UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

Size: px
Start display at page:

Download "UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals"

Transcription

1 UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used to estimate populatio parameters. Recall that parameters are ukow fixed values about populatios, such as m ad p. The populatio mea μ is estimated usig x (x-bar), the sample mea. The populatio proportio p is estimated usig p (p-hat), the sample proportio. The populatio stadard deviatio is estimated usig s, the sample stadard deviatio. These poit estimators are the best estimators of parameters; they are ubiased estimators (because the mea of the samplig distributio is equal to the value of the parameter). Usig these statistics from sample data, we create Cofidece Itervals to provide a rage of values to capture the true parameter. The iterval is based o a Cofidece Level that determies how precise our estimate is ad how cofidet we are that our iterval captures the true parameter. Cofidece Iterval & Cofidece Level Because the poit estimate (the mea of the sample x or the proportio of the sample p ) will vary with each ew sample ad will ot ecessarily be the exact value of the populatio parameter, a rage of plausible values must be provided. This Cofidece Iterval is a iterval of values costructed aroud the poit estimate, at the ceter of the iterval, with a margi of error. The margi of error is added to ad subtracted from the poit estimate to provide a iterval ad accouts for chace variatio i the poit estimate that exists betwee samples (However, the margi of error does ot accout for biased samplig methods.). A cofidece iterval has the geeral form: poit estimate margi of error statistic (critical value) (stadard deviatio of statistic) z or t score stadard error The critical value is the z-score (or later t-score) obtaied based o the cofidece level (which provides a area).

2 If give the cofidece iterval limits, the poit estimate ca be foud, usig: (Upper cofidece level) + (Lower cofidece level) p = 2 If give the cofidece iterval limits, the margi of error ca be foud, usig: (Upper cofidece level) (Lower cofidece level) p = 2 PRACTICE: Use the give cofidece iterval to fid the poit estimate ad the margi of error. a. (.344,.528) b. (-.18,.24) The Cofidece Level is a predetermied percetage that represets how cofidet we are that the cofidece iterval costructed will actually capture the true populatio parameter. The margi of error decreases as the Cofidece Level decreases ad as the sample size icreases, arrowig the iterval. Our use of a 95% cofidece level ca be iterpreted as, We are usig a method that will provide correct results i 95% of all cofidece itervals costructed usig radomly obtaied data. To sketch a cofidece iterval, draw a ormal curve ad label the itervals critical values based o the cofidece level. For a 95% cofidece level, fid the z-score that correspods to the area to the left of the lower boud (ad to the right of the upper boud) usig a z-score sheet or a calculator: Usig the z-score sheet, look i the body of the table for area.0250 [ ] to obtai a z score critical values ±1.96 (as stadard deviatios below ad above the poit estimate). Usig the calculator, press 2 d, Distributio, ivnorm(.025), Eter to obtai a z score critical values ±1.96 (as stadard deviatios below ad above the poit estimate). 2

3 Iterpret the iterval you have costructed i cotext of the problem. Be sure to correctly iterpret the meaig of the cofidece iterval: We are 95% cofidet that the (true parameter) lies betwee (lower limit) ad (upper limit). The remaiig 5%, split equally betwee the highest 2.5% ad the lowest 2.5%, is where the true parameter lies if our iterval does ot capture the actual parameter. PRACTICE: Sketch ad label a ormal curve with the z-scores for the give cofidece itervals. a. 85% b. 90% Margi of Error & Required Sample Size Sample size depeds o the desired cofidece level ad margi of error. Use the formulas for margi of error, ad roud up to the ext larger iteger. To estimate p To estimate with To estimate without m Z pˆ (1 pˆ) m Z m t s PRACTICE: Fid the margi of error that correspods to the give statistic ad cofidece level. a. x = 70, = 100, 95% cofidece, s =12

4 b. sample size 500, 20% successes, 99% cofidece PRACTICE: How may doctors must be radomly selected for IQ tests if we wat to estimate the mea IQ score with 95% cofidece that the sample mea is withi two IQ poits of the populatio mea? PRACTICE: What is the miimum sample size eeded i order to be 99% cofidet that the margi of error is at most 6% whe the p value is estimated to be.76?

