea of a set of values miimizes the squared error Miimizig k-meas loss Miimizig k-meas loss 1. Assig/cluster each example to closest ceter 2. Recalculate ceters as the mea of the poits i a cluster 1. Assig/cluster each example to closest ceter 2. Recalculate ceters as the mea of the poits i a cluster loss = d(x i,µ k ) 2 where µ k is cluster ceter for x i Does this mea that k-meas will always fid the miimum loss/clusterig? loss = d(x i,µ k ) 2 where µ k is cluster ceter for x i NO! It will fid a miimum. Ufortuately, the k-meas loss fuctio is geerally ot covex ad for most problems has may, may miima We re oly guarateed to fid oe of them 12

13 K-meas variatios/parameters Start with some iitial cluster ceters Assig/cluster each example to closest ceter Recalculate ceters as the mea of the poits i a cluster K-meas variatios/parameters Iitial (seed) cluster ceters Covergece A fixed umber of iteratios partitios uchaged Cluster ceters do t chage What are some other variatios/ parameters we have t specified? K! K-meas: Iitialize ceters radomly Seed choice Results ca vary drastically based o radom seed selectio Some seeds ca result i poor covergece rate, or covergece to sub-optimal clusterigs What would happe here? Commo heuristics Radom ceters i the space Radomly pick examples Poits least similar to ay existig ceter (furthest ceters heuristic) Try out multiple startig poits Iitialize with the results of aother clusterig method Seed selectio ideas? 13

14 Furthest ceters heuristic K-meas: Iitialize furthest from ceters μ 1 = pick radom poit for i = 2 to K: μ i = poit that is furthest from ay previous ceters µ i = argmax x mi µ j :1< j < i d(x,µ j ) poit with the largest distace to ay previous ceter smallest distace from x to ay previous ceter Pick a radom poit for the first ceter K-meas: Iitialize furthest from ceters K-meas: Iitialize furthest from ceters What poit will be chose ext? Furthest poit from ceter What poit will be chose ext? 14

15 K-meas: Iitialize furthest from ceters K-meas: Iitialize furthest from ceters Furthest poit from ceter What poit will be chose ext? Furthest poit from ceter Ay issues/cocers with this approach? Furthest poits cocers Furthest poits cocers If k = 4, which poits will get chose? If we do a umber of trials, will we get differet ceters? 15

16 Furthest poits cocers K-meas++ μ 1 = pick radom poit for k = 2 to K: for i = 1 to N: s i = mi d(x i, μ 1 k-1 ) // smallest distace to ay ceter μ k = radomly pick poit proportioate to s Does t deal well with outliers How does this help? K-meas++ μ 1 = pick radom poit for k = 2 to K: for i = 1 to N: s i = mi d(x i, μ 1 k-1 ) // smallest distace to ay ceter μ k = radomly pick poit proportioate to s - Makes it possible to select other poits - if #poits >> #outliers, we will pick good poits - Makes it o-determiistic, which will help with radom rus - Nice theoretical guaratees! 16

Administrative. Machine learning code. Supervised learning (e.g. classification) Machine learning: Unsupervised learning" BANANAS APPLES

Administrative. Machine learning code. Supervised learning (e.g. classification) Machine learning: Unsupervised learning BANANAS APPLES Administrative Machine learning: Unsupervised learning" Assignment 5 out soon David Kauchak cs311 Spring 2013 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Machine

More information

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University CSCI 5090/7090- Machie Learig Sprig 018 Mehdi Allahyari Georgia Souther Uiversity Clusterig (slides borrowed from Tom Mitchell, Maria Floria Balca, Ali Borji, Ke Che) 1 Clusterig, Iformal Goals Goal: Automatically

More information

15 UNSUPERVISED LEARNING

15 UNSUPERVISED LEARNING 15 UNSUPERVISED LEARNING [My father] advised me to sit every few moths i my readig chair for a etire eveig, close my eyes ad try to thik of ew problems to solve. I took his advice very seriously ad have

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Cluster Analysis. Andrew Kusiak Intelligent Systems Laboratory

Cluster Analysis. Andrew Kusiak Intelligent Systems Laboratory Cluster Aalysis Adrew Kusiak Itelliget Systems Laboratory 2139 Seamas Ceter The Uiversity of Iowa Iowa City, Iowa 52242-1527 adrew-kusiak@uiowa.edu http://www.icae.uiowa.edu/~akusiak Two geeric modes of

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

http://www.xkcd.com/233/ Text Clustering David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Administrative 2 nd status reports Paper review

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

Which movie we can suggest to Anne?

