Joint Shape Segmentation

Size: px
Start display at page:

Download "Joint Shape Segmentation"

Transcription

1 Joint Shape Segmentation

2 Motivations Structural similarity of segmentations Extraneous geometric clues Single shape segmentation [Chen et al. 09] Joint shape segmentation [Huang et al. 11]

3 Motivations Structural similarity of segmentations Low saliency Single shape segmentation [Chen et al. 09] Joint shape segmentation [Huang et al. 11]

4 Motivations (Rigid) invariance of segments Articulated structures Single shape segmentation [Chen et al. 09] Joint shape segmentation [Huang et al. 11]

5 Pair-wise Joint Segmentation Objective: Outline: Segmentation parameterization Segmentation score Consistency score 0-1 linear programming formulation

6 Segmentation Parameterization Shape Diameter [Shapira et al. 08] Randomized Cuts Random Walks [Lai et al. 08] Normalized Cuts [Golovinskiy and Funkhouser 08] Initial Segments

7 Segmentation Parameterization Segmentations: subsets of initial segments obtained from randomized segmentations Randomized Cuts Initial Segments

8 Segmentation Parameterization Segmentations: subsets of initial segments obtained from randomized segmentations Segmentation constraints: each point is in exactly one segment Randomized Cuts The set of initial segments that cover point p Initial Segments

9 Segmentation Parameterization Segmentations: subsets of initial segments obtained from randomized segmentations Segmentation constraints: each point is in exactly one segment Segmentation score Randomized Cuts Prevent tiny segments Repetitions Initial Segments

10 Segmentation Parameterization Randomized Cuts Patches [Golovinskiy and Funkhouser 08] Super-pixels [Ren and Malik 03] Initial Segments

11 Consistency Term Defined in terms of mappings Oriented Partial Many-to-one correspondences Partial similarity

12 Consistency Term Defined in terms of mappings Oriented Partial Mapping score [Anguelov et al.05] Correspondence weight [Osoda et al. 02] Adjacent correspondence pair weight

13 Consistency Term Defined in terms of mappings Oriented Partial Mapping score [Anguelov et al.05] Consistency score

14 Constrained Optimization

15 0-1 Linear Programming Formulation Introduce binary indicators Segments 0 1 1

16 0-1 Linear Programming Formulation Introduce binary indicators Segments Correspondences 1 0

17 0-1 Linear Programming Formulation Introduce binary indicators Segments Correspondences Correspondence pairs 1 0

18 0-1 Linear Programming Formulation Introduce binary indicators Segments Correspondences Correspondence pairs Objective function:

19 0-1 Linear Programming Formulation Introduce binary indicators Segments Correspondences Correspondence pairs Segmentation constraints: Matrix representation:

20 0-1 Linear Programming Formulation Introduce binary indicators Segments Correspondences Correspondence pairs Mapping constraints:

21 0-1 Linear Programming Formulation Introduce binary indicators Segments Correspondences Correspondence pairs Compatibility constraints:

22 0-1 Linear Programming Formulation Linear programming relaxation

23 Similar Shapes As a by-product, pair-wise joint segmentation determines pairs of similar shapes Similar Less similar

24 Multi-way joint segmentation Input shapes Different objects Different categories

25 Multi-way joint segmentation Perform all pair-wise joint segmentation to determine pairs of similar shapes

26 Multi-way joint segmentation Objective function

27 Multi-way Joint Segmentation Formulation

28 Multi-way Joint Segmentation Revised Formulation Two independent constraint sets

29 Alternating Optimization Shape-wise optimizations: Pair-wise optimizations:

30 Princeton Segmentation Benchmark [Chen et al. 09] 380 shapes in 19 categories Manual segmentations for each shape (4300 in total)

31 Princeton Segmentation Benchmark [Chen et al. 09] Joint : Joint shape segmentation per each category JointAll : Joint shape segmentation over the entire database Rand index metric [Rand 1971] - the smaller, the better Significantly better than single shape segmentations Competitive against supervised segmentation JointAll is slightly better than Joint

32 Rand Index Scores on PSB [Chen et.al 09] When shape variation of the input is big Top: Joint Bottom: JointAll

33 Rand Index Scores on PSB [Chen et.al 09] When shape variation of the input is small Top: Joint Bottom: JointAll

34 Versus Supervised Method [Kalogerakis et al.10] Supervised segmentation Joint shape segmentation

35 Joint versus JointAll

36 Rand Index Scores on PSB [Chen et.al 09] Failure case

37 Other Unsupervised Methods

38 Embedded spaces [Sidi et al 11] Shape segments mapped to some feature space Segments of the same class form a (graph) cluster