5 Cofidece Iterval for Estimatig Populatio PROPORTION ˆp A four-step system is used to orgaize the iferece process whe estimatig proportios: I. Idetify the populatio ad the parameter of iterest i cotext. II. III. Verify the assumptios/coditios (a-c), ad idetify the procedure (d) i cotext. a. Data is radomly obtaied (SRS). (Otherwise, this coditio may be assumed, which may limit the ability to geeralize the results to the populatio.) b. Populatio is at least 10 times sample size. (for idepedece ad to fid stadard deviatio.) c. Both ˆp 10 ad (1- ˆp ) 10 must be met. (for ormal approximatio) d. State, We have verified the coditios for a (type of iterval) for (parameter). With coditios met, carry out the selected procedure. Fid cofidece iterval: estimate ± margi of error (Show work) p ± Z p (1 p ) IV. Iterpret results i cotext of the problem. We are (cofidece level)% cofidet that the true (parameter) of (the specific populatio) lies betwee (the iterval bouds). (Cofirm results with calculator: STAT, TESTS, 1-PropZIt, (eter values), Calculate) Example 1: The New York Times ad CBS News coducted a atiowide poll of a SRS of radomly selected 13- to 17-year olds. Of these teeagers, 692 had a televisio i their room. Costruct a 95% cofidece iterval to estimate p. I. We are iterested i estimatig p, the proportio of 13- to 17-year olds who have a televisio i their room. II. As stated i the problem, data are obtaied from a SRS of 13- to 17-year olds. It is safe to assume that the populatio is comprised of at least 10,480 (10X sample size) 13- to 17-year olds. pˆ 10 ( 1 pˆ) ( ) 10 ( ) It is safe to use the ormal approximatio. We have verified the coditios for a oe-proportio Z cofidece iterval for p.

6 III. pˆ Z pˆ(1 pˆ) (.3397) (.6316,.6890) IV. We are 95% cofidet that the true proportio of 13- to 17-year olds who have a televisio i their room lies betwee 63.16% ad 68.90%. Example 2: We are iterested i the proportio of seiors at CBHS who pla to atted college i the state of Florida. We radomly selected 50 seiors who pla to atted college ad 37 of them say they will be goig to school i state. Costruct a 99% cofidece iterval to estimate p.

7 Cofidece Iterval for Estimatig Populatio MEAN m WITH stadard deviatio s A four-step system is used to orgaize the iferece process whe estimatig meas: I. Idetify the populatio ad the parameter of iterest i cotext. II. III. Verify the assumptios/coditios (a-c), ad idetify the procedure (d) i cotext. e. Data is radomly obtaied (SRS). (Otherwise, this coditio may be assumed, which may limit the ability to geeralize the results to the populatio.) f. Populatio is at least 10 times sample size. (for idepedece ad to fid stadard deviatio.) g. Either 30 or the origial populatio is ormally distributed. (for ormal approximatio) h. State, We have verified the coditios for a (type of iterval) for (parameter). With coditios met, carry out the selected procedure. Fid cofidece iterval: estimate ± margi of error (Show work) x ± Z σ IV. Iterpret results i cotext of the problem. We are (cofidece level)% cofidet that the true (parameter) of (the specific populatio) lies betwee (the iterval bouds). EXAMPLE 1: A sample of 54 bears from Yellowstoe Natioal Park has a mea weight of lb. Assumig that s is kow to be lb., fid a 99% CI estimate of the mea of the populatio of all such bear weights.

