Computational Optimization. Constrained Optimization

Size: px
Start display at page:

Download "Computational Optimization. Constrained Optimization"

Transcription

1 Computational Optimization Constrained Optimization

2 Easiest Problem Linear equality constraints min f( ) f R s.. t A b A R, b R n m n m

3 Null Space Representation Let * be a feasible point, A*b. Any other feasible point can be written as *+P where Ap0 The feasible region { : *+p p N(A)} where N(A) is null space of A

4 min Eample ( ) + + Solve by substitution becomes 3 st min 3 ( ) s.. t (( ) ) min

5 Null Space Method min ( ) st * [4 0 0] Z *+v becomes v 4v 0 0 v v + v 0 0 v (( ) v ) v + v + v3 min

6 Variable Reduction Method Let A[B N] for * (a basic feasible solution with at most m nonzero variables corresponding to columns of B) A R B R N R I R Z B N I m n m m m ( n m) ( n m) ( n m) assumes m < n is a basis matri for null space of A B B A [ ] r AAr BN I

7 Where did Z come from? A[ 3 4] * [4 0 0] A[B N] B[] N [3 4] Z *[3 4] 3 4 B N 0 0 I 0 0

8 General Method There eists a Null Space Matri n r Z R r n m The feasible region is: { * + Zv} Equivalent Reduced Problem min ( * ) v f + Zv

9 Practice Problem min ( ) st

10 Optimality Conditions Assume feasible point and convert to null space formulation gv () f( * + Zv) g( v) Z' f( * + Zv) Z' f( y) 0 wherez * + Zv gv () Z' f( * + ZvZ ) Z' f() yz

11 Lemma 4. Necessary Conditions (Nash + Sofer) If * is a local min of f over { Ab}, and Z is a null matri Z' f( *) 0 and Z f Z is p s d ' ( *)... Or equivalently use KKT Conditions f(*) A' λ 0 has a solution A* b Z f Z is psd ' ( *)...

12 Lemma 4. Sufficient Conditions (Nash + Sofer) If * satisfies (where Z is a basis matri for Null(A)) A* b Z ' f( *) 0 Z ' f( *) Z is pd.. then * is a strict local minimizer

13 Lemma 4. Sufficient Conditions (KKT form) If (*,λ*) satisfies (where Z is a basis matri for Null(A)) A* b f(*) A' 0 λ Z ' f( *) Z is pd.. then * is a strict local minimizer

14 Lagrangian Multiplier λ* is called the Lagrangian Multiplier It represents the sensitivity of solution to small perturbations of constraints f( ˆ) f( *) + ( ˆ *) ' f( *) f (*) + ( ˆ *)' A' λ * by KKT OC Nowlet Aˆ b + δ * f(*) + δ ' λ* f(*) + δiλi m i

15 Optimality conditions Consider min ( +4y )/ s.t. -y0 f( ) A' λ 0 A b 4y λ y 0 * λ* 8, y*,

16 Optimality conditions Find KKT point Check SOSC f( ) A' λ 0 A b 4y λ y 0 * λ* 8, y*, Z ' [] ( ) f Z f Z is pd ' ( ).. So SOSC satisfied Or we could just observe that it is a conve program so FONC are sufficient

17 ( ) [ ] 0 4 A 4 f() b A ) ( 0 s.t. 4 min + A f T λ λ Linear Equality Constraints - I

18 Linear Equality Constraints - II KKT point 8 *, 8 * Solve : λ λ λ

19 [ ] [ ] ) ( ) ( Z - A SOSC > Z f Z f T so SOSC satisfied, and * is a strict local minimum Objective is conve, so KKT conditions are sufficient. Linear Equality Constraints - III

20 Handy ways to compute Null Space Variable Reduction Method Orthogonal Projection Matri QR factorization (best numerically) ZNull(A) in matlab

21 Orthogonal Projection Method Use optimization. Minimize distance between given point c and null space of A. min p p c st.. Ap 0 f( p*) A' λ Ap* 0 or equivalently ( p* c) A' λ Ap* 0

22 Orthogonal Projection Method Optimality conditions give us the solution FONC is ( p* c) A' λ Ap* 0 Ap * Ac AA' λ λ AA' ( ) Ac ( ) ( ) p* A' λ + c A' AA' Ac + c ( I A' AA' A) c