39 Feature space After a spectral transform [Sidi et al 11] Two handles pulled closer

40 Algorithm [Sidi et al 11]

41 Sub-space clustering Features inspired from supervised learning [ et al 10] [Hu et al 12]

42 Comparison

43 Other Unsupervised Methods

44 Learning from labeled/unlabeled data [Wang et al 12]

45 Supervised learning [Wang et al 12]

46 Un-supervised learning [Wang et al 12]

47 Semi-supervised learning [Wang et al 12]

48 Constrained clustering [Wang et al 12] Must Link Cannot Link

49 Algorithm [Wang et al 12] Initial Co-segmentation Constrained Clustering Final result Active Learning

50 Effective on large data sets [Wang et al 12] 300 shapes

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University Shape Co-analysis Daniel Cohen-Or Tel-Aviv University 1 High-level Shape analysis [Fu et al. 08] Upright orientation [Mehra et al. 08] Shape abstraction [Kalograkis et al. 10] Learning segmentation [Mitra

More information

Data driven 3D shape analysis and synthesis

Data driven 3D shape analysis and synthesis Data driven 3D shape analysis and synthesis Head Neck Torso Leg Tail Ear Evangelos Kalogerakis UMass Amherst 3D shapes for computer aided design Architecture Interior design 3D shapes for information visualization

More information

Data-Driven Geometry Processing Map Synchronization I. Qixing Huang Nov. 28 th 2018

Data-Driven Geometry Processing Map Synchronization I. Qixing Huang Nov. 28 th 2018 Data-Driven Geometry Processing Map Synchronization I Qixing Huang Nov. 28 th 2018 Shape matching Affine Applications Shape reconstruction Transfer information Aggregate information Protein docking Pair-wise

More information

Data-Driven Shape Analysis --- Joint Shape Matching I. Qi-xing Huang Stanford University

Data-Driven Shape Analysis --- Joint Shape Matching I. Qi-xing Huang Stanford University Data-Driven Shape Analysis --- Joint Shape Matching I Qi-xing Huang Stanford University 1 Shape matching Affine Applications Shape reconstruction Transfer information Aggregate information Protein docking

More information

Semi-supervised Data Representation via Affinity Graph Learning

Semi-supervised Data Representation via Affinity Graph Learning 1 Semi-supervised Data Representation via Affinity Graph Learning Weiya Ren 1 1 College of Information System and Management, National University of Defense Technology, Changsha, Hunan, P.R China, 410073

More information

Modeling and Analyzing 3D Shapes using Clues from 2D Images. Minglun Gong Dept. of CS, Memorial Univ.

Modeling and Analyzing 3D Shapes using Clues from 2D Images. Minglun Gong Dept. of CS, Memorial Univ. Modeling and Analyzing 3D Shapes using Clues from 2D Images Minglun Gong Dept. of CS, Memorial Univ. Modeling Flowers from Images Reconstructing 3D flower petal shapes from a single image is difficult

More information

Efficient 3D shape co-segmentation from single-view point clouds using appearance and isometry priors

Efficient 3D shape co-segmentation from single-view point clouds using appearance and isometry priors Efficient 3D shape co-segmentation from single-view point clouds using appearance and isometry priors Master thesis Nikita Araslanov Compute Science Institute VI University of Bonn March 29, 2016 Nikita

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Clustering Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 / 19 Outline

More information

Unsupervised Co-Segmentation of 3D Shapes via Affinity Aggregation Spectral Clustering

Unsupervised Co-Segmentation of 3D Shapes via Affinity Aggregation Spectral Clustering Unsupervised Co-Segmentation of 3D Shapes via Affinity Aggregation Spectral Clustering Zizhao Wu a, Yunhai Wang b, Ruyang Shou a, Baoquan Chen b, Xinguo Liu a Corresponding author: cloudseawang@gmail.com

More information

Facial Expression Analysis

Facial Expression Analysis Facial Expression Analysis Jeff Cohn Fernando De la Torre Human Sensing Laboratory Tutorial Looking @ People June 2012 Facial Expression Analysis F. De la Torre/J. Cohn Looking @ People (CVPR-12) 1 Outline