Which movie we can suggest to Anne? ECOLE CENTRALE SUPELEC MASTER DSBI DECISION MODELING TUTORIAL COLLABORATIVE FILTERING AS A MODEL OF GROUP DECISION-MAKING You kow that the low-tech way to get recommedatios for products, movies, or etertaiig

More information

Dimensionality Reduction PCA

Dimensionality Reduction PCA Dimesioality Reductio PCA Machie Learig CSE446 David Wadde (slides provided by Carlos Guestri) Uiversity of Washigto Feb 22, 2017 Carlos Guestri 2005-2017 1 Dimesioality reductio Iput data may have thousads

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

Lecture 13: Validation

Lecture 13: Validation Lecture 3: Validatio Resampli methods Holdout Cross Validatio Radom Subsampli -Fold Cross-Validatio Leave-oe-out The Bootstrap Bias ad variace estimatio Three-way data partitioi Itroductio to Patter Recoitio

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

Designing a learning system

Designing a learning system CS 75 Itro to Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@pitt.edu 539 Seott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

CS 683: Advanced Design and Analysis of Algorithms

CS 683: Advanced Design and Analysis of Algorithms CS 683: Advaced Desig ad Aalysis of Algorithms Lecture 6, February 1, 2008 Lecturer: Joh Hopcroft Scribes: Shaomei Wu, Etha Feldma February 7, 2008 1 Threshold for k CNF Satisfiability I the previous lecture,

More information

ECE4050 Data Structures and Algorithms. Lecture 6: Searching

ECE4050 Data Structures and Algorithms. Lecture 6: Searching ECE4050 Data Structures ad Algorithms Lecture 6: Searchig 1 Search Give: Distict keys k 1, k 2,, k ad collectio L of records of the form (k 1, I 1 ), (k 2, I 2 ),, (k, I ) where I j is the iformatio associated

More information

GRADIENT DESCENT. Admin 10/24/13. Assignment 5. David Kauchak CS 451 Fall 2013

GRADIENT DESCENT. Admin 10/24/13. Assignment 5. David Kauchak CS 451 Fall 2013 Adi Assiget 5 GRADIENT DESCENT David Kauchak CS 451 Fall 2013 Math backgroud Liear odels A strog high-bias assuptio is liear separability: i 2 diesios, ca separate classes by a lie i higher diesios, eed

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5 Morga Kaufma Publishers 26 February, 28 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Set-Associative Cache Architecture Performace Summary Whe CPU performace icreases:

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Minimum Spanning Trees

Minimum Spanning Trees Presetatio for use with the textbook, lgorithm esig ad pplicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 0 Miimum Spaig Trees 0 Goodrich ad Tamassia Miimum Spaig Trees pplicatio: oectig a Network Suppose

More information

Minimum Spanning Trees. Application: Connecting a Network

Minimum Spanning Trees. Application: Connecting a Network Miimum Spaig Tree // : Presetatio for use with the textbook, lgorithm esig ad pplicatios, by M. T. oodrich ad R. Tamassia, Wiley, Miimum Spaig Trees oodrich ad Tamassia Miimum Spaig Trees pplicatio: oectig

More information

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article Available olie www.jocpr.com Joural of Chemical ad Pharmaceutical Research, 2013, 5(12):745-749 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 K-meas algorithm i the optimal iitial cetroids based