23 Orthogonal Projection Method Final result is: ( ) ( I A' AA' A) Null Matrices of A Note null space matri is not unique Try it in Matlab for A [ 3 5; 4 -] Compare with Null(A) Null( A,r)

24 Get Lagrangian Multipliers for free! The matri A A' AA' where AA AA' AA' I r ( ) ( ) is the right inverse matri for A. For general problems r min f ( ) st.. A λ ' r * A f( *) b

25 Let s try it For min f( ) st Projection matri Z I A' AA' A ( ) [ ] [ ]

26 Solve FONC for Optimal Point FONC f( ) A' λ λ

27 Check Optimality Conditions For * []/ 4 f( *) []/ 4 A* b Z f(*) * Using Lagrangian ( ) Ar A' AA' []' 4 λ A f(*) /4 r Clearly f(*) A' λ

28 For min f( ) ' C st.. A b You try it C A b Find projection matri Confirm optimality conds are Z C*0, A* b Find * Compute Lagrangian multipliers Check Lagrangian form of the multipliers.

29 Variable Reduction Method Let A[B N] A is m by n B is m by m assume m < n Z B N I is a basis matri for null space of A B B A [ ] r AAr BN I

30 Try on our eample Take for eample first two columns for B Then A [ B N] Z A r Condition number of Z CZ 58 better but not great

31 QR Factorization Use Gram-Schmidt algorithm to make orthogonal factorize A QR with Q orthogonal and R upper triangular R A' QR [ Q Q] 0 where A m n, Q n m, Q n ( n m), R m m Z Q A QR T r

32 QR on problem Use matlab command QR [Q R ] qr(a ) Q Q(:,3:4) Cond(Q *C*Q) 9.79

33 In Class Practice Find optimal solution and verify FONC and SOSC of the following: Let the perimeter of a rectangle be fied to 4. Find the shape of the rectangle with largest area. Solve the problem ma s.t

Computational Optimization. Constrained Optimization Algorithms

Computational Optimization. Constrained Optimization Algorithms Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility,

More information

Constrained Optimization. February 29

Constrained Optimization. February 29 Constrined Optimiztion Februry 9 Generl Problem min f( ) ( NLP) s.. t g ( ) i E i g ( ) i I i Modeling nd Constrints Adding constrints let s us model fr more richer set of problems. For our purpose we

More information

Local and Global Minimum

Local and Global Minimum Local and Global Minimum Stationary Point. From elementary calculus, a single variable function has a stationary point at if the derivative vanishes at, i.e., 0. Graphically, the slope of the function

More information

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0.

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0. ) Give a set-theoretic description of the given points as a subset W of R. a) The points on the plane x + y z =. x Solution: W = {x: x = [ x ], x + x x = }. x b) The points in the yz-plane. Solution: W

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

CME307/MS&E311 Theory Summary

CME307/MS&E311 Theory Summary CME307/MS&E311 Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

Augmented Lagrangian Methods

Augmented Lagrangian Methods Augmented Lagrangian Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Augmented Lagrangian IMA, August 2016 1 /

More information

Augmented Lagrangian Methods

Augmented Lagrangian Methods Augmented Lagrangian Methods Mário A. T. Figueiredo 1 and Stephen J. Wright 2 1 Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal 2 Computer Sciences Department, University of

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Constrained Optimization Marc Toussaint U Stuttgart Constrained Optimization General constrained optimization problem: Let R n, f : R n R, g : R n R m, h : R n R l find min

More information

Part 2.2 Continuous functions and their properties v1 2018

Part 2.2 Continuous functions and their properties v1 2018 Part 2.2 Continuous functions and their properties v 208 Intermediate Values Recall R is complete. This means that ever non-empt subset of R which is bounded above has a least upper bound. That is: (A

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Some special matrices Matlab code How many operations and memory

More information

Supplemental Problems MAT (Prepared by Prof. Urmi Ghosh-Dastidar)

Supplemental Problems MAT (Prepared by Prof. Urmi Ghosh-Dastidar) Supplemental Problems MAT 3770 (Prepared by Prof. Urmi Ghosh-Dastidar) 1. Use Lagrange Multiplier methods to find the stationary values of z: (a) z = y, subject to + y = (b) z = (y+4), subject to + y =

More information

Intro to Linear Programming. The problem that we desire to address in this course is loosely stated below.