8 Cofidece Iterval for Populatio Mea m WITHOUT Stadard Deviatio s Follow the same procedures as The Cofidece Iterval, CI, is foud usig: x t s s, stadard deviatio of sample m, margi of error for mea without s x, the sample mea, the best poit estimate of the populatio mea Use t-distributio to obtai larger critical values whe the stadard deviatio is ot kow. The t- distributio will provide a wider iterval of values as we must approximate usig the sample stadard deviatio s. As with kow populatio stadard deviatio, the greater the sample size, the arrower the iterval. Whe determiig degrees of freedom, choose oe fewer tha sample size o t score sheet (or i calculator), df = 1, ad always roud dow to the ext lowest degrees of freedom whe the value is t exact o sheet. PRACTICE: Fid critical t value for the followig: 1. = 15; SRS; ormally distributed populatio; 95% cofidece level; s = Costruct a CI (without 4-step process) for estimatig mea: = 20 (from a ormally distributed populatio) x = 4.4 i s = 4.2 i 99% cofidece level EXAMPLE 2: A sample of 54 bears from Yellowstoe Natioal Park has a mea weight of lb. Assumig that s is ot kow, but the sample stadard deviatio is lb., costruct a 99% CI estimate of the mea of the populatio of all such bear weights.

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure.

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure. SAMPLE VERSUS POPULATION Populatio - cosists of all possible measuremets that ca be made o a particular item or procedure. Ofte a populatio has a ifiite umber of data elemets Geerally expese to determie

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

So we find a sample mean but what can we say about the General Education Statistics

So we find a sample mean but what can we say about the General Education Statistics So we fid a ample mea but what ca we ay about the Geeral Educatio Statitic populatio? Cla Note Cofidece Iterval for Populatio Mea (Sectio 9.) We will be doig early the ame tuff a we did i the firt ectio

More information

What is the difference between a statistician and a mortician? Nobody's dying to see the statistician! Chapter 8 Interval Estimation

What is the difference between a statistician and a mortician? Nobody's dying to see the statistician! Chapter 8 Interval Estimation Slides Preared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 What is the differece betwee a statisticia ad a morticia? Nobody's dyig to see the statisticia! Slide Chater 8 Iterval Estimatio Poulatio

More information

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1 Name Date Hr. ALGEBRA - SPRING FINAL MULTIPLE CHOICE REVIEW #. The high temperatures for Phoeix i October of 009 are listed below. Which measure of ceter will provide the most accurate estimatio of the

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #2

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #2 Name Date Hr. ALGEBRA - SPRING FINAL MULTIPLE CHOICE REVIEW # 5. Which measure of ceter is most appropriate for the followig data set? {7, 7, 75, 77,, 9, 9, 90} Mea Media Stadard Deviatio Rage 5. The umber

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Xbar/R Chart for x1-x3

Xbar/R Chart for x1-x3 Chapter 6 Selected roblem Solutios Sectio 6-5 6- a) X-bar ad Rage - Iitial Study Chartig roblem 6- X-bar Rage ----- ----- UCL:. sigma 7.4 UCL:. sigma 5.79 Ceterlie 5.9 Ceterlie.5 LCL: -. sigma.79 LCL:

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Section 7.2: Direction Fields and Euler s Methods

Section 7.2: Direction Fields and Euler s Methods Sectio 7.: Directio ields ad Euler s Methods Practice HW from Stewart Tetbook ot to had i p. 5 # -3 9-3 odd or a give differetial equatio we wat to look at was to fid its solutio. I this chapter we will

More information

Descriptive Statistics Summary Lists

Descriptive Statistics Summary Lists Chapter 209 Descriptive Statistics Summary Lists Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical lists of meas, couts, stadard

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

Using The Central Limit Theorem for Belief Network Learning

Using The Central Limit Theorem for Belief Network Learning Usig The Cetral Limit Theorem for Belief Network Learig Ia Davidso, Mioo Amiia Computer Sciece Dept, SUNY Albay Albay, NY, USA,. davidso@cs.albay.edu Abstract. Learig the parameters (coditioal ad margial

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

Parabolic Path to a Best Best-Fit Line:

Parabolic Path to a Best Best-Fit Line: Studet Activity : Fidig the Least Squares Regressio Lie By Explorig the Relatioship betwee Slope ad Residuals Objective: How does oe determie a best best-fit lie for a set of data? Eyeballig it may be

More information

Capability Analysis (Variable Data)

Capability Analysis (Variable Data) Capability Aalysis (Variable Data) Revised: 0/0/07 Summary... Data Iput... 3 Capability Plot... 5 Aalysis Summary... 6 Aalysis Optios... 8 Capability Idices... Prefereces... 6 Tests for Normality... 7

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

4.3 Modeling with Arithmetic Sequences

4.3 Modeling with Arithmetic Sequences Name Class Date 4.3 Modelig with Arithmetic Sequeces Essetial Questio: How ca you solve real-world problems usig arithmetic sequeces? Resource Locker Explore Iterpretig Models of Arithmetic Sequeces You

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Intermediate Statistics

Intermediate Statistics Gait Learig Guides Itermediate Statistics Data processig & display, Cetral tedecy Author: Raghu M.D. STATISTICS DATA PROCESSING AND DISPLAY Statistics is the study of data or umerical facts of differet

More information

Test 4 Review. dy du 9 5. sin5 zdz. dt. 5 Ê. x 2 È 1, 3. 2cos( x) dx is less than using Simpson's. ,1 t 5 t 2. ft () t2 4.

Test 4 Review. dy du 9 5. sin5 zdz. dt. 5 Ê. x 2 È 1, 3. 2cos( x) dx is less than using Simpson's. ,1 t 5 t 2. ft () t2 4. Name: Class: Date: ID: A Test Review Short Aswer. Fid the geeral solutio of the differetial equatio below ad check the result by differetiatio. dy du 9 u. Use the error formula to estimate the error i

More information

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS I this uit of the course we ivestigate fittig a straight lie to measured (x, y) data pairs. The equatio we wat to fit

More information

Lecture 13: Validation

Lecture 13: Validation Lecture 3: Validatio Resampli methods Holdout Cross Validatio Radom Subsampli -Fold Cross-Validatio Leave-oe-out The Bootstrap Bias ad variace estimatio Three-way data partitioi Itroductio to Patter Recoitio

More information

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000.

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000. 5-23 The course that gives CM its Zip Memory Maagemet II: Dyamic Storage Allocatio Mar 6, 2000 Topics Segregated lists Buddy system Garbage collectio Mark ad Sweep Copyig eferece coutig Basic allocator

More information

A MODIFIED APPROACH FOR ESTIMATING PROCESS CAPABILITY INDICES USING IMPROVED ESTIMATORS

A MODIFIED APPROACH FOR ESTIMATING PROCESS CAPABILITY INDICES USING IMPROVED ESTIMATORS Pak. J. Statist. 017 Vol. 33(), 411-418 A MODIFIED APPROACH FOR ESTIMATING PROCESS CAPABILITY INDICES USING IMPROVED ESTIMATORS Seem Şaha Vahaplar 1 ad Özlem Ege Oruç Departmet of Statistics, Dokuz Eylül

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

Consider the following population data for the state of California. Year Population

Consider the following population data for the state of California. Year Population Assigmets for Bradie Fall 2016 for Chapter 5 Assigmet sheet for Sectios 5.1, 5.3, 5.5, 5.6, 5.7, 5.8 Read Pages 341-349 Exercises for Sectio 5.1 Lagrage Iterpolatio #1, #4, #7, #13, #14 For #1 use MATLAB

More information

Ch 9.3 Geometric Sequences and Series Lessons

Ch 9.3 Geometric Sequences and Series Lessons Ch 9.3 Geometric Sequeces ad Series Lessos SKILLS OBJECTIVES Recogize a geometric sequece. Fid the geeral, th term of a geometric sequece. Evaluate a fiite geometric series. Evaluate a ifiite geometric