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

arxiv: v2 [cs.ds] 24 Mar 2018

arxiv: v2 [cs.ds] 24 Mar 2018 Similar Elemets ad Metric Labelig o Complete Graphs arxiv:1803.08037v [cs.ds] 4 Mar 018 Pedro F. Felzeszwalb Brow Uiversity Providece, RI, USA pff@brow.edu March 8, 018 We cosider a problem that ivolves

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis Overview Chapter 6 Writig a Program Bjare Stroustrup Some thoughts o software developmet The idea of a calculator Usig a grammar Expressio evaluatio Program orgaizatio www.stroustrup.com/programmig 3 Buildig

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 18 Strategies for Query Processig Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio DBMS techiques to process a query Scaer idetifies

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

Graphs. Minimum Spanning Trees. Slides by Rose Hoberman (CMU)

Graphs. Minimum Spanning Trees. Slides by Rose Hoberman (CMU) Graphs Miimum Spaig Trees Slides by Rose Hoberma (CMU) Problem: Layig Telephoe Wire Cetral office 2 Wirig: Naïve Approach Cetral office Expesive! 3 Wirig: Better Approach Cetral office Miimize the total

More information

Minimum Spanning Trees

Minimum Spanning Trees Miimum Spaig Trees Miimum Spaig Trees Spaig subgraph Subgraph of a graph G cotaiig all the vertices of G Spaig tree Spaig subgraph that is itself a (free) tree Miimum spaig tree (MST) Spaig tree of a weighted

More information

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON Roberto Lopez ad Eugeio Oñate Iteratioal Ceter for Numerical Methods i Egieerig (CIMNE) Edificio C1, Gra Capitá s/, 08034 Barceloa, Spai ABSTRACT I this work

More information

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem Exact Miimum Lower Boud Algorithm for Travelig Salesma Problem Mohamed Eleiche GeoTiba Systems mohamed.eleiche@gmail.com Abstract The miimum-travel-cost algorithm is a dyamic programmig algorithm to compute

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

Administrative. Machine learning code. Machine learning: Unsupervised learning

Administrative. Machine learning code. Machine learning: Unsupervised learning Machine learning: Unsupervised learning http://www.youtube.com/watch?v=or_-y-eilqo David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Machine

More information

IMAGE-BASED MODELING AND RENDERING 1. HISTOGRAM AND GMM. I-Chen Lin, Dept. of CS, National Chiao Tung University

IMAGE-BASED MODELING AND RENDERING 1. HISTOGRAM AND GMM. I-Chen Lin, Dept. of CS, National Chiao Tung University IMAGE-BASED MODELING AND RENDERING. HISTOGRAM AND GMM I-Che Li, Dept. of CS, Natioal Chiao Tug Uiversity Outlie What s the itesity/color histogram? What s the Gaussia Mixture Model (GMM? Their applicatios

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

Analysis of Documents Clustering Using Sampled Agglomerative Technique

Analysis of Documents Clustering Using Sampled Agglomerative Technique Aalysis of Documets Clusterig Usig Sampled Agglomerative Techique Omar H. Karam, Ahmed M. Hamad, ad Sheri M. Moussa Abstract I this paper a clusterig algorithm for documets is proposed that adapts a samplig-based

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Image Analysis. Segmentation by Fitting a Model

Image Analysis. Segmentation by Fitting a Model Image Aalysis Segmetatio by Fittig a Model Christophoros Nikou cikou@cs.uoi.gr Images take from: D. Forsyth ad J. Poce. Computer Visio: A Moder Approach, Pretice Hall, 2003. Computer Visio course by Svetlaa

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

Performance Comparisons of PSO based Clustering

Performance Comparisons of PSO based Clustering Performace Comparisos of PSO based Clusterig Suresh Chadra Satapathy, 2 Guaidhi Pradha, 3 Sabyasachi Pattai, 4 JVR Murthy, 5 PVGD Prasad Reddy Ail Neeruoda Istitute of Techology ad Scieces, Sagivalas,Vishaapatam

