Project 1. Has been posted! Previous year projects:

Size: px
Start display at page:

Download "Project 1. Has been posted! Previous year projects:"

Transcription

1 Project 1 Has been posted! Previous year projects: Bren Meeder Heegun Lee

2 Hair Simulation (and Rendering) Image from Final Fantasy (Kai s hair) Adrien Treuille

3 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

4 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

5 Tinkertoys Now we know how to simulate a bead on a wire. Next: a constrained particle system. E.g. constrain particle/particle distance to make rigid links. Same idea, but

6 Compact Particle System Notation q = WQ q: 3n-long state vector. q = x 1,x 2,,x n Q = f 1,f 2,,f n m1 Q: 3n-long force vector. matrix. T +J! mn mn mn More Notation C = C 1,C2,,Cm! =! 1,! 2,,! m "C J= "q 2C " How do you implement all this? J= "q"t We have a global matrix equation. like bead-on-wire. m1 W: M-inverse (element- wise -1 W = M reciprocal) -Jq - JW Q celeration C m1 ystem Constraint Equations M: 3n x 3n diagonal mass M = for! M M S

7 constraints state Constrained Dynamics: General Case d x = x dt d 1 f + f = W f + f x = x = M dt C(x) = 0 dc C C = = x = J x = 0 dt x C = J x + J x = 0 = J x + JW f + f At any point the set of legal velocities are those which are perpendicular to the rows of J. Conversely, the illegal velocities are spanned by JT i.e. {JT!!! Rc}. JW f = J x JW f 1 T x M x 2 T = x T M x T = x f + f virtual work T = T due to f Since the constraint force is perpendicular to all legal velocities, it must be in the span of JT. = x f = 0 therefore f = J T λ JW J T λ = J x JW f λ = JW J T 1 J x JW f

8 Drift and Feedback In principle, clamping C at zero is enough Two problems: Constraints might not be met initially Numerical errors can accumulate A feedback term handles both problems: C = - $C - %C, instead of C=0 $ and % are magic constants.

9 How do you implement all this? We have a global matrix equation. We want to build models on the fly, just like masses and springs. Approach: Each constraint adds its own piece to the equation.

10 Matrix Block Structure Each constraint contributes one or more blocks to the matrix. C Sparsity: many empty blocks. "C "x i xi "C "x j xj J Modularity: let each constraint compute its own blocks. Constraint and particle indices determine block locations.

11 J! J& C & C fc x v f m x v f m Global Stuff Global and Local Constraint

12 Constraint Structure Each constraint must know how to compute these C x v f m x v f m p1 p2 C "C "C, "x 1 "x "C "C, "x 1"t "x 2"t Distance Constraint C = x1 - x2 - r

13 Constrained Particle Systems particles n time forces nforces consts nconsts x x v v f f m m x v f m F F F FF C C C C C Added Stuff

14 x x v v f f m m Modified Deriv Eval Loop x 1 v f m 2 Clear Force Accumulators x x v v f f m m x v f m Return to solver F F F FF Apply forces Added Step C C C 4 3 C C Compute and apply Constraint Forces

15 Constraint Force Eval After computing ordinary forces: Loop over constraints, assemble global matrices and vectors. Call matrix solver to get!, multiply by JT to get constraint force. Add constraint force to particle force accumulators.

16 Impress your Friends The requirement that constraints not add or remove energy is called the Principle of Virtual Work. The! s are called Lagrange Multipliers. The derivative matrix, J, is called the Jacobian Matrix.