More information

Improving Image Segmentation Quality Via Graph Theory

Improving Image Segmentation Quality Via Graph Theory International Symposium on Computers & Informatics (ISCI 05) Improving Image Segmentation Quality Via Graph Theory Xiangxiang Li, Songhao Zhu School of Automatic, Nanjing University of Post and Telecommunications,

More information

Learning Probabilistic Models from Collections of 3D Meshes

Learning Probabilistic Models from Collections of 3D Meshes Learning Probabilistic Models from Collections of 3D Meshes Sid Chaudhuri, Steve Diverdi, Matthew Fisher, Pat Hanrahan, Vladimir Kim, Wilmot Li, Niloy Mitra, Daniel Ritchie, Manolis Savva, and Thomas Funkhouser

More information

A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning

A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning Ben Recht Center for the Mathematics of Information Caltech April 11, 2007 Joint work with Ali Rahimi (Intel Research) Overview

More information

Discovering Similarities in 3D Data

Discovering Similarities in 3D Data Discovering Similarities in 3D Data Vladimir Kim, Tianqiang Liu, Sid Chaudhuri, Steve Diverdi, Wilmot Li, Niloy Mitra, Yaron Lipman, Thomas Funkhouser Motivation 3D data is widely available Medicine Mechanical

More information

Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material

Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material Ameesh Makadia Google New York, NY 10011 makadia@google.com Mehmet Ersin Yumer Carnegie Mellon University Pittsburgh, PA 15213

More information

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Correlated Correspondences [ASP*04] A Complete Registration System [HAW*08] In this session Advanced Global Matching Some practical

More information

Variational Mesh Decomposition

Variational Mesh Decomposition Variational Mesh Decomposition JUYONG ZHANG and JIANMIN ZHENG Nanyang Technological University CHUNLIN WU National University of Singapore and JIANFEI CAI Nanyang Technological University 21 The problem

More information

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing The correspondence problem Deformation-Drive Shape Correspondence Hao (Richard) Zhang 1, Alla Sheffer 2, Daniel Cohen-Or 3, Qingnan Zhou 2, Oliver van Kaick 1, and Andrea Tagliasacchi 1 July 3, 2008 1

More information

Scanner Parameter Estimation Using Bilevel Scans of Star Charts

Scanner Parameter Estimation Using Bilevel Scans of Star Charts ICDAR, Seattle WA September Scanner Parameter Estimation Using Bilevel Scans of Star Charts Elisa H. Barney Smith Electrical and Computer Engineering Department Boise State University, Boise, Idaho 8375

More information

Exploring Collections of 3D Models using Fuzzy Correspondences

Exploring Collections of 3D Models using Fuzzy Correspondences Exploring Collections of 3D Models using Fuzzy Correspondences Vladimir G. Kim Wilmot Li Niloy J. Mitra Princeton University Adobe UCL Stephen DiVerdi Adobe Thomas Funkhouser Princeton University Motivating

More information

Spectral Graph Multisection Through Orthogonality. Huanyang Zheng and Jie Wu CIS Department, Temple University

Spectral Graph Multisection Through Orthogonality. Huanyang Zheng and Jie Wu CIS Department, Temple University Spectral Graph Multisection Through Orthogonality Huanyang Zheng and Jie Wu CIS Department, Temple University Outline Motivation Preliminary Algorithm Evaluation Future work Motivation Traditional graph

More information

Using the Kolmogorov-Smirnov Test for Image Segmentation

Using the Kolmogorov-Smirnov Test for Image Segmentation Using the Kolmogorov-Smirnov Test for Image Segmentation Yong Jae Lee CS395T Computational Statistics Final Project Report May 6th, 2009 I. INTRODUCTION Image segmentation is a fundamental task in computer

More information

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar CS395T Visual Recogni5on and Search Gautam S. Muralidhar Today s Theme Unsupervised discovery of images Main mo5va5on behind unsupervised discovery is that supervision is expensive Common tasks include

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012

Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012 Supervised Hashing with Kernels Wei Liu (Columbia Columbia), Jun Wang (IBM IBM), Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), and Shih Fu Chang (Columbia Columbia) June, 2012 Outline Motivations Problem

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Multi-Label Moves for Multi-Label Energies

Multi-Label Moves for Multi-Label Energies Multi-Label Moves for Multi-Label Energies Olga Veksler University of Western Ontario some work is joint with Olivier Juan, Xiaoqing Liu, Yu Liu Outline Review multi-label optimization with graph cuts