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

NTH, GEOMETRIC, AND TELESCOPING TEST

NTH, GEOMETRIC, AND TELESCOPING TEST NTH, GEOMETRIC, AND TELESCOPING TEST Sectio 9. Calculus BC AP/Dual, Revised 08 viet.dag@humbleisd.et /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test SUMMARY OF TESTS FOR SERIES Lookig at the first few

More information

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types Data Aalysis Cocepts ad Techiques Chapter 2 1 Chapter 2: Gettig to Kow Your Data Data Objects ad Attribute Types Basic Statistical Descriptios of Data Data Visualizatio Measurig Data Similarity ad Dissimilarity

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Massachusetts Institute of Technology Lecture : Theory of Parallel Systems Feb. 25, Lecture 6: List contraction, tree contraction, and

Massachusetts Institute of Technology Lecture : Theory of Parallel Systems Feb. 25, Lecture 6: List contraction, tree contraction, and Massachusetts Istitute of Techology Lecture.89: Theory of Parallel Systems Feb. 5, 997 Professor Charles E. Leiserso Scribe: Guag-Ie Cheg Lecture : List cotractio, tree cotractio, ad symmetry breakig Work-eciet

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 19 Query Optimizatio Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Query optimizatio Coducted by a query optimizer i a DBMS Goal:

More information

ANN WHICH COVERS MLP AND RBF

ANN WHICH COVERS MLP AND RBF ANN WHICH COVERS MLP AND RBF Josef Boští, Jaromír Kual Faculty of Nuclear Scieces ad Physical Egieerig, CTU i Prague Departmet of Software Egieerig Abstract Two basic types of artificial eural etwors Multi

More information

The golden search method: Question 1

The golden search method: Question 1 1. Golde Sectio Search for the Mode of a Fuctio The golde search method: Questio 1 Suppose the last pair of poits at which we have a fuctio evaluatio is x(), y(). The accordig to the method, If f(x())

More information

Civil Engineering Computation

Civil Engineering Computation Civil Egieerig Computatio Fidig Roots of No-Liear Equatios March 14, 1945 World War II The R.A.F. first operatioal use of the Grad Slam bomb, Bielefeld, Germay. Cotets 2 Root basics Excel solver Newto-Raphso

More information

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits:

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits: Itro Admiistrivia. Sigup sheet. prerequisites: 6.046, 6.041/2, ability to do proofs homework weekly (first ext week) collaboratio idepedet homeworks gradig requiremet term project books. questio: scribig?

More information

The Adjacency Matrix and The nth Eigenvalue

The Adjacency Matrix and The nth Eigenvalue Spectral Graph Theory Lecture 3 The Adjacecy Matrix ad The th Eigevalue Daiel A. Spielma September 5, 2012 3.1 About these otes These otes are ot ecessarily a accurate represetatio of what happeed i class.

More information

Classification of binary vectors by using DSC distance to minimize stochastic complexity

Classification of binary vectors by using DSC distance to minimize stochastic complexity Patter Recogitio Letters 24 (2003) 65 73 www.elsevier.com/locate/patrec Classificatio of biary vectors by usig DSC distace to miimize stochastic complexity Pasi Fr ati *, Matao Xu, Ismo K arkk aie Departmet

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

Message Integrity and Hash Functions. TELE3119: Week4

Message Integrity and Hash Functions. TELE3119: Week4 Message Itegrity ad Hash Fuctios TELE3119: Week4 Outlie Message Itegrity Hash fuctios ad applicatios Hash Structure Popular Hash fuctios 4-2 Message Itegrity Goal: itegrity (ot secrecy) Allows commuicatig

More information

Parabolic Path to a Best Best-Fit Line:

Parabolic Path to a Best Best-Fit Line: Studet Activity : Fidig the Least Squares Regressio Lie By Explorig the Relatioship betwee Slope ad Residuals Objective: How does oe determie a best best-fit lie for a set of data? Eyeballig it may be

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 201 Heaps 201 Goodrich ad Tamassia xkcd. http://xkcd.com/83/. Tree. Used with permissio uder