Intro to Linear Programming. The problem that we desire to address in this course is loosely stated below. . Introduction Intro to Linear Programming The problem that we desire to address in this course is loosely stated below. Given a number of generators make price-quantity offers to sell (each provides their

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Zero elements of first column below 1 st row multiplying 1 st

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Answers to Worksheet 5, Math 272

Answers to Worksheet 5, Math 272 Answers to Worksheet 5, Math 7 1. Calculate the directional derivative of the function f(, y, z) = cos y sin z at the point a = (1, π/, 5π/6) in the direction u = (3, 0, 1). The gradient of f at a is (

More information

Optimization Methods: Optimization using Calculus-Stationary Points 1. Module - 2 Lecture Notes 1

Optimization Methods: Optimization using Calculus-Stationary Points 1. Module - 2 Lecture Notes 1 Optimization Methods: Optimization using Calculus-Stationary Points 1 Module - Lecture Notes 1 Stationary points: Functions of Single and Two Variables Introduction In this session, stationary points of

More information

Epigraph proximal algorithms for general convex programming

Epigraph proximal algorithms for general convex programming Epigraph proimal algorithms for general conve programming Matt Wytock, Po-Wei Wang and J. Zico Kolter Machine Learning Department Carnegie Mellon University mwytock@cs.cmu.edu Abstract This work aims at

More information

k-means Gaussian mixture model Maximize the likelihood exp(

k-means Gaussian mixture model Maximize the likelihood exp( k-means Gaussian miture model Maimize the likelihood Centers : c P( {, i c j,...,, c n },...c k, ) ep( i c j ) k-means P( i c j, ) ep( c i j ) Minimize i c j Sum of squared errors (SSE) criterion (k clusters

More information

1.1 What is Microeconomics?

1.1 What is Microeconomics? 1.1 What is Microeconomics? Economics is the study of allocating limited resources to satisfy unlimited wants. Such a tension implies tradeoffs among competing goals. The analysis can be carried out at

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Practical Least-Squares for Computer Graphics

Practical Least-Squares for Computer Graphics Outline Least Squares with Generalized Errors Robust Least Squares Constrained Least Squares Practical Least-Squares for Computer Graphics Outline Least Squares with Generalized Errors Robust Least Squares

More information

4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1

4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1 4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1 Definition: A Linear Programming (LP) problem is an optimization problem: where min f () s.t. X n the

More information

Unit 2: Accentuate the Negative Name:

Unit 2: Accentuate the Negative Name: Unit 2: Accentuate the Negative Name: 1.1 Using Positive & Negative Numbers Number Sentence A mathematical statement that gives the relationship between two expressions that are composed of numbers and

More information

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 13

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 13 Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 13 Dimension Reduction: SVD and PCA Zhu Li Dept of CSEE, UMKC Office: FH560E, Email:

More information

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T.

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T. Section 7.4 Notes (The SVD) The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that Then there are A = UΣV T Specifically: The ordering of

More information

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi 15.082 and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi On bounding in optimization In solving network flow problems, we not only

More information

Section 4.2 Graphs of Exponential Functions

Section 4.2 Graphs of Exponential Functions 238 Chapter 4 Section 4.2 Graphs of Eponential Functions Like with linear functions, the graph of an eponential function is determined by the values for the parameters in the function s formula. To get

More information

Least-Squares Minimization Under Constraints EPFL Technical Report #

Least-Squares Minimization Under Constraints EPFL Technical Report # Least-Squares Minimization Under Constraints EPFL Technical Report # 150790 P. Fua A. Varol R. Urtasun M. Salzmann IC-CVLab, EPFL IC-CVLab, EPFL TTI Chicago TTI Chicago Unconstrained Least-Squares minimization

More information

Vectors. Section 1: Lines and planes

Vectors. Section 1: Lines and planes Vectors Section 1: Lines and planes Notes and Examples These notes contain subsections on Reminder: notation and definitions Equation of a line The intersection of two lines Finding the equation of a plane

More information

Assignment 2. with (a) (10 pts) naive Gauss elimination, (b) (10 pts) Gauss with partial pivoting

Assignment 2. with (a) (10 pts) naive Gauss elimination, (b) (10 pts) Gauss with partial pivoting Assignment (Be sure to observe the rules about handing in homework). Solve: with (a) ( pts) naive Gauss elimination, (b) ( pts) Gauss with partial pivoting *You need to show all of the steps manually.