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker Image Segmentation Srikumar Ramalingam School of Computing University of Utah Slides borrowed from Ross Whitaker Segmentation Semantic Segmentation Indoor layout estimation What is Segmentation? Partitioning

More information

Clustering Large Credit Client Data Sets for Classification with SVM

Clustering Large Credit Client Data Sets for Classification with SVM Clustering Large Credit Client Data Sets for Classification with SVM Ralf Stecking University of Oldenburg Department of Economics Klaus B. Schebesch University Vasile Goldiş Arad Faculty of Economics

More information

Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval

Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval Xiaodong Liu 12, Jianfeng Gao 1, Xiaodong He 1 Li Deng 1, Kevin Duh 2, Ye-Yi Wang 1 1

More information

Nonparametric Clustering of High Dimensional Data

Nonparametric Clustering of High Dimensional Data Nonparametric Clustering of High Dimensional Data Peter Meer Electrical and Computer Engineering Department Rutgers University Joint work with Bogdan Georgescu and Ilan Shimshoni Robust Parameter Estimation:

More information

Visualization and text mining of patent and non-patent data

Visualization and text mining of patent and non-patent data of patent and non-patent data Anton Heijs Information Solutions Delft, The Netherlands http://www.treparel.com/ ICIC conference, Nice, France, 2008 Outline Introduction Applications on patent and non-patent

More information

Structure-oriented Networks of Shape Collections

Structure-oriented Networks of Shape Collections Structure-oriented Networks of Shape Collections Noa Fish 1 Oliver van Kaick 2 Amit Bermano 3 Daniel Cohen-Or 1 1 Tel Aviv University 2 Carleton University 3 Princeton University 1 pplementary material

More information

Unsupervised discovery of category and object models. The task

Unsupervised discovery of category and object models. The task Unsupervised discovery of category and object models Martial Hebert The task 1 Common ingredients 1. Generate candidate segments 2. Estimate similarity between candidate segments 3. Prune resulting (implicit)

More information

Cluster Validation. Ke Chen. Reading: [25.1.2, KPM], [Wang et al., 2009], [Yang & Chen, 2011] COMP24111 Machine Learning

Cluster Validation. Ke Chen. Reading: [25.1.2, KPM], [Wang et al., 2009], [Yang & Chen, 2011] COMP24111 Machine Learning Cluster Validation Ke Chen Reading: [5.., KPM], [Wang et al., 9], [Yang & Chen, ] COMP4 Machine Learning Outline Motivation and Background Internal index Motivation and general ideas Variance-based internal

More information

Shape Matching for 3D Retrieval and Recognition. Agenda. 3D collections. Ivan Sipiran and Benjamin Bustos

Shape Matching for 3D Retrieval and Recognition. Agenda. 3D collections. Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition Ivan Sipiran and Benjamin Bustos PRISMA Research Group Department of Computer Science University of Chile Agenda Introduction Applications Datasets Shape

More information

Machine Vision for Railroad Track Inspection

Machine Vision for Railroad Track Inspection Slide 1 Machine Vision for Railroad Track Inspection Esther Resendiz* Esther Resendiz Luis Fernando Molina, John M. Hart* J. Riley Edwards, Christopher P. L. Barkan, Narendra Ahuja* Railroad Engineering

More information

Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures

Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures Anastasia Dubrovina Technion Israel Institute of Technology Introduction Correspondence detection

More information

Co-Hierarchical Analysis of Shape Structures

Co-Hierarchical Analysis of Shape Structures Co-Hierarchical Analysis of Shape Structures Oliver van Kaick Kai Xu Hao Zhang Yanzhen Wang Shuyang Sun Ariel Shamir Simon Fraser Univ. HPCL, Nat. Univ. of Defense Tech. Interdisciplinary Center Daniel

More information

arxiv: v1 [cs.cv] 19 Sep 2018

arxiv: v1 [cs.cv] 19 Sep 2018 Deep Part Induction from Articulated Object Pairs LI YI, Stanford University HAIBIN HUANG, Megvii (Face++) Research DIFAN LIU, University of Massachusetts Amherst EVANGELOS KALOGERAKIS, University of Massachusetts