17 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

18 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

19 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

20 Real Hair

21 Real Hair

22 Real Hair Figure 1.1: Left, close view of a hair fiber (root upwards) showing covered by overlapping scales. Right, bending and twisting instabilitie when compressing a small wisp. Typical human head has 150k-200k individual strands. Dynamics not well understood. Subject still open to debate. Deformations of a hair strand involve rotations that are not infinitely so can only be described by nonlinear equations [AP07]. Physical effe from these nonlinearities include instabilities called buckling. For exam a thin hair wisp is held between two hands that are brought closer to (see Figure 1.1, right), it reacts by bending in a direction perpendicu applied compression. If the hands are brought even closer, a second occurs and the wisp suddenly starts to coil (the bending deformation is

23 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

24 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

25 Questions How could we simulate hair? What about......preventing bending?...different kinds of hair?...collisions?...200k hairs?

26 Student Answers - hair models - mass-spring model: string of particles (one attached to scalp) - but we need a length constraint! - prevent bending: attach every two particles - use constraints to prevent over stretching - how about more than one strand per hair - simulate torsion - rather than using just straight lines, could we use bezier curves as basic elements - rather than using individual strands, interpolate a general mesh - how to implement curly hair: - put the particles in a helix and try to revert to that position - attach every nth particle - force a "curl" - equally favors clockwise and counterclockwise curls - use "big particles" that won't collide at a distance - adjusting the number of particles may affect the hair dynamics (beyond just increasing resolution) - for collisions - implement a spatial data structure to save computation - repelling forces, but could be an issue for many particles - have soft spring forces when "cylinders" intersect - to achieve 100k strands - interpolate between hairs - extrapolate from one hair to many

27 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

28 Hair Dynamics Control Mesh Mass-Spring Systems Rigid Links Super Helices

29 Hair Dynamics Control Mesh Mass-Spring Systems Rigid Links Super Helices

30 Control Mesh A Practical Model for Hair Mutual Interactions Johnny T. Chang, Jingyi Jin, Yizhou Yu. ACM SIGGRAPH Symp. on Computer Animation. pp , 2002.

31 Control Mesh

32 Hair Dynamics Control Mesh Mass-Spring Systems Rigid Links Super Helices

33 Recall...

34

35

36

37 Disadvantages Torsional Rigidity Non-stretching of the strands

38

39 decided to start with the mass-spring system since we had a working code fro in-house cloth simulator. There we started by adapting the existing partic

40 k = implicit integration? n+1 Implicit integrator adds stability Loss of angular momentum Good Jacobian (filter) very important

41 k Is infinity! Well, how do we preserve length then? use non-linear correction

42 non-linear post correction

43 non-linear post correction

44 non-linear post correction

45 non-linear post correction Post solve correction Successive relaxation until convergence Guaranteed length preservation Cheap simulation of k infinity

46 non-linear post correction How to implement? Cloth simulation literatures Provot 1995 (position only) Bridson 2002 (impulse) Hair-specific relaxation possible

47 Predictor-corrector scheme Implicit Filter (Predictor) Sharpener (Corrector) Implicit Filter (Predictor)

48 1.First pass-implicit integration First implicit solve to get new velocity

49 2.First pass-implicit integration Advance position with the predicted mid-step velocity

50 3.Non-linear Correction Apply non-linear corrector to get position (length) right

51 4.Impulse Change velocity due to length preservation Velocity may be out of sync after impulse

52 5.Second implicit integration Filters out velocity field Velocity field in sync again

53

54 Hair Dynamics Control Mesh Mass-Spring Systems Rigid Links Super Helices

55 Featherstone Algorithm joint i joint i+1 link i link 1 link n joint n joint 1 link 0 (base) inboard outboard outboard joint link i!1 O fi!1 I f i!1 inboard joint τoi!1 m i!1 g τii!1 O

56 Rigid Links Fewer degrees of freedom. Torsional forces. Difficult Implementation. Constraints Difficult.

57 Hair Dynamics Control Mesh Mass-Spring Systems Rigid Links Super Helices

58 Super Helices other interesting approaches to handle strand-strand interactions include wisp level interactions [PCP01b, BKCN03b], layers [LK01b] and strips [CJY02b]. We demonstrate the effectiveness of the proposed Oriented Strand methodology, through impressive results in production of Madagascar and Shrek The Third at PDI/DreamWorks, in Section 5.1. Why just use straight rods? 1.4 Super-Helices: a compact model for thin geometry Figure 1.5: Left, a Super-Helix. Middle and right, dynamic simulation of natural hair of various types: wavy, curly, straight. These hairstyles were animated using N = 5 helical elements per guide strand.

