SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure.

Size: px
Start display at page:

Download "SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure."

Transcription

1 SAMPLE VERSUS POPULATION Populatio - cosists of all possible measuremets that ca be made o a particular item or procedure. Ofte a populatio has a ifiite umber of data elemets Geerally expese to determie good estimates for populatio mea ad variace Sample - a subset of data selected from the populatio Ca be gathered i a ecoomical fashio May or may ot be represetative of populatio PLATE -1

2 METHODS OF ANALYZING DATA I. Numerical methods a. Rage - highest value mius the lowest value i the data set b. Dispersio - differece betwee two elemets i a data set c. Measures of cetral tedecy d. Measures of variatio II. Graphical Methods Frequecy Histogram - a bar graph based o a selected class width. Also kow as a histogram. Class - a subregio of the data. Class width - rage of a sigle class PLATE -

3 METHODS OF ANALYZING DATA Measures of cetral tedecy: 1. Mea - arithmetic mea of data. Symbolized by: A. µ for populatio, true value B. y estimate of µ determied from a sample, where y i 1. Media - physical midpoit of a data set whe data arraged i umerical order. A. If data set has odd umber of elemets, the the media is the physical midpoit of the arraged data. B. If the data set has a eve umber of elemets, the the media is the average of the two elemets that are earest the physical midpoit. 3. Mode - the most frequetly occurig elemet i the data set. Data sets ca have more oe mode. PLATE -3

4 NUMERICALLY ORDERED DATA SET Mea = 3.5 Rage = = 6.0 To create 7 uiform width classes divide rage by 7. Class width = 6.0/7 = 0.86 Add to mimum data elemet to get bouds for first class. First iterval: 0.1 x < 0.96 = Secod iterval : 0.96 x < 1.8 = etc. PLATE -4

5 A CLASS FREQUENCY TABLE Class Class Class relative iterval frequecy frequecy /50 = /50 = /50 = /50 = /50 = /50 = /50 = 0.14 = 50/50 = 1 Note that sum of class relative frequecs always oe. Use class frequecy table to costruct histogram. Histogram PLATE -5

6 COMMON HISTOGRAM SHAPES (a) (b) (c) (d) (e) Thigs that histograms idicate about data: 1. a is less precise tha b. c is bimodal 3. d is skewed to the right 4. e is skewed to the left PLATE -6

7 NUMERICALLY ORDERED DATA SET Measures of Cetral Tedecy Mea = 3.5 Media = Mode = 3.8 (occurs 3 times) PLATE -7

8 DEFINITIONS True value - A quatities theoretically correct or exact value. This value is ever kow. Error, - The differece betwee a measured quatity ad its true value. = y - µ i Residual, v - The differece betwee ay measured value ad the most probable value for a data set (the mea). Degrees of freedom, redudacies - The umber of measuremets that are i excess of the umber ecessary to solve for the ukows. PLATE -8

9 MEASURES OF DATA VARIATION Variace - a value by which the precisio of a populatio is expressed. Populatio variace, i Sample variace, v S i 1 STANDARD ERROR, - Rage withi mea that 68.3% of all observatios lie. Stadard deviatio, S - is a estimate for the stadard error of a populatio. Stadard deviatio of the mea, S y S PLATE -9

10 PRECISION VERSUS ACCURACY a b c d Results a is accurate but ot precise. b is either precise or accurate. c is precise but ot accurate. errors) d is accurate ad precise. Observer s viewpoit (Never kow its accurate) (Assumed poor) (Caused by systematic (The goal i data collectio) PLATE -10

11 ALTERNATE FORMULA FOR SAMPLE VARIANCE Expadig S i 1 ( y ) 1 S 1 1 [(y y 1 ) (y y ) (y y ) ] Substitutig i 1 for y S 1 1 y 1 y y Expadig S 1 1 y 1 y 1 y y y 1 y y PLATE -11