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin)

CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin) CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin) Solutions (hand calculations, plots) have to be submitted electronically as a single pdf file using

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

DM6 Support Vector Machines

DM6 Support Vector Machines DM6 Support Vector Machines Outline Large margin linear classifier Linear separable Nonlinear separable Creating nonlinear classifiers: kernel trick Discussion on SVM Conclusion SVM: LARGE MARGIN LINEAR

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Clustering. Supervised vs. Unsupervised Learning

Clustering. Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

I. This material refers to mathematical methods designed for facilitating calculations in matrix

I. This material refers to mathematical methods designed for facilitating calculations in matrix A FEW CONSIDERATIONS REGARDING MATRICES operations. I. This material refers to mathematical methods designed for facilitating calculations in matri In this case, we know the operations of multiplying two

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMS, CALCULUS I, st COURSE. FUNCTIONS OF A REAL VARIABLE BACHELOR IN: Audiovisual System

More information

Systems of Linear Equations and their Graphical Solution

Systems of Linear Equations and their Graphical Solution Proceedings of the World Congress on Engineering and Computer Science Vol I WCECS, - October,, San Francisco, USA Systems of Linear Equations and their Graphical Solution ISBN: 98-988-95-- ISSN: 8-958

More information

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011 Rice University, Summer 20 Math 355: Linear Algebra: Midterm Colin Carroll June 25, 20 I have adhered to the Rice honor code in completing this test. Signature: Name: Date: Time: Please read the following

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

QEM Optimization, WS 2017/18 Part 4. Constrained optimization

QEM Optimization, WS 2017/18 Part 4. Constrained optimization QEM Optimization, WS 2017/18 Part 4 Constrained optimization (about 4 Lectures) Supporting Literature: Angel de la Fuente, Mathematical Methods and Models for Economists, Chapter 7 Contents 4 Constrained

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Matrix norms Can be defined using corresponding vector norms Two norm One norm Infinity

More information

Linear Programming has been used to:

Linear Programming has been used to: Linear Programming Linear programming became important during World War II: used to solve logistics problems for the military. Linear Programming (LP) was the first widely used form of optimization in

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Simplex Method. Introduction:

Simplex Method. Introduction: Introduction: Simple Method In the previous chapter, we discussed about the graphical method for solving linear programming problems. Although the graphical method is an invaluable aid to understand the

More information

Convex Functions & Optimization

Convex Functions & Optimization 672 Conve Functions & Optimization Aashray Yadav Abstract - My research paper is based on the recent work in interior-point methods, specifically those methods that keep track of both the primal and dual

More information

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

Autar Kaw Benjamin Rigsby.   Transforming Numerical Methods Education for STEM Undergraduates Autar Kaw Benjamin Rigsy http://nmmathforcollegecom Transforming Numerical Methods Education for STEM Undergraduates http://nmmathforcollegecom LU Decomposition is another method to solve a set of simultaneous

More information

10. Network dimensioning

10. Network dimensioning Partly based on slide material by Samuli Aalto and Jorma Virtamo ELEC-C7210 Modeling and analysis of communication networks 1 Contents Introduction Parameters: topology, routing and traffic Dimensioning

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

5 Day 5: Maxima and minima for n variables.

5 Day 5: Maxima and minima for n variables. UNIVERSITAT POMPEU FABRA INTERNATIONAL BUSINESS ECONOMICS MATHEMATICS III. Pelegrí Viader. 2012-201 Updated May 14, 201 5 Day 5: Maxima and minima for n variables. The same kind of first-order and second-order

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

Optimization III: Constrained Optimization

Optimization III: Constrained Optimization Optimization III: Constrained Optimization CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization III: Constrained Optimization

More information

TRICAP Chania. Typical rank when arrays have symmetric slices, and the Carroll & Chang conjecture of equal CP components.