59 ng the internal friction coefficient. Super Helices the terms needed in equation (1.23) have been given in equations ( the The Dynamics of Super-Helices gging latter into the former, one arrives at explicit equations o the generalized coordinate q(t). Although straightforward in princ 3 culation is involved. It can nevertheless be worked out easily using a culation language such as Mathematica [Wol99]: the first step is to im reconstruction of Super-Helices as given in Appendix 1.4.3; the se o work out the right-hand sides of equations (1.24), using symbolic in enever necessary; the final step is to plug everything back into equati is leads to the equation of motion of a Super-Helix: Figure 1.6: Left, geometry of Super-Helix. Right, animating Super-Helices with L different natural curvatures andn twist: a) straight, b) wavy, c) curly, d) strongly i M[s, q] q + K (q q ) = A[t, q, q ] + J [s, q,t] F (s,t) ds. iq curly. In this example, each Super-Helix is composed 0of 10 helical elements. We shall first present the model that we used to animate individual hair strands this equation, the bracket notation is used to emphasize that all func (guide strands). This model has a tunable number of degrees of freedom. It is enbuilt byupon explicit formula termstheories of their arguments. the Cosserat and in Kirchhoff of rods. In mechanical engineering literature, a rod is defined as an elastic material that is effectively one dimensional: equation (1.25), the inertia matrix M is a dense square matrix of its length is much larger than the size of its cross section.

60 Super Helices Figure 1.8: Fitting γ for a vertical oscillatory motion of a disciplined, curly hair clump. Left, comparison between the real (top) and virtual (bottom) experiments. Right, the span A of the hair clump for real data is compared to the simulations for different values of γ. In this case, γ = kg m3 s 1 gives qualitatively

61 Super Helices

62 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

63 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

64 decided to start with the mass-spring system since we had a working code fro in-house cloth simulator. There we started by adapting the existing partic

65 guide strands having closetips ro o guidetwo strands having close roots but distant criterion onbetween the distance ti terion on the distance tips, see between Figure 4, (d) Rendering Interpolation Extrapolation 4: Semi-interpolating scheth gure 4: Figure Semi-interpolating scheme for generating

66 Overview More Constraints Hair Real Hair Questions Hair Dynamics Hair Rendering

67 Conclusion

Hair Simulation (and Rendering)

Hair Simulation (and Rendering) Hair Simulation (and Rendering) Image from Final Fantasy (Kai s hair) Adrien Treuille Overview Project Solving Linear Systems Questions About the Project Hair Real Hair Hair Dynamics Hair Rendering Course

More information

Cloth and Hair Collisions

Cloth and Hair Collisions algorithm (presented in Section IV-C.2), by using the recent capabilities of GPUs. Koster et al. [78] exploited graphics hardware by storing all the opacity maps in a 3D texture, to have the hair self-shadow

More information

Cloth Simulation. COMP 768 Presentation Zhen Wei

Cloth Simulation. COMP 768 Presentation Zhen Wei Cloth Simulation COMP 768 Presentation Zhen Wei Outline Motivation and Application Cloth Simulation Methods Physically-based Cloth Simulation Overview Development References 2 Motivation Movies Games VR

More information

Applications. Human and animal motion Robotics control Hair Plants Molecular motion

Applications. Human and animal motion Robotics control Hair Plants Molecular motion Multibody dynamics Applications Human and animal motion Robotics control Hair Plants Molecular motion Generalized coordinates Virtual work and generalized forces Lagrangian dynamics for mass points