More information

Kinematic skeleton extraction based on motion boundaries for 3D dynamic meshes

Kinematic skeleton extraction based on motion boundaries for 3D dynamic meshes Kinematic skeleton extraction based on motion boundaries for 3D dynamic meshes Halim Benhabiles, Guillaume Lavoué, Jean-Philippe Vandeborre, Mohamed Daoudi To cite this version: Halim Benhabiles, Guillaume

More information

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah Image Segmentation Ross Whitaker SCI Institute, School of Computing University of Utah What is Segmentation? Partitioning images/volumes into meaningful pieces Partitioning problem Labels Isolating a specific

More information

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers Preparation Meeting Recent Advances in the Analysis of 3D Shapes Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers What You Will Learn in the Seminar Get an overview on state of the art

More information

Geometry Representations with Unsupervised Feature Learning

Geometry Representations with Unsupervised Feature Learning Geometry Representations with Unsupervised Feature Learning Yeo-Jin Yoon 1, Alexander Lelidis 2, A. Cengiz Öztireli 3, Jung-Min Hwang 1, Markus Gross 3 and Soo-Mi Choi 1 1 Department of Computer Science

More information

Automatic Gait Recognition. - Karthik Sridharan

Automatic Gait Recognition. - Karthik Sridharan Automatic Gait Recognition - Karthik Sridharan Gait as a Biometric Gait A person s manner of walking Webster Definition It is a non-contact, unobtrusive, perceivable at a distance and hard to disguise

More information

Hierarchical Traffic Grooming in WDM Networks

Hierarchical Traffic Grooming in WDM Networks Hierarchical Traffic Grooming in WDM Networks George N. Rouskas Department of Computer Science North Carolina State University Joint work with: Rudra Dutta (NCSU), Bensong Chen (Google Labs), Huang Shu

More information

SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING

SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING Alireza Chakeri, Hamidreza Farhidzadeh, Lawrence O. Hall Department of Computer Science and Engineering College of Engineering University of South Florida

More information

Alternative Clusterings: Current Progress and Open Challenges

Alternative Clusterings: Current Progress and Open Challenges Alternative Clusterings: Current Progress and Open Challenges James Bailey Department of Computer Science and Software Engineering The University of Melbourne, Australia 1 Introduction Cluster analysis:

More information

ECS 289H: Visual Recognition Fall Yong Jae Lee Department of Computer Science

ECS 289H: Visual Recognition Fall Yong Jae Lee Department of Computer Science ECS 289H: Visual Recognition Fall 2014 Yong Jae Lee Department of Computer Science Plan for today Questions? Research overview Standard supervised visual learning building Category models Annotators tree

More information

Unsupervised and Semi-Supervised Learning vial 1 -Norm Graph

Unsupervised and Semi-Supervised Learning vial 1 -Norm Graph Unsupervised and Semi-Supervised Learning vial -Norm Graph Feiping Nie, Hua Wang, Heng Huang, Chris Ding Department of Computer Science and Engineering University of Texas, Arlington, TX 769, USA {feipingnie,huawangcs}@gmail.com,

More information

Detecting Salient Contours Using Orientation Energy Distribution. Part I: Thresholding Based on. Response Distribution

Detecting Salient Contours Using Orientation Energy Distribution. Part I: Thresholding Based on. Response Distribution Detecting Salient Contours Using Orientation Energy Distribution The Problem: How Does the Visual System Detect Salient Contours? CPSC 636 Slide12, Spring 212 Yoonsuck Choe Co-work with S. Sarma and H.-C.

More information

CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018

CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018 CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018 3D Vision Understanding geometric relations between images and the 3D world between images Obtaining 3D information

More information

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Atul Kanaujia, CBIM, Rutgers Cristian Sminchisescu, TTI-C Dimitris Metaxas,CBIM, Rutgers 3D Human Pose Inference Difficulties Towards

More information

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016 Polygonal Meshes Thomas Funkhouser Princeton University COS 526, Fall 2016 Digital Geometry Processing Processing of 3D surfaces Creation, acquisition Storage, transmission Editing, animation, simulation

More information

A Content Based Image Retrieval System Based on Color Features

A Content Based Image Retrieval System Based on Color Features A Content Based Image Retrieval System Based on Features Irena Valova, University of Rousse Angel Kanchev, Department of Computer Systems and Technologies, Rousse, Bulgaria, Irena@ecs.ru.acad.bg Boris

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Clustering will not be satisfactory if:

Clustering will not be satisfactory if: Clustering will not be satisfactory if: -- in the input space the clusters are not linearly separable; -- the distance measure is not adequate; -- the assumptions limit the shape or the number of the clusters.