TRICAP Chania. Typical rank when arrays have symmetric slices, and the Carroll & Chang conjecture of equal CP components. TRICAP 26 Chania Typical rank when arrays have symmetric slices, and the Carroll & Chang conjecture of equal CP components Jos ten Berge Research with Henk Kiers, Nikos Sidiropoulos, Roberto Rocci, and

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

Constrained Optimization

Constrained Optimization Constrained Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Constrained Optimization 1 / 46 EC2040 Topic 5 - Constrained Optimization Reading 1 Chapters 12.1-12.3

More information

Code Generation for Embedded Convex Optimization

Code Generation for Embedded Convex Optimization Code Generation for Embedded Convex Optimization Jacob Mattingley Stanford University October 2010 Convex optimization Problems solvable reliably and efficiently Widely used in scheduling, finance, engineering

More information

Elements of Economic Analysis II Lecture III: Cost Minimization, Factor Demand and Cost Function

Elements of Economic Analysis II Lecture III: Cost Minimization, Factor Demand and Cost Function Elements of Economic Analysis II Lecture III: Cost Minimization, Factor Demand and Cost Function Kai Hao Yang 10/05/2017 1 Cost Minimization In the last lecture, we saw a firm s profit maximization problem.

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

How to Do Word Problems. Study of Integers

How to Do Word Problems. Study of Integers Study of Integers In this chapter, we are are going to closely look at the number line system and study integers. -3-2 -1 0 1 2 3 4 5 6 An integer is simply a number like 0, 1, 2, 3, and 4, but unlike

More information

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report

More information

Part I: Single and Two View Geometry Internal camera parameters

Part I: Single and Two View Geometry Internal camera parameters !! 43 1!???? Imaging eometry Multiple View eometry Perspective projection Richard Hartley Andrew isserman O p y VPR June 1999 where image plane This can be written as a linear mapping between homogeneous

More information

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Models of Robot Manipulation - EE 54 - Department of Electrical Engineering - University of Washington Kinematics Relations - Joint & Cartesian Spaces A robot

More information

Further Results on Multiparametric Quadratic Programming

Further Results on Multiparametric Quadratic Programming Further Results on Multiparametric Quadratic Programming P. Tøndel, T.. Johansen,. Bemporad bstract In this paper we extend recent results on strictly convex multiparametric quadratic programming (mpqp)

More information

COMBINED OBJECTIVE LEAST SQUARES AND LONG STEP PRIMAL DUAL SUBPROBLEM SIMPLEX METHODS

COMBINED OBJECTIVE LEAST SQUARES AND LONG STEP PRIMAL DUAL SUBPROBLEM SIMPLEX METHODS COMBINED OBJECTIVE LEAST SQUARES AND LONG STEP PRIMAL DUAL SUBPROBLEM SIMPLEX METHODS A Thesis Presented to The Academic Faculty by Sheng Xu In Partial Fulfillment of the Requirements for the Degree Doctor

More information

We have already studied equations of the line. There are several forms:

We have already studied equations of the line. There are several forms: Chapter 13-Coordinate Geometry extended. 13.1 Graphing equations We have already studied equations of the line. There are several forms: slope-intercept y = mx + b point-slope y - y1=m(x - x1) standard

More information

Practice Test - Chapter 6

Practice Test - Chapter 6 1. Write each system of equations in triangular form using Gaussian elimination. Then solve the system. Align the variables on the left side of the equal sign. Eliminate the x-term from the 2nd equation.

More information

2.2. Changing One Dimension

2.2. Changing One Dimension 2.2 Changing One Dimension The epression (n - 2)(n + 2) is in factored form because it is written as a product of factors. The epression n 2-4 is in epanded form because it is written as the sum or difference

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

Geometry--Unit 10 Study Guide

Geometry--Unit 10 Study Guide Class: Date: Geometry--Unit 10 Study Guide Determine whether each statement is true or false. If false, give a counterexample. 1. Two different great circles will intersect in exactly one point. A) True

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

Advanced Mathematical Methods for Civil Engineering Applications Wonsiri Punurai, PhD

Advanced Mathematical Methods for Civil Engineering Applications Wonsiri Punurai, PhD Advanced Mathematical Methods for Civil Engineering Applications Wonsiri Punurai, PhD Department of Civil Engineering Room 69, EG Building Faculty of Engineering, Mahidol University Personal Web: www.egmu.net/~civil/wonsiri

More information

Math 13 Chapter 3 Handout Helene Payne. Name: 1. Assign the value to the variables so that a matrix equality results.

