Counting Regions in the Plane and More 1

Size: px
Start display at page:

Download "Counting Regions in the Plane and More 1"

Transcription

1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o a circle so that o three diagoals itersect i the same poit. How may regios iside the circle are formed this way by all the segmets coectig the poits? Problem Preparatio. Attackig Problem 1 for ay is hard. What is a good way to start o problems like this? What is your cojecture for the fial aswer?. Warm Up Problem 3 Warm-up. How may s are i the picture? Problem 4 Thikig Deeper How may differet ways ca be used to cout here? Which do you prefer? Which way is most geeralizable to other problems? 3. Special Vs. Geeric Positios Problem 5 Uderstadig the Coditios. Why did Problem 1 say that o three diagoals should itersect i a poit? If we allow for three or more segmets to itersect i a poit, will this chage the aswer? Will it icrease it? Decrease it? Defiitio 1 Geeral Positio. Two lies i the plae are said to be i geeral positio if they itersect i a poit. Three or more lie lies i the plae are said to be i geeral positio if ay two of them itersect, but o three or more lies itersect i the same poit. Problem 6 Special Cofiguratios. I the plae, whe shall we say that two lies are i a special positio? How about three lies i the plae i a special positio? Draw all differet cofiguratios of three lies i the plae i a special positio. Now draw all differet cofiguratios of three lies i the plae i a geeral positio. How may special ad how may geeric cofiguratios did you get? 1 Some problems ad pictures are take from A Decade of the Berkeley Math Circle The America Experiece, volume I, edited by Zvezdelia Stakova ad Tom Rike, published by the America Mathematical Society i the MSRI Mathematical Circles Library. 1

2 Problem 7 Petagos ad Hexagos. I a regular petago coect ay two vertices. Are the diagoals i special or i geeric positio? How about a regular hexago? Cout i each case the umber of regios ito which the polygo is cut up by its diagoals. 4. Solvig Predecessor Problems Problem 1 restricted us to lookig iside a circle? This might be why the problem is so hard! Let s look at the whole plae by temporarily elimiatig the circle. Problem 8 Lies i Geeric Positio. Draw lies i the plae so that o three itersect i the same poit ad o two are parallel. Ito how may regios do these lies divide the plae? Problem 9 Games i a Touramet. teams participated i a basketball touramet. Each team played every other team exactly oce. How may games were played i total? Problem 10 Coutig Diagoals. How may diagoals does the -go i our overarchig problem have? What is the relatio betwee the last three problems? 5. Pokig Aroud ad Extedig the Problems Problem 11 Debates i a Champioship. I a debate champioship with teams, each debate is doe betwee 3 teams. How may debates ca possible happe durig this touramet? How about if each debate ivolves 4 teams? Problem 1 Diagoal Itersectios. How may itersectios of diagoals does the -go i our overarchig problem have? What is the coectio betwee the last two problems? 6. The Fial Attack o the Overarchig Problem Problem 13 Addig a New Segmet. I the set-up of Problem 1, erase all segmets, but leave the poits ad the circle. Start all over the segmets oe at a time, i ay order. Recall that the segmets ca be either sides or diagoals of the -go. Suppose a ewly added segmet itersects k already draw diagoals. How may more regios iside the circle has this ew segmet added? Is there a elegat way to phrase the aswer without metioig the umber k? Problem 14 Puttig All Together. Use ay of our results so far to calculate the total umber of regios iside the circle. Is there a elegat way to phrase the aswer? Did you check it for correctess for 1,,..., 6? What does your aswer predict for 7? Check it by brute force, if you do t believe it.

3 7. Optioal Homework for the Die-Hards Problem 15 Summig Up. Prove the followig formulas for ay 1: 1 a 1 3 b c Problem 16 Off to Space. Geeralize the overarchig problem to 3 dimesios. The vertices of a polyhedro are arraged o a sphere so that whe amog the plaes coectig three of the poits, o three itersect i the same lie. How may regios iside the sphere are formed this way by all these plaes? Problem 17 Polygos. Cout the umber of regios iside a covex -go made by coectig ay two of its vertices if: a o three diagoals itersect at the same poit; b the -go is regular. Problem 18 Biomial Theorem. The umber of ways to choose k objects out of objects is deoted by the biomial coefficiet k read choose k. Prove that this biomial coefficiet is calculated by the formula:! for ay, k 0, k k! k! where 0! is defied to be 1 i order to make the formula work whe or k is 0. Whe < k or oe of the or k is < 0, the the biomial coefficiet k 0. Problem 19 Ultimate Summatios. Prove the followig formulas: a for all b 1 for odd Problem 0 Coicidece? The aswer 31 i the case of 6 poits i the overarchig Problem 1 broke the patter of powers k ad made us rethik what is goig o. The aswer to the warm-up Problem was also 31. Is this a coicidece, or is there a way to trasform oe problem ito the other i this case? For eve, the aalogous sum is a lot harder to calculate, but it turs out that parts of this particular sum is coected to our overarchig problem. 3