More information

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 Spectral Clustering Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 What are we going to talk about? Introduction Clustering and

More information

Topology-Invariant Similarity and Diffusion Geometry

Topology-Invariant Similarity and Diffusion Geometry 1 Topology-Invariant Similarity and Diffusion Geometry Lecture 7 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Intrinsic

More information

SHED: Shape Edit Distance for Fine-grained Shape Similarity

SHED: Shape Edit Distance for Fine-grained Shape Similarity SHED: Shape Edit Distance for Fine-grained Shape Similarity Yanir Kleiman 1 Oliver van Kaick 1,2 Olga Sorkine-Hornung 3 Daniel Cohen-Or 1 1 Tel Aviv University 2 Carleton University 3 ETH Zurich Abstract

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 The University of Sydney MTH 009 GRPH THORY Tutorial 10 Solutions 004 1. In a tournament, the score of a vertex is its out-degree, and the score sequence is a list of all the scores in non-decreasing order.

More information

Finding Surface Correspondences With Shape Analysis

Finding Surface Correspondences With Shape Analysis Finding Surface Correspondences With Shape Analysis Sid Chaudhuri, Steve Diverdi, Maciej Halber, Vladimir Kim, Yaron Lipman, Tianqiang Liu, Wilmot Li, Niloy Mitra, Elena Sizikova, Thomas Funkhouser Motivation

More information

Non-Experts Shape Modeling for Dummies

Non-Experts Shape Modeling for Dummies Non-Experts Shape Modeling for Dummies (Modeling with Interchangeable Parts) Alla Sheffer (joint work with Vladislav Kraevoy & Dan Julius) Motivation - Easy creation of 3D Content Currently 3D modeling

More information

Joint Labelling and Segmentation for 3D Scanned Human Body

Joint Labelling and Segmentation for 3D Scanned Human Body Joint Labelling and Segmentation for 3D Scanned Human Body Hanqing Wang, Changyang Li, Zikai Gao, Wei Liang School of Computer Science & Technology, Beijing Institute of Technology Figure 1: Two examples

More information

Shape Segmentation by Approximate Convexity Analysis

Shape Segmentation by Approximate Convexity Analysis Shape Segmentation by Approximate Convexity Analysis Oliver van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi, and Daniel Cohen-Or Tel Aviv University We present a shape segmentation method for complete

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

Image Features: Detection, Description, and Matching and their Applications

Image Features: Detection, Description, and Matching and their Applications Image Features: Detection, Description, and Matching and their Applications Image Representation: Global Versus Local Features Features/ keypoints/ interset points are interesting locations in the image.

More information

Autoencoders, denoising autoencoders, and learning deep networks

Autoencoders, denoising autoencoders, and learning deep networks 4 th CiFAR Summer School on Learning and Vision in Biology and Engineering Toronto, August 5-9 2008 Autoencoders, denoising autoencoders, and learning deep networks Part II joint work with Hugo Larochelle,

More information

Automatized & Interactive. Muscle tissues characterization using. Na MRI

Automatized & Interactive. Muscle tissues characterization using. Na MRI Automatized & Interactive Human Skeletal Muscle Segmentation Muscle tissues characterization using 23 Na MRI Noura Azzabou 30 April 2013 What is muscle segmentation? Axial slice of the thigh of a healthy

More information

Three-Dimensional Motion Tracking using Clustering

Three-Dimensional Motion Tracking using Clustering Three-Dimensional Motion Tracking using Clustering Andrew Zastovnik and Ryan Shiroma Dec 11, 2015 Abstract Tracking the position of an object in three dimensional space is a fascinating problem with many

More information

5/15/16. Computational Methods for Data Analysis. Massimo Poesio UNSUPERVISED LEARNING. Clustering. Unsupervised learning introduction

5/15/16. Computational Methods for Data Analysis. Massimo Poesio UNSUPERVISED LEARNING. Clustering. Unsupervised learning introduction Computational Methods for Data Analysis Massimo Poesio UNSUPERVISED LEARNING Clustering Unsupervised learning introduction 1 Supervised learning Training set: Unsupervised learning Training set: 2 Clustering

More information

ECS 234: Data Analysis: Clustering ECS 234

ECS 234: Data Analysis: Clustering ECS 234 : Data Analysis: Clustering What is Clustering? Given n objects, assign them to groups (clusters) based on their similarity Unsupervised Machine Learning Class Discovery Difficult, and maybe ill-posed