More information

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report Cloth Simulation CGI Techniques Report Tanja Munz Master of Science Computer Animation and Visual Effects 21st November, 2014 Abstract Cloth simulation is a wide and popular area of research. First papers

More information

Simulation of curly hair

Simulation of curly hair Computer Generated Imagery Techniques Assignment Report May 2013 Simulation of curly hair student ID : i7266699 student name : Fabio student surname : Turchet 1. Introduction For my assignment I implemented

More information

Physically Based Simulation

Physically Based Simulation CSCI 480 Computer Graphics Lecture 21 Physically Based Simulation April 11, 2011 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s11/ Examples Particle Systems Numerical

More information

Physically Based Simulation

Physically Based Simulation CSCI 420 Computer Graphics Lecture 21 Physically Based Simulation Examples Particle Systems Numerical Integration Cloth Simulation [Angel Ch. 9] Jernej Barbic University of Southern California 1 Physics

More information

Mass-Spring Systems. Last Time?

Mass-Spring Systems. Last Time? Mass-Spring Systems Last Time? Implicit Surfaces & Marching Cubes/Tetras Collision Detection & Conservative Bounding Regions Spatial Acceleration Data Structures Octree, k-d tree, BSF tree 1 Today Particle

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Chapter 3: Computer Animation Reminder: Descriptive animation. Procedural animation : Examples. Towards methods that generate motion?

Chapter 3: Computer Animation Reminder: Descriptive animation. Procedural animation : Examples. Towards methods that generate motion? Chapter 3 : Computer Animation (continued) Chapter 3: Computer Animation Reminder: Descriptive animation Describes a single motion, with manual control Ex: direct kinematics with key-frames, inverse kinematics

More information

Cloth Hair. and. soft bodies

Cloth Hair. and. soft bodies Cloth Hair Lesson 11 and soft bodies Lesson 08 Outline Problem definition and motivations Modeling deformable solids with mass-spring model Position based dynamics Modeling cloths with mass-spring model

More information

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial Lecture VI: Constraints and Controllers Parts Based on Erin Catto s Box2D Tutorial Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a

More information

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (2) May 26, 2016 Kenshi Takayama Physically-based deformations 2 Simple example: single mass & spring in 1D Mass m, position x, spring coefficient k, rest length

More information

Ragdoll Physics. Abstract. 2 Background. 1 Introduction. Gabe Mulley, Matt Bittarelli. April 25th, Previous Work

Ragdoll Physics. Abstract. 2 Background. 1 Introduction. Gabe Mulley, Matt Bittarelli. April 25th, Previous Work Ragdoll Physics Gabe Mulley, Matt Bittarelli April 25th, 2007 Abstract The goal of this project was to create a real-time, interactive, and above all, stable, ragdoll physics simulation. This simulation

More information

Lecture VI: Constraints and Controllers

Lecture VI: Constraints and Controllers Lecture VI: Constraints and Controllers Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a chair human body parts trigger of a gun opening

More information

Cloth Animation with Collision Detection

Cloth Animation with Collision Detection Cloth Animation with Collision Detection Mara Guimarães da Silva Figure 1: Cloth blowing in the wind. Abstract This document reports the techniques and steps used to implemented a physically based animation

More information

Cloth The Animation of Natural Phenomena Adrien Treuille

Cloth The Animation of Natural Phenomena Adrien Treuille Cloth The Animation of Natural Phenomena Adrien Treuille Real Cloth Overview Properties of Real Cloth Cloth Simulation Properties of Cloth sheet of fabric (4) parameter for stretching (1) (4) parameter

More information

A Fast and Stable Approach for Restoration of Warped Document Images

A Fast and Stable Approach for Restoration of Warped Document Images A Fast and Stable Approach for Restoration of Warped Document Images Kok Beng Chua, Li Zhang, Yu Zhang and Chew Lim Tan School of Computing, National University of Singapore 3 Science Drive 2, Singapore