More information

COMP9318: Data Warehousing and Data Mining

COMP9318: Data Warehousing and Data Mining COMP9318: Data Warehousig ad Data Miig L8: Clusterig COMP9318: Data Warehousig ad Data Miig 1 What is Cluster Aalysis? COMP9318: Data Warehousig ad Data Miig 2 What is Cluster Aalysis? Cluster: a collectio

More information

Algorithms for Disk Covering Problems with the Most Points

Algorithms for Disk Covering Problems with the Most Points Algorithms for Disk Coverig Problems with the Most Poits Bi Xiao Departmet of Computig Hog Kog Polytechic Uiversity Hug Hom, Kowloo, Hog Kog csbxiao@comp.polyu.edu.hk Qigfeg Zhuge, Yi He, Zili Shao, Edwi

More information

Transitioning to BGP

Transitioning to BGP Trasitioig to BGP ISP Workshops These materials are licesed uder the Creative Commos Attributio-NoCommercial 4.0 Iteratioal licese (http://creativecommos.org/liceses/by-c/4.0/) Last updated 24 th April

More information

Consider the following population data for the state of California. Year Population

Consider the following population data for the state of California. Year Population Assigmets for Bradie Fall 2016 for Chapter 5 Assigmet sheet for Sectios 5.1, 5.3, 5.5, 5.6, 5.7, 5.8 Read Pages 341-349 Exercises for Sectio 5.1 Lagrage Iterpolatio #1, #4, #7, #13, #14 For #1 use MATLAB

More information

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n))

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n)) ca see that time required to search/sort grows with size of We How do space/time eeds of program grow with iput size? iput. time: cout umber of operatios as fuctio of iput Executio size operatio Assigmet:

More information

GRADIENT DESCENT. An aside: text classification. Text: raw data. Admin 9/27/16. Assignment 3 graded. Assignment 5. David Kauchak CS 158 Fall 2016

GRADIENT DESCENT. An aside: text classification. Text: raw data. Admin 9/27/16. Assignment 3 graded. Assignment 5. David Kauchak CS 158 Fall 2016 Adi Assiget 3 graded Assiget 5! Course feedback GRADIENT DESCENT David Kauchak CS 158 Fall 2016 A aside: text classificatio Text: ra data Ra data labels Ra data labels Features? Chardoay Chardoay Piot

More information

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees.

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees. Comp 135 Machie Learig Computer Sciece Tufts Uiversity Fall 2017 Roi Khardo Some of these slides were adapted from previous slides by Carla Brodley Our secod algorithm Let s look at a simple dataset for

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

Introduction to Sigma Notation

Introduction to Sigma Notation Itroductio to Siga Notatio Steph de Silva //207 What is siga otatio? is the capital Greek letter for the soud s I this case, it s just shorthad for su Siga otatio is what we use whe we have a series of

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

Analysis of Different Similarity Measure Functions and their Impacts on Shared Nearest Neighbor Clustering Approach

Analysis of Different Similarity Measure Functions and their Impacts on Shared Nearest Neighbor Clustering Approach Aalysis of Differet Similarity Measure Fuctios ad their Impacts o Shared Nearest Neighbor Clusterig Approach Ail Kumar Patidar School of IT, Rajiv Gadhi Techical Uiversity, Bhopal (M.P.), Idia Jitedra

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

COMP 558 lecture 6 Sept. 27, 2010

COMP 558 lecture 6 Sept. 27, 2010 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpeCourseWare http://ocw.mit.edu 6.854J / 18.415J Advaced Algorithms Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advaced Algorithms

More information

Math 216A Notes, Week 4

Math 216A Notes, Week 4 Math 216A Notes, Week 4 Scribe: Jaso Erbele Disclaimer: These otes are ot early as polished ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk. 1. Probabilistic

More information

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1 CS200: Hash Tables Prichard Ch. 13.2 CS200 - Hash Tables 1 Table Implemetatios: average cases Search Add Remove Sorted array-based Usorted array-based Balaced Search Trees O(log ) O() O() O() O(1) O()

More information