12 ALTERNATE FORMULA FOR SAMPLE VARIANCE Recogizig that occurs times S 1 1 ( y 1 y y ) y 1 y y Or S 1 1 ( ) ( ) Factorig ad regroupig, S 1 1 ( ) 1 ( ) 1 1 ( ) 1 ( ) Multiplyig the last term by, S 1 1 ( ) PLATE -1

13 ALTERNATE FORMULA FOR SAMPLE VARIANCE Fially, recogizig that y S ( ) y 1 NOTE: This formula ca overwhelm a hadheld calculator whe the measuremets ivolve large umbers. PLATE -13

14 EXAMPLE y = 3.5 Determiatio of stadard deviatio usig residuals. # y v v # y v v # y v v # y v v = S 50 i 1 v i ±1.37 PLATE -14

15 USING ALTERNATE FORMULA ( ) = 7, SO S 7, ( 3.5 ) sec OR S = 1.88 = ±1.37" PLATE -15

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types Data Aalysis Cocepts ad Techiques Chapter 2 1 Chapter 2: Gettig to Kow Your Data Data Objects ad Attribute Types Basic Statistical Descriptios of Data Data Visualizatio Measurig Data Similarity ad Dissimilarity

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Describing data with graphics and numbers

Describing data with graphics and numbers Describig data with graphics ad umbers Types of Data Categorical Variables also kow as class variables, omial variables Quatitative Variables aka umerical ariables either cotiuous or discrete. Graphig

More information

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS I this uit of the course we ivestigate fittig a straight lie to measured (x, y) data pairs. The equatio we wat to fit

More information

Descriptive Statistics Summary Lists

Descriptive Statistics Summary Lists Chapter 209 Descriptive Statistics Summary Lists Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical lists of meas, couts, stadard

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

An (or ) is a sequence in which each term after the first differs from the preceding term by a fixed constant, called the.

An (or ) is a sequence in which each term after the first differs from the preceding term by a fixed constant, called the. Sectio.2 Arithmetic Sequeces ad Series -.2 Arithmetic Sequeces ad Series Arithmetic Sequeces Arithmetic Series Key Terms: arithmetic sequece (arithmetic progressio), commo differece, arithmetic series

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Math 3201 Notes Chapter 4: Rational Expressions & Equations

Math 3201 Notes Chapter 4: Rational Expressions & Equations Learig Goals: See p. tet.. Equivalet Ratioal Epressios ( classes) Read Goal p. 6 tet. Math 0 Notes Chapter : Ratioal Epressios & Equatios. Defie ad give a eample of a ratioal epressio. p. 6. Defie o-permissible

More information

Capability Analysis (Variable Data)

Capability Analysis (Variable Data) Capability Aalysis (Variable Data) Revised: 0/0/07 Summary... Data Iput... 3 Capability Plot... 5 Aalysis Summary... 6 Aalysis Optios... 8 Capability Idices... Prefereces... 6 Tests for Normality... 7

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Intermediate Statistics

Intermediate Statistics Gait Learig Guides Itermediate Statistics Data processig & display, Cetral tedecy Author: Raghu M.D. STATISTICS DATA PROCESSING AND DISPLAY Statistics is the study of data or umerical facts of differet

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

ECE4050 Data Structures and Algorithms. Lecture 6: Searching

ECE4050 Data Structures and Algorithms. Lecture 6: Searching ECE4050 Data Structures ad Algorithms Lecture 6: Searchig 1 Search Give: Distict keys k 1, k 2,, k ad collectio L of records of the form (k 1, I 1 ), (k 2, I 2 ),, (k, I ) where I j is the iformatio associated

More information

Thompson s Group F (p + 1) is not Minimally Almost Convex

Thompson s Group F (p + 1) is not Minimally Almost Convex Thompso s Group F (p + ) is ot Miimally Almost Covex Claire Wladis Thompso s Group F (p + ). A Descriptio of F (p + ) Thompso s group F (p + ) ca be defied as the group of piecewiseliear orietatio-preservig