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

DYNAMIC SIMULATION OF INEXTENSIBLE CLOTH

DYNAMIC SIMULATION OF INEXTENSIBLE CLOTH DYNAMIC SIMULAION OF INEXENSIBLE CLOH Jan Bender, Daniel Bayer and Raphael Diziol Institut für Betriebs- und Dialogssysteme Universität Karlsruhe Am Fasanengarten 5 768 Karlsruhe Germany ABSRAC In this

More information

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66 Computer Animation Guoying Zhao 1 / 66 Basic Elements of Computer Graphics Modeling construct the 3D model of the scene Rendering Render the 3D model, compute the color of each pixel. The color is related

More information

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE Computer Animation Algorithms and Techniques Rick Parent Ohio State University z< MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER SCIENCE AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO

More information

Hair Simulation Based on Mass Spring System

Hair Simulation Based on Mass Spring System Hair Simulation Based on Mass Spring System Yao Lyu Master Thesis MSc Computer Animation and Visual Effects Bournemouth University NCCA August 2016 Abstract In this paper, we present a method for stably

More information

Real-Time Hair Simulation and Rendering on the GPU. Louis Bavoil

Real-Time Hair Simulation and Rendering on the GPU. Louis Bavoil Real-Time Hair Simulation and Rendering on the GPU Sarah Tariq Louis Bavoil Results 166 simulated strands 0.99 Million triangles Stationary: 64 fps Moving: 41 fps 8800GTX, 1920x1200, 8XMSAA Results 166

More information

DYNAMICS FOR ANIMATION. Rémi Ronfard, Animation, M2R MOSIG

DYNAMICS FOR ANIMATION. Rémi Ronfard, Animation, M2R MOSIG DYNAMICS FOR ANIMATION Rémi Ronfard, Animation, M2R MOSIG Summary of physics-based animation Motivation Newton s Laws Point-mass models Rigid and articulated bodies Ragdoll physics From kinematics to dynamics

More information

Physically Based Modeling

Physically Based Modeling Physically Based Modeling Course Organizer Andrew Witkin Pixar Animation Studios Physically based modeling has become an important new approach to computer animation and computer graphics modeling. Although

More information

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^ Computer a jap Animation Algorithms and Techniques Second Edition Rick Parent Ohio State University AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Rigid Body Dynamics, Collision Response, & Deformation

Rigid Body Dynamics, Collision Response, & Deformation Rigid Body Dynamics, Collision Response, & Deformation Pop Worksheet! Teams of 2. SOMEONE YOU HAVEN T ALREADY WORKED WITH What are the horizontal and face velocities after 1, 2, and many iterations of

More information

A Survey on Hair Modeling: Styling, Simulation, and Rendering

A Survey on Hair Modeling: Styling, Simulation, and Rendering 1 A Survey on Hair Modeling: Styling, Simulation, and Rendering Kelly Ward Florence Bertails Tae-Yong Kim Stephen R. Marschner Marie-Paule Cani Ming C. Lin Abstract Realistic hair modeling is a fundamental

More information

Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA

Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA Simulation of Overhead Crane Wire Ropes Utilizing LS-DYNA Andrew Smyth, P.E. LPI, Inc., New York, NY, USA Abstract Overhead crane wire ropes utilized within manufacturing plants are subject to extensive

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Dynamics: Constraints, Continua, etc. Subramanian Ramamoorthy School of Informatics 5 February, 2009 Recap Last time, we discussed two major approaches to describing

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Modeling Cloth Using Mass Spring Systems

Modeling Cloth Using Mass Spring Systems Modeling Cloth Using Mass Spring Systems Corey O Connor Keith Stevens May 2, 2003 Abstract We set out to model cloth using a connected mesh of springs and point masses. After successfully implementing

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

Final Exam CS 184: Foundations of Computer Graphics page 1 of 14 Fall 2016 Prof. James O Brien