More information

FOREGROUND SEGMENTATION BASED ON MULTI-RESOLUTION AND MATTING

FOREGROUND SEGMENTATION BASED ON MULTI-RESOLUTION AND MATTING FOREGROUND SEGMENTATION BASED ON MULTI-RESOLUTION AND MATTING Xintong Yu 1,2, Xiaohan Liu 1,2, Yisong Chen 1 1 Graphics Laboratory, EECS Department, Peking University 2 Beijing University of Posts and

More information

Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval

Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval Ryutarou Ohbuchi, Takahiko Furuya 4-3-11 Takeda, Kofu-shi, Yamanashi-ken, 400-8511, Japan ohbuchi@yamanashi.ac.jp, snc49925@gmail.com

More information

Robust Segmentation of Cluttered Scenes Using RGB-Z Images

Robust Segmentation of Cluttered Scenes Using RGB-Z Images Robust Segmentation of Cluttered Scenes Using RGB-Z Images Navneet Kapur Stanford University Stanford, CA - 94305 nkapur@stanford.edu Subodh Iyengar Stanford University Stanford, CA - 94305 subodh@stanford.edu

More information

Graph based machine learning with applications to media analytics

Graph based machine learning with applications to media analytics Graph based machine learning with applications to media analytics Lei Ding, PhD 9-1-2011 with collaborators at Outline Graph based machine learning Basic structures Algorithms Examples Applications in

More information

Co-Segmentation of 3D Shapes via Subspace Clustering

Co-Segmentation of 3D Shapes via Subspace Clustering DOI: 10.1111/j.1467-8659.2012.03175.x Eurographics Symposium on Geometry Processing 2012 Eitan Grinspun and Niloy Mitra (Guest Editors) Volume 31 (2012), Number 5 Co-Segmentation of 3D Shapes via Subspace

More information

Selection of Scale-Invariant Parts for Object Class Recognition

Selection of Scale-Invariant Parts for Object Class Recognition Selection of Scale-Invariant Parts for Object Class Recognition Gy. Dorkó and C. Schmid INRIA Rhône-Alpes, GRAVIR-CNRS 655, av. de l Europe, 3833 Montbonnot, France fdorko,schmidg@inrialpes.fr Abstract

More information

Supplementary Materials for Salient Object Detection: A

Supplementary Materials for Salient Object Detection: A Supplementary Materials for Salient Object Detection: A Discriminative Regional Feature Integration Approach Huaizu Jiang, Zejian Yuan, Ming-Ming Cheng, Yihong Gong Nanning Zheng, and Jingdong Wang Abstract

More information

Spatio-temporal Feature Classifier

Spatio-temporal Feature Classifier Spatio-temporal Feature Classifier Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 2015, 7, 1-7 1 Open Access Yun Wang 1,* and Suxing Liu 2 1 School

More information

SUPERVISED, GEOMETRY-AWARE SEGMENTATION OF 3D MESH MODELS

SUPERVISED, GEOMETRY-AWARE SEGMENTATION OF 3D MESH MODELS SUPERVISED, GEOMETRY-AWARE SEGMENTATION OF 3D MESH MODELS Keisuke Bamba University of Yamanashi Kofu, Yamanashi, Japan g09mk029at_yamanashi.ac.jp Ryutarou Ohbuchi University of Yamanashi Kofu, Yamanashi,

More information

DescriptorEnsemble: An Unsupervised Approach to Image Matching and Alignment with Multiple Descriptors

DescriptorEnsemble: An Unsupervised Approach to Image Matching and Alignment with Multiple Descriptors DescriptorEnsemble: An Unsupervised Approach to Image Matching and Alignment with Multiple Descriptors 林彥宇副研究員 Yen-Yu Lin, Associate Research Fellow 中央研究院資訊科技創新研究中心 Research Center for IT Innovation, Academia

More information

Heterogeneous Graph-Based Intent Learning with Queries, Web Pages and Wikipedia Concepts

Heterogeneous Graph-Based Intent Learning with Queries, Web Pages and Wikipedia Concepts Heterogeneous Graph-Based Intent Learning with Queries, Web Pages and Wikipedia Concepts Xiang Ren, Yujing Wang, Xiao Yu, Jun Yan, Zheng Chen, Jiawei Han University of Illinois, at Urbana Champaign MicrosoD