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

Data Preprocessing. Motivation

Data Preprocessing. Motivation Data Preprocessig Mirek Riedewald Some slides based o presetatio by Jiawei Ha ad Michelie Kamber Motivatio Garbage-i, garbage-out Caot get good miig results from bad data Need to uderstad data properties

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Ch 9.3 Geometric Sequences and Series Lessons

Ch 9.3 Geometric Sequences and Series Lessons Ch 9.3 Geometric Sequeces ad Series Lessos SKILLS OBJECTIVES Recogize a geometric sequece. Fid the geeral, th term of a geometric sequece. Evaluate a fiite geometric series. Evaluate a ifiite geometric

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

ITU-T G Definitions and terminology for synchronization in packet networks

ITU-T G Definitions and terminology for synchronization in packet networks I t e r a t i o a l T e l e c o m m u i c a t i o U i o ITU-T G.826 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (8/215) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Packet

More information

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method A ew Morphological 3D Shape Decompositio: Grayscale Iterframe Iterpolatio Method D.. Vizireau Politehica Uiversity Bucharest, Romaia ae@comm.pub.ro R. M. Udrea Politehica Uiversity Bucharest, Romaia mihea@comm.pub.ro

More information

Math 10C Long Range Plans

Math 10C Long Range Plans Math 10C Log Rage Plas Uits: Evaluatio: Homework, projects ad assigmets 10% Uit Tests. 70% Fial Examiatio.. 20% Ay Uit Test may be rewritte for a higher mark. If the retest mark is higher, that mark will

More information

South Slave Divisional Education Council. Math 10C

South Slave Divisional Education Council. Math 10C South Slave Divisioal Educatio Coucil Math 10C Curriculum Package February 2012 12 Strad: Measuremet Geeral Outcome: Develop spatial sese ad proportioal reasoig It is expected that studets will: 1. Solve

More information

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a 4. [10] Usig a combiatorial argumet, prove that for 1: = 0 = Let A ad B be disjoit sets of cardiality each ad C = A B. How may subsets of C are there of cardiality. We are selectig elemets for such a subset

More information

The Magma Database file formats

The Magma Database file formats The Magma Database file formats Adrew Gaylard, Bret Pikey, ad Mart-Mari Breedt Johaesburg, South Africa 15th May 2006 1 Summary Magma is a ope-source object database created by Chris Muller, of Kasas City,

More information

What is the difference between a statistician and a mortician? Nobody's dying to see the statistician! Chapter 8 Interval Estimation

What is the difference between a statistician and a mortician? Nobody's dying to see the statistician! Chapter 8 Interval Estimation Slides Preared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 What is the differece betwee a statisticia ad a morticia? Nobody's dyig to see the statisticia! Slide Chater 8 Iterval Estimatio Poulatio

More information

Convex hull ( 凸殻 ) property

Convex hull ( 凸殻 ) property Covex hull ( 凸殻 ) property The covex hull of a set of poits S i dimesios is the itersectio of all covex sets cotaiig S. For N poits P,..., P N, the covex hull C is the give by the expressio The covex hull

More information

BOOLEAN MATHEMATICS: GENERAL THEORY

BOOLEAN MATHEMATICS: GENERAL THEORY CHAPTER 3 BOOLEAN MATHEMATICS: GENERAL THEORY 3.1 ISOMORPHIC PROPERTIES The ame Boolea Arithmetic was chose because it was discovered that literal Boolea Algebra could have a isomorphic umerical aspect.