Final Exam CS 184: Foundations of Computer Graphics page 1 of 14 Fall 2016 Prof. James O Brien Final Exam CS 184: Foundations of Computer Graphics page 1 of 14 Student Name: Student ID: Instructions: Read them carefully The exam begins at 3:10pm and ends at 6:00pm. You must turn your exam in when

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

5. GENERALIZED INVERSE SOLUTIONS

5. GENERALIZED INVERSE SOLUTIONS 5. GENERALIZED INVERSE SOLUTIONS The Geometry of Generalized Inverse Solutions The generalized inverse solution to the control allocation problem involves constructing a matrix which satisfies the equation

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

COMPUTATIONAL DYNAMICS

COMPUTATIONAL DYNAMICS COMPUTATIONAL DYNAMICS THIRD EDITION AHMED A. SHABANA Richard and Loan Hill Professor of Engineering University of Illinois at Chicago A John Wiley and Sons, Ltd., Publication COMPUTATIONAL DYNAMICS COMPUTATIONAL

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 8 Splines Jernej Barbic University of Southern California Hermite Splines Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12] Roller coaster

More information

PSE Game Physics. Session (3) Springs, Ropes, Linear Momentum and Rotations. Oliver Meister, Roland Wittmann

PSE Game Physics. Session (3) Springs, Ropes, Linear Momentum and Rotations. Oliver Meister, Roland Wittmann PSE Game Physics Session (3) Springs, Ropes, Linear Momentum and Rotations Oliver Meister, Roland Wittmann 08.05.2015 Session (3) Springs, Ropes, Linear Momentum and Rotations, 08.05.2015 1 Outline Springs

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

11. Kinematic models of contact Mechanics of Manipulation

11. Kinematic models of contact Mechanics of Manipulation 11. Kinematic models of contact Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 11. Mechanics of Manipulation p.1 Lecture 11. Kinematic models

More information

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

More information

9. Representing constraint

9. Representing constraint 9. Representing constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 9. Mechanics of Manipulation p.1 Lecture 9. Representing constraint.

More information

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions.

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Path and Trajectory specification Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Specifying the desired motion to achieve a specified goal is often a

More information

Intuitive Control of Dynamic Simulation Using Improved Implicit Constraint Enforcement

Intuitive Control of Dynamic Simulation Using Improved Implicit Constraint Enforcement Intuitive Control of Dynamic Simulation Using Improved Implicit Constraint Enforcement Min Hong, Samuel Welch, and Min-Hyung Choi 3 Bioinformatics, University of Colorado Health Sciences Center, 400 E.

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

PPGCC Linha de Pesquisa SIV Disciplina: Animação Computadorizada. Profª. Drª. Soraia Raupp Musse Pós-doc Dr Leandro Dihl 12/05/2015

PPGCC Linha de Pesquisa SIV Disciplina: Animação Computadorizada. Profª. Drª. Soraia Raupp Musse Pós-doc Dr Leandro Dihl 12/05/2015 PPGCC Linha de Pesquisa SIV Disciplina: Animação Computadorizada Profª. Drª. Soraia Raupp Musse Pós-doc Dr Leandro Dihl 12/05/2015 Cloth Simulation Cloth simulation has been an important topic in computer

More information

A Layered Wisp Model for Simulating Interactions inside Long Hair

A Layered Wisp Model for Simulating Interactions inside Long Hair A Layered Wisp Model for Simulating Interactions inside Long Hair Eric Plante Taarna Studios Inc. Current affiliation: discreet. Eric.Plante@discreet.com Marie-Paule Cani imagis-gravir/imag, joint lab

More information

Constraint fluids in Sprinkle. Dennis Gustafsson Mediocre

Constraint fluids in Sprinkle. Dennis Gustafsson Mediocre Constraint fluids in Sprinkle Dennis Gustafsson Mediocre Sprinkle. Sequel. Put out fires. Makeshift firetruck. Distant moon of Saturn. Fluid sim used at the core. Not only to put out fires -> move obstacles,