More information

Figure-Ground Segmentation Techniques

Figure-Ground Segmentation Techniques Figure-Ground Segmentation Techniques Snehal P. Ambulkar 1, Nikhil S. Sakhare 2 1 2 nd Year Student, Master of Technology, Computer Science & Engineering, Rajiv Gandhi College of Engineering & Research,

More information

Clustering Algorithms for general similarity measures

Clustering Algorithms for general similarity measures Types of general clustering methods Clustering Algorithms for general similarity measures general similarity measure: specified by object X object similarity matrix 1 constructive algorithms agglomerative

More information

princeton univ. F 15 cos 521: Advanced Algorithm Design Lecture 2: Karger s Min Cut Algorithm

princeton univ. F 15 cos 521: Advanced Algorithm Design Lecture 2: Karger s Min Cut Algorithm princeton univ. F 5 cos 5: Advanced Algorithm Design Lecture : Karger s Min Cut Algorithm Lecturer: Pravesh Kothari Scribe:Pravesh (These notes are a slightly modified version of notes from previous offerings

More information

Extracting and Composing Robust Features with Denoising Autoencoders

Extracting and Composing Robust Features with Denoising Autoencoders Presenter: Alexander Truong March 16, 2017 Extracting and Composing Robust Features with Denoising Autoencoders Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol 1 Outline Introduction

More information

Discriminative Clustering for Image Co-segmentation

Discriminative Clustering for Image Co-segmentation Discriminative Clustering for Image Co-segmentation Armand Joulin 1,2 Francis Bach 1,2 Jean Ponce 2 1 INRIA 2 Ecole Normale Supérieure January 15, 2010 Introduction Introduction problem: dividing simultaneously

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Improving Shape retrieval by Spectral Matching and Meta Similarity

Improving Shape retrieval by Spectral Matching and Meta Similarity 1 / 21 Improving Shape retrieval by Spectral Matching and Meta Similarity Amir Egozi (BGU), Yosi Keller (BIU) and Hugo Guterman (BGU) Department of Electrical and Computer Engineering, Ben-Gurion University

More information

Improving 3D Shape Retrieval Methods based on Bag-of Feature Approach by using Local Codebooks

Improving 3D Shape Retrieval Methods based on Bag-of Feature Approach by using Local Codebooks Improving 3D Shape Retrieval Methods based on Bag-of Feature Approach by using Local Codebooks El Wardani Dadi 1,*, El Mostafa Daoudi 1 and Claude Tadonki 2 1 University Mohammed First, Faculty of Sciences,

More information

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification DIGITAL IMAGE ANALYSIS Image Classification: Object-based Classification Image classification Quantitative analysis used to automate the identification of features Spectral pattern recognition Unsupervised

More information

Geodesic Flow Kernel for Unsupervised Domain Adaptation

Geodesic Flow Kernel for Unsupervised Domain Adaptation Geodesic Flow Kernel for Unsupervised Domain Adaptation Boqing Gong University of Southern California Joint work with Yuan Shi, Fei Sha, and Kristen Grauman 1 Motivation TRAIN TEST Mismatch between different

More information

3D-NCuts: Adapting Normalized Cuts to 3D Triangulated Surface Segmentation

3D-NCuts: Adapting Normalized Cuts to 3D Triangulated Surface Segmentation 3D-NCuts: Adapting Normalized Cuts to 3D Triangulated Surface Segmentation Zahra Toony 1, Denis Laurendeau 1, Philippe Giguère 2 and Christian Gagné 1 1 Computer Vision and System Laboratory, Department

More information

Finding Structure in Large Collections of 3D Models

Finding Structure in Large Collections of 3D Models Finding Structure in Large Collections of 3D Models Vladimir Kim Adobe Research Motivation Explore, Analyze, and Create Geometric Data Real Virtual Motivation Explore, Analyze, and Create Geometric Data

More information

Course Outline. Video Game AI: Lecture 7 Heuristics & Smoothing. Finding the best location out of several. Variable size units / special movement?

Course Outline. Video Game AI: Lecture 7 Heuristics & Smoothing. Finding the best location out of several. Variable size units / special movement? Course Outline Video Game AI: Lecture 7 Heuristics & Smoothing Nathan Sturtevant COMP 3705 http://aigamedev.com/ now has free interviews! Miscellaneous details Heuristics How better heuristics can be built

More information