Math 13 Chapter 3 Handout Helene Payne. Name: 1. Assign the value to the variables so that a matrix equality results. Matrices Name:. Assign the value to the variables so that a matrix equality results. [ [ t + 5 4 5 = 7 6 7 x 3. Are the following matrices equal, why or why not? [ 3 7, 7 4 3 4 3. Let the matrix A be defined

More information

Projective 2D Geometry

Projective 2D Geometry Projective D Geometry Multi View Geometry (Spring '08) Projective D Geometry Prof. Kyoung Mu Lee SoEECS, Seoul National University Homogeneous representation of lines and points Projective D Geometry Line

More information

0_PreCNotes17 18.notebook May 16, Chapter 12

0_PreCNotes17 18.notebook May 16, Chapter 12 Chapter 12 Notes BASIC MATRIX OPERATIONS Matrix (plural: Matrices) an n x m array of elements element a ij Example 1 a 21 = a 13 = Multiply Matrix by a Scalar Distribute scalar to all elements Addition

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

12.1. Angle Relationships. Identifying Complementary, Supplementary Angles. Goal: Classify special pairs of angles. Vocabulary. Complementary. angles.

12.1. Angle Relationships. Identifying Complementary, Supplementary Angles. Goal: Classify special pairs of angles. Vocabulary. Complementary. angles. . Angle Relationships Goal: Classif special pairs of angles. Vocabular Complementar angles: Supplementar angles: Vertical angles: Eample Identifing Complementar, Supplementar Angles In quadrilateral PQRS,

More information

Anti-Cycling Methods for Linear Programming

Anti-Cycling Methods for Linear Programming Anti-Cycling Methods for Linear Programming Xinyi Luo Mathematics Honors Thesis Advisor: Philip Gill University of California, San Diego June 6th, 28 Abstract A linear program (or a linear programming

More information

4.1 Graphical solution of a linear program and standard form

4.1 Graphical solution of a linear program and standard form 4.1 Graphical solution of a linear program and standard form Consider the problem min c T x Ax b x where x = ( x1 x ) ( 16, c = 5 ), b = 4 5 9, A = 1 7 1 5 1. Solve the problem graphically and determine

More information

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 2 Image Transformations image filtering: change range of image g() T(f())

More information

T y. x Ax By Cz D. z Ix Jy Kz L. Geometry: Topology: Transformations

T y. x Ax By Cz D. z Ix Jy Kz L. Geometry: Topology: Transformations Transformations Geometr vs. Topolog Original Object This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives.0 International License Mike Baile mjb@cs.oregonstate.edu Geometr:

More information

SIMPLICIAL SURFACES CONTROLLED BY ONE TRIANGLE

SIMPLICIAL SURFACES CONTROLLED BY ONE TRIANGLE 7 TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS 2 ISGG 4 AUGUST, 2, BEIJING, CHINA SIMPLICIAL SURFACES CONTROLLED BY ONE TRIANGLE Karl-Heinz BRAKHAGE, Alice NIEMEYER, Wilhelm PLESKEN, and Ansgar

More information

Linear Loop Transformations for Locality Enhancement

Linear Loop Transformations for Locality Enhancement Linear Loop Transformations for Locality Enhancement 1 Story so far Cache performance can be improved by tiling and permutation Permutation of perfectly nested loop can be modeled as a linear transformation

More information

Matrix Representations

Matrix Representations CONDENSED LESSON 6. Matri Representations In this lesson, ou Represent closed sstems with transition diagrams and transition matrices Use matrices to organize information Sandra works at a da-care center.

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

Constrained Optimization COS 323

Constrained Optimization COS 323 Constrained Optimization COS 323 Last time Introduction to optimization objective function, variables, [constraints] 1-dimensional methods Golden section, discussion of error Newton s method Multi-dimensional

More information

COORDINATE GEOMETRY. 7.1 Introduction

COORDINATE GEOMETRY. 7.1 Introduction COORDINATE GEOMETRY 55 COORDINATE GEOMETRY 7 7. Introduction In Class IX, you have studied that to locate the position of a point on a plane, we require a pair of coordinate axes. The distance of a point

More information