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

NTH, GEOMETRIC, AND TELESCOPING TEST

NTH, GEOMETRIC, AND TELESCOPING TEST NTH, GEOMETRIC, AND TELESCOPING TEST Sectio 9. Calculus BC AP/Dual, Revised 08 viet.dag@humbleisd.et /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test SUMMARY OF TESTS FOR SERIES Lookig at the first few

More information

Tutorial on Packet Time Metrics

Tutorial on Packet Time Metrics Power Matters. Tutorial o Packet Time Metrics Lee Cosart lee.cosart@microsemi.com ITS 204 204 Microsemi Corporatio. COMPANY POPIETAY Itroductio requecy trasport Oe-way: forward & reverse packet streams

More information

3. b. Present a combinatorial argument that for all positive integers n : : 2 n

3. b. Present a combinatorial argument that for all positive integers n : : 2 n . b. Preset a combiatorial argumet that for all positive itegers : : Cosider two distict sets A ad B each of size. Sice they are distict, the cardiality of A B is. The umber of ways of choosig a pair of

More information

A MODIFIED APPROACH FOR ESTIMATING PROCESS CAPABILITY INDICES USING IMPROVED ESTIMATORS

A MODIFIED APPROACH FOR ESTIMATING PROCESS CAPABILITY INDICES USING IMPROVED ESTIMATORS Pak. J. Statist. 017 Vol. 33(), 411-418 A MODIFIED APPROACH FOR ESTIMATING PROCESS CAPABILITY INDICES USING IMPROVED ESTIMATORS Seem Şaha Vahaplar 1 ad Özlem Ege Oruç Departmet of Statistics, Dokuz Eylül

More information

Chapter 3. Floating Point Arithmetic

Chapter 3. Floating Point Arithmetic COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 3 Floatig Poit Arithmetic Review - Multiplicatio 0 1 1 0 = 6 multiplicad 32-bit ALU shift product right multiplier add

More information

Package popkorn. R topics documented: February 20, Type Package

Package popkorn. R topics documented: February 20, Type Package Type Pacage Pacage popkor February 20, 2015 Title For iterval estimatio of mea of selected populatios Versio 0.3-0 Date 2014-07-04 Author Vi Gopal, Claudio Fuetes Maitaier Vi Gopal Depeds

More information

The golden search method: Question 1

The golden search method: Question 1 1. Golde Sectio Search for the Mode of a Fuctio The golde search method: Questio 1 Suppose the last pair of poits at which we have a fuctio evaluatio is x(), y(). The accordig to the method, If f(x())

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

Chapter 3 Descriptive Statistics Numerical Summaries

Chapter 3 Descriptive Statistics Numerical Summaries Secto 3.1 Chapter 3 Descrptve Statstcs umercal Summares Measures of Cetral Tedecy 1. Mea (Also called the Arthmetc Mea) The mea of a data set s the sum of the observatos dvded by the umber of observatos.

More information

1.8 What Comes Next? What Comes Later?

1.8 What Comes Next? What Comes Later? 35 1.8 What Comes Next? What Comes Later? A Practice Uderstadig Task For each of the followig tables, CC BY Hiroaki Maeda https://flic.kr/p/6r8odk describe how to fid the ext term i the sequece, write

More information

Informed Search. Russell and Norvig Chap. 3

Informed Search. Russell and Norvig Chap. 3 Iformed Search Russell ad Norvig Chap. 3 Not all search directios are equally promisig Outlie Iformed: use problem-specific kowledge Add a sese of directio to search: work toward the goal Heuristic fuctios:

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees.

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees. Comp 135 Machie Learig Computer Sciece Tufts Uiversity Fall 2017 Roi Khardo Some of these slides were adapted from previous slides by Carla Brodley Our secod algorithm Let s look at a simple dataset for

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1 Name Date Hr. ALGEBRA - SPRING FINAL MULTIPLE CHOICE REVIEW #. The high temperatures for Phoeix i October of 009 are listed below. Which measure of ceter will provide the most accurate estimatio of the

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

On (K t e)-saturated Graphs

On (K t e)-saturated Graphs Noame mauscript No. (will be iserted by the editor O (K t e-saturated Graphs Jessica Fuller Roald J. Gould the date of receipt ad acceptace should be iserted later Abstract Give a graph H, we say a graph

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

ANN WHICH COVERS MLP AND RBF

ANN WHICH COVERS MLP AND RBF ANN WHICH COVERS MLP AND RBF Josef Boští, Jaromír Kual Faculty of Nuclear Scieces ad Physical Egieerig, CTU i Prague Departmet of Software Egieerig Abstract Two basic types of artificial eural etwors Multi

More information

Test 4 Review. dy du 9 5. sin5 zdz. dt. 5 Ê. x 2 È 1, 3. 2cos( x) dx is less than using Simpson's. ,1 t 5 t 2. ft () t2 4.