4 8. Short Aswers ad Ideas to Selected Problems Problem 1. Wait util the ed! No hurry. Keep thikig. Problem. Start with small s. For 1,, 3, 4, 5 we get 1,, 4, 8, 16 regios i the circle. A patter becomes apparet: powers of, i.e., 0, 1,, 3, ad 4. Thus, for 6 the umber of regios must be Yet, is it? Problem 3. Start with the biggest triagle ad keep addig segmets, coutig alog the way ad tryig to use the symmetry of the picture as much as possible: Problem 4. There are at least five possible ways of coutig the triagles. a Brute-force o system: Cout radomly ad hope that you did t miss ad you did t overcout aythig. b Icremetally: Recostruct the picture from scratch, addig icremetally simple parts such as segmets or small triagles ad coutig how may more figures of the wated type are added at each step. Start with the largest triagle, add up a segmet at a time ad cout how may ew triagles have bee created with that segmet as their side or part of their side. Start with a basic triagle, i.e., a triagle which is ot subdivided by aother segmet ito smaller triagles; add up a triagle at a time ad cout how may ew triagles have bee created that cotai your added triagle as part of them. d By umber of parts: Cout first the triagles that are made of oe piece, the those made of two pieces, the of three pieces, ad so o. e Symmetry: Use the cetral vertical lie as a symmetry divider ; cout triagles o oe side of it ad multiply by, the cout the triagles that go across the symmetry lie, ad the add. Did you get 31? 4

5 Problem 5. The umber of regios will decrease if we allow for three or more diagoals to itersect i a poit. For example, whe 6 see above, the umber of regios is 30, as the small cetral triagle has degeerated to the poit of itersectio of three diagoals. Problem 6. Two lies i the plae are i a special positio if they are parallel o poits of itersectio. There are 3 special cofiguratios of three lies i the plae: the three lies itersect i the same poit; or two lies are parallel ad the third lie i a trasversal itersects the other two lies; or all three lies are parallel. There is oly 1 geeric cofiguratio of three lies i the plae: a triagle whose sides have bee exteded to our three lies. Problem 7. The diagoals i a regular petago are i a geeric positio, but the diagoals i a regular hexago are i a special positio: three of them itersect i a poit. We have doe, i some sese, the coutig of the regios iside a petago ad iside a regular hexago already: subtract the rouded regios made by the circle i the overarchig problem discussio above. For a regular petago, you will get , ad for a regular hexago: Problem 8. Start with 0 lies dividig the plae ito 1 regio. If you already have draw k lies i geeral positio, addig a k 1st lie icreases the umber of regios by k 1 why?. Hece, overall for lies we get regios i the plae. Problem 9. Let s first solve the problem for five teams. PST 1. Arrage the teams i oe lie ad cout the umber of games, makig sure that you are ot overcoutig ay games. For 5 teams, this calculatio boils dow to Whe the problem is geeralized to teams, the result is 1 3 1, which requires a differet argumet to be calculated i a cocise form. PST. Cout the umber of games played by each team by double-coutig them oce for oe of the teams ad aother time for the other team, ad the divide by. For 5 teams, this yields agai 5 teams 4 games each Fortuately, this PST works for ay teams too: teams 1 games each As a result, we proved the followig:

6 Theorem 1. The sum of the first atural umbers is give by the formula Both sides of this formula couted differetly the same quatity: the umber of games to be played amog teams i a touramet. PST 3. To prove a formula LHS RHS, fid a quatity that equals both sides ad calculate it i two differet ways. I aother attempt to prove the above formula, draw a table to record the scores of all games. Alog the diagoal write X s, sice o team plays agaist itself. We are ot iterested i the outcomes of the games; so what is writte otherwise i the table does ot matter. What matters are the umber of o-diagoal cells: for every cell uder the diagoal there is a cell above the diagoal that refers to the same game, e.g., a cell for the game betwee teams i ad j ad a cell for the game betwee teams j ad i. Thus, the umber of games is the half of the o-diagoal cells: 1, where are the cells of the whole table, the subtracted are the diagoal cells, ad the divisio by offsets the double-coutig of the games. PST 4. To calculate a positive iteger quatity, fid a table whose cells approximate this quatity. Start overcoutig the quatity by the umber of cells i the table, ad the subtract ad divide as ecessary to elimiate uwated cells or cells that have bee couted multiple times. I a fial approach to solve the problem, we realize that the umber of games correspods to the umber of pairs of teams that we ca select from the give teams. There is a quatity i combiatorics which couts eve more geeral objects: these are the biomial coefficiets k from Problem 18. Applyig the Biomial Theorem for k yields agai!!! Problem 10. A diagoal rus betwee ay two vertices of polygo, except we have to subtract the sides of the polygo sice they cout as diagoals. From above, there are pairs of vertices, so the aswer is 1 6 3

7 Back to Problem 8, we ca ow give a ice formula for the umber of regios i the plae made by lies i geeric positio: Problem 11. ad Problem 1. Ay two itersectig diagoals form a covex quadrilateral, ad coversely, ay four poits o the circle form a covex quadrilateral whose diagoals itersect i a poit. Thus, the umber of diagoal itersectios equals the umber of 4-tuples of poits, i.e., 4. Problem 13. The ew segmet will icrease the umber of regios by k 1 why?. This works eve if the segmet is a side of the polygo, i.e., it has o diagoal itersectios it will still add ew regios. To record this elegatly, we will say that every diagoal itersectio is resposible for addig 1 ew regio, ad every segmet is resposible for addig 1 ew regio too. Problem 14. From Problem 13, the umber of regios equals 1 more tha the umber of diagoal itersectios plus the umber of segmets diagoals ad sides of the polygo, all couted. Problems 1 ad 10 give the aswers to the required two quatities: 4 ad. The 1 more comes from the fact that for 1 poit o the circle we start with 1 regio the whole circle, ad the every additioal segmet adds the amout of regios we discussed i Problem 13. Overall, the umber of regios iside the circle is: 1 for all For 1,, 3, 4, 5 this sum does equal to the correspodig power of, 1, but for 6 ad 7 we get , ad If you are familiar with fuctios ad, specifically, polyomials, the aswer ca be expressed as a degree 4 polyomial i : f a 3 b c 1, where we leave the iterested reader to calculate the coefficiets a, b, ad c. Problem You are o your ow. Oly, do t attempt these aloe at home: ask someoe for help ad view them as a log-term project. : 7

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

Visualization of Gauss-Bonnet Theorem

Visualization of Gauss-Bonnet Theorem Visualizatio of Gauss-Boet Theorem Yoichi Maeda maeda@keyaki.cc.u-tokai.ac.jp Departmet of Mathematics Tokai Uiversity Japa Abstract: The sum of exteral agles of a polygo is always costat, π. There are

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

Mathematics and Art Activity - Basic Plane Tessellation with GeoGebra

Mathematics and Art Activity - Basic Plane Tessellation with GeoGebra 1 Mathematics ad Art Activity - Basic Plae Tessellatio with GeoGebra Worksheet: Explorig Regular Edge-Edge Tessellatios of the Cartesia Plae ad the Mathematics behid it. Goal: To eable Maths educators

More information

Counting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9

Counting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9 Coutig II Sometimes we will wat to choose objects from a set of objects, ad we wo t be iterested i orderig them For example, if you are leavig for vacatio ad you wat to pac your suitcase with three of

More information

The Platonic solids The five regular polyhedra

The Platonic solids The five regular polyhedra The Platoic solids The five regular polyhedra Ole Witt-Hase jauary 7 www.olewitthase.dk Cotets. Polygos.... Topologically cosideratios.... Euler s polyhedro theorem.... Regular ets o a sphere.... The dihedral

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a 4. [10] Usig a combiatorial argumet, prove that for 1: = 0 = Let A ad B be disjoit sets of cardiality each ad C = A B. How may subsets of C are there of cardiality. We are selectig elemets for such a subset

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

1. Sketch a concave polygon and explain why it is both concave and a polygon. A polygon is a simple closed curve that is the union of line segments.