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Chapter 6 Visualization Techniques for Vector Fields

Chapter 6 Visualization Techniques for Vector Fields Chapter 6 Visualization Techniques for Vector Fields 6.1 Introduction 6.2 Vector Glyphs 6.3 Particle Advection 6.4 Streamlines 6.5 Line Integral Convolution 6.6 Vector Topology 6.7 References 2006 Burkhard

More information

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods CS545 Contents IX Inverse Kinematics Analytical Methods Iterative (Differential) Methods Geometric and Analytical Jacobian Jacobian Transpose Method Pseudo-Inverse Pseudo-Inverse with Optimization Extended

More information

Numerical Integration

Numerical Integration 1 Numerical Integration Jim Van Verth Insomniac Games jim@essentialmath.com Essential mathematics for games and interactive applications Talk Summary Going to talk about: Euler s method subject to errors

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 4 Other control strategies These slides are devoted to two advanced control approaches, namely Operational space control Interaction

More information

Geometric Transformations

Geometric Transformations Geometric Transformations CS 4620 Lecture 9 2017 Steve Marschner 1 A little quick math background Notation for sets, functions, mappings Linear and affine transformations Matrices Matrix-vector multiplication

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics 2016 Spring National Cheng Kung University Instructors: Min-Chun Hu 胡敏君 Shih-Chin Weng 翁士欽 ( 西基電腦動畫 ) Data Representation Curves and Surfaces Limitations of Polygons Inherently

More information

Control of industrial robots. Kinematic redundancy

Control of industrial robots. Kinematic redundancy Control of industrial robots Kinematic redundancy Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Kinematic redundancy Direct kinematics

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

INTRODUCTION CHAPTER 1

INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

Twisting, Tearing and Flicking Effects in String Animations

Twisting, Tearing and Flicking Effects in String Animations Twisting, Tearing and Flicking Effects in String Animations Witawat Rungjiratananon 1, Yoshihiro Kanamori 2, Napaporn Metaaphanon 3, Yosuke Bando 4, Bing-Yu Chen 5, and Tomoyuki Nishita 1 1 The University

More information

13. Polyhedral Convex Cones

13. Polyhedral Convex Cones 13. Polyhedral Convex Cones Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 13. Mechanics of Manipulation p.1 Lecture 13. Cones. Chapter

More information

The exam begins at 5:10pm and ends at 8:00pm. You must turn your exam in when time is announced or risk not having it accepted.

The exam begins at 5:10pm and ends at 8:00pm. You must turn your exam in when time is announced or risk not having it accepted. CS 184: Foundations of Computer Graphics page 1 of 11 Student Name: Student ID: Instructions: Read them carefully! The exam begins at 5:10pm and ends at 8:00pm. You must turn your exam in when time is

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Soft Body. 9.7 Physics - Soft Body

Soft Body. 9.7 Physics - Soft Body 9.7 Physics - Soft Body Soft Body...1 Typical scenarios for using Soft Bodies...2 Creating a Soft Body...3 Simulation Quality...3 Cache and Bake...4 Interaction in real time...5 Tips...5 Exterior Forces...5

More information

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset Chapter 3: Kinematics Locomotion Ross Hatton and Howie Choset 1 (Fully/Under)Actuated Fully Actuated Control all of the DOFs of the system Controlling the joint angles completely specifies the configuration

More information

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1 Animation Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/23/07 1 Today s Topics Interpolation Forward and inverse kinematics Rigid body simulation Fluids Particle systems Behavioral

More information

Fracture & Tetrahedral Models

Fracture & Tetrahedral Models Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. What are the horizontal and face velocities after 1, 2, and many iterations of divergence adjustment for an incompressible fluid? Fracture

More information

Chain Shape Matching for Simulating Complex Hairstyles

Chain Shape Matching for Simulating Complex Hairstyles Volume 28 (2009), Number 7 pp. 1 8 COMPUTER GRAPHICS forum Chain Shape Matching for Simulating Complex Hairstyles W. Rungjiratananon 1, Y. Kanamori 2 and T. Nishita 1 1 The University of Tokyo, Japan 2