Test 4 Review. dy du 9 5. sin5 zdz. dt. 5 Ê. x 2 È 1, 3. 2cos( x) dx is less than using Simpson's. ,1 t 5 t 2. ft () t2 4. Name: Class: Date: ID: A Test Review Short Aswer. Fid the geeral solutio of the differetial equatio below ad check the result by differetiatio. dy du 9 u. Use the error formula to estimate the error i

More information

1. SWITCHING FUNDAMENTALS

1. SWITCHING FUNDAMENTALS . SWITCING FUNDMENTLS Switchig is the provisio of a o-demad coectio betwee two ed poits. Two distict switchig techiques are employed i commuicatio etwors-- circuit switchig ad pacet switchig. Circuit switchig

More information

So we find a sample mean but what can we say about the General Education Statistics

So we find a sample mean but what can we say about the General Education Statistics So we fid a ample mea but what ca we ay about the Geeral Educatio Statitic populatio? Cla Note Cofidece Iterval for Populatio Mea (Sectio 9.) We will be doig early the ame tuff a we did i the firt ectio

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

INTERSECTION CORDIAL LABELING OF GRAPHS

INTERSECTION CORDIAL LABELING OF GRAPHS INTERSECTION CORDIAL LABELING OF GRAPHS G Meea, K Nagaraja Departmet of Mathematics, PSR Egieerig College, Sivakasi- 66 4, Virudhuagar(Dist) Tamil Nadu, INDIA meeag9@yahoocoi Departmet of Mathematics,

More information

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem Exact Miimum Lower Boud Algorithm for Travelig Salesma Problem Mohamed Eleiche GeoTiba Systems mohamed.eleiche@gmail.com Abstract The miimum-travel-cost algorithm is a dyamic programmig algorithm to compute

More information

Impact of thin film metrology on the lithographic performance of 193nm bottom antireflective coatings

Impact of thin film metrology on the lithographic performance of 193nm bottom antireflective coatings Impact of thi film metrology o the lithographic performace of 193m bottom atireflective coatigs Chris A. Mack a, Dale Harriso b, Cristia Rivas b, ad Phillip Walsh b a Lithoguru.com, Austi, TX b MetroSol,

More information

Chapter 2 and 3, Data Pre-processing

Chapter 2 and 3, Data Pre-processing CSI 4352, Itroductio to Data Miig Chapter 2 ad 3, Data Pre-processig Youg-Rae Cho Associate Professor Departmet of Computer Sciece Baylor Uiversity Why Need Data Pre-processig? Icomplete Data Missig values,

More information

MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS

MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS Fura Uiversity Electroic Joural of Udergraduate Matheatics Volue 00, 1996 6-16 MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS DAVID SITTON Abstract. How ay edges ca there be i a axiu atchig i a coplete

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

One advantage that SONAR has over any other music-sequencing product I ve worked

One advantage that SONAR has over any other music-sequencing product I ve worked *gajedra* D:/Thomso_Learig_Projects/Garrigus_163132/z_productio/z_3B2_3D_files/Garrigus_163132_ch17.3d, 14/11/08/16:26:39, 16:26, page: 647 17 CAL 101 Oe advatage that SONAR has over ay other music-sequecig

More information

Descriptive Statistics: Measures of Center

Descriptive Statistics: Measures of Center Secto 2.3 Descrptve Statstcs: Measures of Ceter Frequec dstrbutos are helpful provdg formato about categorcal data, but wth umercal data we ma wat more formato. Statstc: s a umercal measure calculated

More information

Accelerating Multi Dimensional Queries in Data Warehouses

Accelerating Multi Dimensional Queries in Data Warehouses Acceleratig Multi Dimesioal Queries i Data Warehouses Russel Pears ad Brya Houlisto School of Computig ad Mathematical Scieces, Aucklad Uiversity of Techology, New Zealad Email rpears@aut.ac.z Data Warehouses

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015.