1. Sketch a concave polygon and explain why it is both concave and a polygon. A polygon is a simple closed curve that is the union of line segments. SOLUTIONS MATH / Fial Review Questios, F5. Sketch a cocave polygo ad explai why it is both cocave ad a polygo. A polygo is a simple closed curve that is the uio of lie segmets. A polygo is cocave if it

More information

On (K t e)-saturated Graphs

On (K t e)-saturated Graphs Noame mauscript No. (will be iserted by the editor O (K t e-saturated Graphs Jessica Fuller Roald J. Gould the date of receipt ad acceptace should be iserted later Abstract Give a graph H, we say a graph

More information

Math 10C Long Range Plans

Math 10C Long Range Plans Math 10C Log Rage Plas Uits: Evaluatio: Homework, projects ad assigmets 10% Uit Tests. 70% Fial Examiatio.. 20% Ay Uit Test may be rewritte for a higher mark. If the retest mark is higher, that mark will

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

A Resource for Free-standing Mathematics Qualifications

A Resource for Free-standing Mathematics Qualifications Ope.ls The first sheet is show elow. It is set up to show graphs with equatios of the form = m + c At preset the values of m ad c are oth zero. You ca chage these values usig the scroll ars. Leave the

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Assignment 5; Due Friday, February 10

Assignment 5; Due Friday, February 10 Assigmet 5; Due Friday, February 10 17.9b The set X is just two circles joied at a poit, ad the set X is a grid i the plae, without the iteriors of the small squares. The picture below shows that the iteriors

More information

Planar graphs. Definition. A graph is planar if it can be drawn on the plane in such a way that no two edges cross each other.

Planar graphs. Definition. A graph is planar if it can be drawn on the plane in such a way that no two edges cross each other. Plaar graphs Defiitio. A graph is plaar if it ca be draw o the plae i such a way that o two edges cross each other. Example: Face 1 Face 2 Exercise: Which of the followig graphs are plaar? K, P, C, K,m,

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

South Slave Divisional Education Council. Math 10C

South Slave Divisional Education Council. Math 10C South Slave Divisioal Educatio Coucil Math 10C Curriculum Package February 2012 12 Strad: Measuremet Geeral Outcome: Develop spatial sese ad proportioal reasoig It is expected that studets will: 1. Solve

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com) wwwtheopguptacom wwwimathematiciacom For all the Math-Gya Buy books by OP Gupta A Compilatio By : OP Gupta (WhatsApp @ +9-9650 350 0) For more stuffs o Maths, please visit : wwwtheopguptacom Time Allowed

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

New Results on Energy of Graphs of Small Order

New Results on Energy of Graphs of Small Order Global Joural of Pure ad Applied Mathematics. ISSN 0973-1768 Volume 13, Number 7 (2017), pp. 2837-2848 Research Idia Publicatios http://www.ripublicatio.com New Results o Eergy of Graphs of Small Order

More information

Some cycle and path related strongly -graphs

Some cycle and path related strongly -graphs Some cycle ad path related strogly -graphs I. I. Jadav, G. V. Ghodasara Research Scholar, R. K. Uiversity, Rajkot, Idia. H. & H. B. Kotak Istitute of Sciece,Rajkot, Idia. jadaviram@gmail.com gaurag ejoy@yahoo.co.i

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures Uiversity of Waterloo Departmet of Electrical ad Computer Egieerig ECE 250 Algorithms ad Data Structures Midterm Examiatio ( pages) Istructor: Douglas Harder February 7, 2004 7:30-9:00 Name (last, first)

More information

Intermediate Statistics

Intermediate Statistics Gait Learig Guides Itermediate Statistics Data processig & display, Cetral tedecy Author: Raghu M.D. STATISTICS DATA PROCESSING AND DISPLAY Statistics is the study of data or umerical facts of differet

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES

INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES INTERNATIONAL JOURNAL OF GEOMETRY Vol. 2 (2013), No. 1, 5-22 INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES NENAD U. STOJANOVIĆ Abstract. If above each side of a regular polygo

More information

Math 3201 Notes Chapter 4: Rational Expressions & Equations

Math 3201 Notes Chapter 4: Rational Expressions & Equations Learig Goals: See p. tet.. Equivalet Ratioal Epressios ( classes) Read Goal p. 6 tet. Math 0 Notes Chapter : Ratioal Epressios & Equatios. Defie ad give a eample of a ratioal epressio. p. 6. Defie o-permissible

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

The Adjacency Matrix and The nth Eigenvalue

The Adjacency Matrix and The nth Eigenvalue Spectral Graph Theory Lecture 3 The Adjacecy Matrix ad The th Eigevalue Daiel A. Spielma September 5, 2012 3.1 About these otes These otes are ot ecessarily a accurate represetatio of what happeed i class.