More information

Simulation in Computer Graphics. Introduction. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Introduction. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Introduction Matthias Teschner Computer Science Department University of Freiburg Contact Matthias Teschner Computer Graphics University of Freiburg Georges-Koehler-Allee

More information

Modeling Hair Movement with Mass-Springs

Modeling Hair Movement with Mass-Springs Modeling Hair Movement with Mass-Springs Anna Sokol ansokol@cs.sunysb.edu Computer Science Department SUY Stony Brook Abstract: This paper is presenting a framework for modeling hair movement using mass-springs.

More information

The Jello Cube Assignment 1, CSCI 520. Jernej Barbic, USC

The Jello Cube Assignment 1, CSCI 520. Jernej Barbic, USC The Jello Cube Assignment 1, CSCI 520 Jernej Barbic, USC 1 The jello cube Undeformed cube Deformed cube The jello cube is elastic, Can be bent, stretched, squeezed,, Without external forces, it eventually

More information

SOLIDWORKS Simulation

SOLIDWORKS Simulation SOLIDWORKS Simulation Length: 3 days Prerequisite: SOLIDWORKS Essentials Description: SOLIDWORKS Simulation is designed to make SOLIDWORKS users more productive with the SOLIDWORKS Simulation Bundle. This

More information

Design of a dynamic simulation system for VR applications

Design of a dynamic simulation system for VR applications Design of a dynamic simulation system for VR applications Jan Bender Abstract A dynamic simulation system for VR applications consists of multiple parts. The first task that must be accomplished is the

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Kinematics: Intro. Kinematics is study of motion

Kinematics: Intro. Kinematics is study of motion Kinematics is study of motion Kinematics: Intro Concerned with mechanisms and how they transfer and transform motion Mechanisms can be machines, skeletons, etc. Important for CG since need to animate complex

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Introduction to Working Model Welcome to Working Model! What is Working Model? It's an advanced 2-dimensional motion simulation package with sophisticated editing capabilities. It allows you to build and

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_1.htm 1 of 1 6/20/2012 12:24 PM The Lecture deals with: ADI Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_2.htm 1 of 2 6/20/2012

More information

3D Physics Engine for Elastic and Deformable Bodies. Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount

3D Physics Engine for Elastic and Deformable Bodies. Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount 3D Physics Engine for Elastic and Deformable Bodies Liliya Kharevych and Rafi (Mohammad) Khan Advisor: David Mount University of Maryland, College Park December 2002 Abstract The purpose of this project

More information

15. Moment Labeling Mechanics of Manipulation

15. Moment Labeling Mechanics of Manipulation 15. Moment Labeling Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 15. Mechanics of Manipulation p.1 Lecture 15. Moment Labeling. Chapter

More information

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object.

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object. CENG 732 Computer Animation Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics This week Shape Deformation FFD: Free Form Deformation Hierarchical

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

A New Self-Collision Detection Method for Cloth Simulation

A New Self-Collision Detection Method for Cloth Simulation Send Orders for Reprints to reprints@benthamscience.ae 386 The Open Electrical & Electronic Engineering Journal, 205, 9, 386-392 A New Self-Collision Detection Method for Cloth Simulation Open Access Fengquan

More information

Efficient Solution Techniques

Efficient Solution Techniques Chapter 4 The secret to walking on water is knowing where the rocks are. Herb Cohen Vail Symposium 14 poster Efficient Solution Techniques In the previous chapter, we introduced methods for implementing

More information

Inverse Kinematics Programming Assignment

Inverse Kinematics Programming Assignment Inverse Kinematics Programming Assignment CS 448D: Character Animation Due: Wednesday, April 29 th 11:59PM 1 Logistics In this programming assignment, you will implement a simple inverse kinematics solver

More information