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015. Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Hash Tables xkcd. http://xkcd.com/221/. Radom Number. Used with permissio uder Creative

More information

Lower Bounds for Sorting

Lower Bounds for Sorting Liear Sortig Topics Covered: Lower Bouds for Sortig Coutig Sort Radix Sort Bucket Sort Lower Bouds for Sortig Compariso vs. o-compariso sortig Decisio tree model Worst case lower boud Compariso Sortig

More information

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1 COSC 1P03 Ch 7 Recursio Itroductio to Data Structures 8.1 COSC 1P03 Recursio Recursio I Mathematics factorial Fiboacci umbers defie ifiite set with fiite defiitio I Computer Sciece sytax rules fiite defiitio,

More information

On Computing the Fuzzy Weighted Average Using the KM Algorithms

On Computing the Fuzzy Weighted Average Using the KM Algorithms O Computig the Fuzzy Weighted Average Usig the KM Algorithms Feilog iu ad Jerry M Medel Sigal ad Image Processig Istitute, Departmet of Electrical Egieerig Uiversity of Souther Califoria, 3740 McClitock

More information

Using The Central Limit Theorem for Belief Network Learning

Using The Central Limit Theorem for Belief Network Learning Usig The Cetral Limit Theorem for Belief Network Learig Ia Davidso, Mioo Amiia Computer Sciece Dept, SUNY Albay Albay, NY, USA,. davidso@cs.albay.edu Abstract. Learig the parameters (coditioal ad margial

More information

Frequency Distributions

Frequency Distributions Frequency Distributions RAW DATA Raw data are collected data that have not been organized numerically. An example is the set of heights of 100 male students obtained from an alphabetical listing of university

More information

Section 7.2: Direction Fields and Euler s Methods

Section 7.2: Direction Fields and Euler s Methods Sectio 7.: Directio ields ad Euler s Methods Practice HW from Stewart Tetbook ot to had i p. 5 # -3 9-3 odd or a give differetial equatio we wat to look at was to fid its solutio. I this chapter we will

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

G r a d e. 5 M a t h e M a t i c s. shape and space

G r a d e. 5 M a t h e M a t i c s. shape and space G r a d e 5 M a t h e M a t i c s shape ad space Grade 5: Shape ad Space (Measuremet) (5.SS.1) Edurig Uderstadigs: there is o direct relatioship betwee perimeter ad area. Geeral Outcome: Use direct or

More information

CSE 111 Bio: Program Design I Lecture 17: software development, list methods

CSE 111 Bio: Program Design I Lecture 17: software development, list methods CSE 111 Bio: Program Desig I Lecture 17: software developmet, list methods Robert H. Sloa(CS) & Rachel Poretsky(Bio) Uiversity of Illiois, Chicago October 19, 2017 NESTED LOOPS: REVIEW Geerate times table

More information

Optimal Mapped Mesh on the Circle

Optimal Mapped Mesh on the Circle Koferece ANSYS 009 Optimal Mapped Mesh o the Circle doc. Ig. Jaroslav Štigler, Ph.D. Bro Uiversity of Techology, aculty of Mechaical gieerig, ergy Istitut, Abstract: This paper brigs out some ideas ad

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

Which movie we can suggest to Anne?

Which movie we can suggest to Anne? ECOLE CENTRALE SUPELEC MASTER DSBI DECISION MODELING TUTORIAL COLLABORATIVE FILTERING AS A MODEL OF GROUP DECISION-MAKING You kow that the low-tech way to get recommedatios for products, movies, or etertaiig

More information