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

Some non-existence results on Leech trees

Some non-existence results on Leech trees Some o-existece results o Leech trees László A.Székely Hua Wag Yog Zhag Uiversity of South Carolia This paper is dedicated to the memory of Domiique de Cae, who itroduced LAS to Leech trees.. Abstract

More information

Recursion. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Review: Method Frames

Recursion. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Review: Method Frames Uit 4, Part 3 Recursio Computer Sciece S-111 Harvard Uiversity David G. Sulliva, Ph.D. Review: Method Frames Whe you make a method call, the Java rutime sets aside a block of memory kow as the frame of

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Hyperbolic polygonal spirals

Hyperbolic polygonal spirals Rose- Hulma Udergraduate Mathematics Joural Hyperbolic polygoal spirals Jillia Russo a Volume 11, No., Fall, 010 Sposored by Rose-Hulma Istitute of Techology Departmet of Mathematics Terre Haute, IN 47803

More information

Protected points in ordered trees

Protected points in ordered trees Applied Mathematics Letters 008 56 50 www.elsevier.com/locate/aml Protected poits i ordered trees Gi-Sag Cheo a, Louis W. Shapiro b, a Departmet of Mathematics, Sugkyukwa Uiversity, Suwo 440-746, Republic

More information

Partitions of a Convex Polygon

Partitions of a Convex Polygon HAPTER 6 Partitios of a ovex Polygo 6 INTRODUTION I our survey we have come across some results o eumeratio of ocrossig cofiguratios o the set of vertices of a covex polygo, such as triagulatios ad trees

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

Perhaps the method will give that for every e > U f() > p - 3/+e There is o o-trivial upper boud for f() ad ot eve f() < Z - e. seems to be kow, where

Perhaps the method will give that for every e > U f() > p - 3/+e There is o o-trivial upper boud for f() ad ot eve f() < Z - e. seems to be kow, where ON MAXIMUM CHORDAL SUBGRAPH * Paul Erdos Mathematical Istitute of the Hugaria Academy of Scieces ad Reu Laskar Clemso Uiversity 1. Let G() deote a udirected graph, with vertices ad V(G) deote the vertex

More information

1. SWITCHING FUNDAMENTALS

1. SWITCHING FUNDAMENTALS . SWITCING FUNDMENTLS Switchig is the provisio of a o-demad coectio betwee two ed poits. Two distict switchig techiques are employed i commuicatio etwors-- circuit switchig ad pacet switchig. Circuit switchig

More information

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract O Ifiite Groups that are Isomorphic to its Proper Ifiite Subgroup Jaymar Talledo Baliho Abstract Two groups are isomorphic if there exists a isomorphism betwee them Lagrage Theorem states that the order

More information

The Magma Database file formats

The Magma Database file formats The Magma Database file formats Adrew Gaylard, Bret Pikey, ad Mart-Mari Breedt Johaesburg, South Africa 15th May 2006 1 Summary Magma is a ope-source object database created by Chris Muller, of Kasas City,

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

A Comparative Study of Positive and Negative Factorials

A Comparative Study of Positive and Negative Factorials A Comparative Study of Positive ad Negative Factorials A. M. Ibrahim, A. E. Ezugwu, M. Isa Departmet of Mathematics, Ahmadu Bello Uiversity, Zaria Abstract. This paper preset a comparative study of the

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Data Structures and Algorithms. Analysis of Algorithms

Data Structures and Algorithms. Analysis of Algorithms Data Structures ad Algorithms Aalysis of Algorithms Outlie Ruig time Pseudo-code Big-oh otatio Big-theta otatio Big-omega otatio Asymptotic algorithm aalysis Aalysis of Algorithms Iput Algorithm Output

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

Apparent Depth. B' l'

Apparent Depth. B' l' REFRACTION by PLANE SURFACES Apparet Depth Suppose we have a object B i a medium of idex which is viewed from a medium of idex '. If '

More information

LU Decomposition Method

LU Decomposition Method SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS LU Decompositio Method Jamie Traha, Autar Kaw, Kevi Marti Uiversity of South Florida Uited States of America kaw@eg.usf.edu http://umericalmethods.eg.usf.edu Itroductio

More information

Accuracy Improvement in Camera Calibration

Accuracy Improvement in Camera Calibration Accuracy Improvemet i Camera Calibratio FaJie L Qi Zag ad Reihard Klette CITR, Computer Sciece Departmet The Uiversity of Aucklad Tamaki Campus, Aucklad, New Zealad fli006, qza001@ec.aucklad.ac.z r.klette@aucklad.ac.z

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

UNIT 1 RECURRENCE RELATIONS

UNIT 1 RECURRENCE RELATIONS UNIT RECURRENCE RELATIONS Structure Page No.. Itroductio 7. Objectives 7. Three Recurret Problems 8.3 More Recurreces.4 Defiitios 4.5 Divide ad Coquer 7.6 Summary 9.7 Solutios/Aswers. INTRODUCTION I the

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

Bulgarian Math Olympiads with a Challenge Twist

Bulgarian Math Olympiads with a Challenge Twist Bulgarian Math Olympiads with a Challenge Twist by Zvezdelina Stankova Berkeley Math Circle Beginners Group September 0, 03 Tasks throughout this session. Harder versions of problems from last time appear

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Introduction to Sigma Notation

Introduction to Sigma Notation Itroductio to Siga Notatio Steph de Silva //207 What is siga otatio? is the capital Greek letter for the soud s I this case, it s just shorthad for su Siga otatio is what we use whe we have a series of

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

COMP 558 lecture 6 Sept. 27, 2010

COMP 558 lecture 6 Sept. 27, 2010 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

CONVERGENCE OF THE RATIO OF PERIMETER OF A REGULAR POLYGON TO THE LENGTH OF ITS LONGEST DIAGONAL AS THE NUMBER OF SIDES OF POLYGON INCREASES

CONVERGENCE OF THE RATIO OF PERIMETER OF A REGULAR POLYGON TO THE LENGTH OF ITS LONGEST DIAGONAL AS THE NUMBER OF SIDES OF POLYGON INCREASES CONVERGENCE OF THE RATIO OF PERIMETER OF A REGULAR POLYGON TO THE LENGTH OF ITS LONGEST DIAGONAL AS THE NUMBER OF SIDES OF POLYGON INCREASES Pawa Kumar Bishwakarma Idepedet Researcher Correspodig Author:

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

Lecture 2: Spectra of Graphs

Lecture 2: Spectra of Graphs Spectral Graph Theory ad Applicatios WS 20/202 Lecture 2: Spectra of Graphs Lecturer: Thomas Sauerwald & He Su Our goal is to use the properties of the adjacecy/laplacia matrix of graphs to first uderstad

More information

Our starting point is the following sketch of part of one of these polygons having n vertexes and side-length s-

Our starting point is the following sketch of part of one of these polygons having n vertexes and side-length s- PROPERTIES OF REGULAR POLYGONS The simplest D close figures which ca be costructe by the cocateatio of equal legth straight lies are the regular polygos icluig the equilateral triagle, the petago, a the

More information

NTH, GEOMETRIC, AND TELESCOPING TEST

NTH, GEOMETRIC, AND TELESCOPING TEST NTH, GEOMETRIC, AND TELESCOPING TEST Sectio 9. Calculus BC AP/Dual, Revised 08 viet.dag@humbleisd.et /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test SUMMARY OF TESTS FOR SERIES Lookig at the first few

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

Civil Engineering Computation

Civil Engineering Computation Civil Egieerig Computatio Fidig Roots of No-Liear Equatios March 14, 1945 World War II The R.A.F. first operatioal use of the Grad Slam bomb, Bielefeld, Germay. Cotets 2 Root basics Excel solver Newto-Raphso

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

Combination Labelings Of Graphs

Combination Labelings Of Graphs Applied Mathematics E-Notes, (0), - c ISSN 0-0 Available free at mirror sites of http://wwwmaththuedutw/ame/ Combiatio Labeligs Of Graphs Pak Chig Li y Received February 0 Abstract Suppose G = (V; E) is

More information

Ch 9.3 Geometric Sequences and Series Lessons

Ch 9.3 Geometric Sequences and Series Lessons Ch 9.3 Geometric Sequeces ad Series Lessos SKILLS OBJECTIVES Recogize a geometric sequece. Fid the geeral, th term of a geometric sequece. Evaluate a fiite geometric series. Evaluate a ifiite geometric

More information