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types Data Aalysis Cocepts ad Techiques Chapter 2 1 Chapter 2: Gettig to Kow Your Data Data Objects ad Attribute Types Basic Statistical Descriptios of Data Data Visualizatio Measurig Data Similarity ad Dissimilarity

More information

Package popkorn. R topics documented: February 20, Type Package

Package popkorn. R topics documented: February 20, Type Package Type Pacage Pacage popkor February 20, 2015 Title For iterval estimatio of mea of selected populatios Versio 0.3-0 Date 2014-07-04 Author Vi Gopal, Claudio Fuetes Maitaier Vi Gopal Depeds

More information

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 5 Fuctios for All Subtasks Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 5.1 void Fuctios 5.2 Call-By-Referece Parameters 5.3 Usig Procedural Abstractio 5.4 Testig ad Debuggig

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual)

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual) Wavelet Trasform CSE 49 G Itroductio to Data Compressio Witer 6 Wavelet Trasform Codig PACW Wavelet Trasform A family of atios that filters the data ito low resolutio data plus detail data high pass filter

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

Math 10C Long Range Plans

Math 10C Long Range Plans Math 10C Log Rage Plas Uits: Evaluatio: Homework, projects ad assigmets 10% Uit Tests. 70% Fial Examiatio.. 20% Ay Uit Test may be rewritte for a higher mark. If the retest mark is higher, that mark will

More information

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation The Nature of Light Chapter Reflectio ad Refractio of Light Sectios: 5, 8 Problems: 6, 7, 4, 30, 34, 38 Particles of light are called photos Each photo has a particular eergy E = h ƒ h is Plack s costat

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

Optimal Mapped Mesh on the Circle

Optimal Mapped Mesh on the Circle Koferece ANSYS 009 Optimal Mapped Mesh o the Circle doc. Ig. Jaroslav Štigler, Ph.D. Bro Uiversity of Techology, aculty of Mechaical gieerig, ergy Istitut, Abstract: This paper brigs out some ideas ad

More information

On Computing the Fuzzy Weighted Average Using the KM Algorithms

On Computing the Fuzzy Weighted Average Using the KM Algorithms O Computig the Fuzzy Weighted Average Usig the KM Algorithms Feilog iu ad Jerry M Medel Sigal ad Image Processig Istitute, Departmet of Electrical Egieerig Uiversity of Souther Califoria, 3740 McClitock

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

Math 167 Review for Test 4 Chapters 7, 8 & 9

Math 167 Review for Test 4 Chapters 7, 8 & 9 Math 167 Review for Tet 4 Chapter 7, 8 & 9 Vocabulary 1. A ordered pair (a, b) i a of a equatio i term of x ad y if the equatio become a true tatemet whe a i ubtituted for x ad b i ubtituted for y. 2.

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

The Graphs of Polynomial Functions

The Graphs of Polynomial Functions Sectio 4.3 The Graphs of Polyomial Fuctios Objective 1: Uderstadig the Defiitio of a Polyomial Fuctio Defiitio Polyomial Fuctio 1 2 The fuctio ax a 1x a 2x a1x a0 is a polyomial fuctio of degree where

More information

On (K t e)-saturated Graphs

On (K t e)-saturated Graphs Noame mauscript No. (will be iserted by the editor O (K t e-saturated Graphs Jessica Fuller Roald J. Gould the date of receipt ad acceptace should be iserted later Abstract Give a graph H, we say a graph

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

South Slave Divisional Education Council. Math 10C

South Slave Divisional Education Council. Math 10C South Slave Divisioal Educatio Coucil Math 10C Curriculum Package February 2012 12 Strad: Measuremet Geeral Outcome: Develop spatial sese ad proportioal reasoig It is expected that studets will: 1. Solve

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

27 Refraction, Dispersion, Internal Reflection

27 Refraction, Dispersion, Internal Reflection Chapter 7 Refractio, Dispersio, Iteral Reflectio 7 Refractio, Dispersio, Iteral Reflectio Whe we talked about thi film iterferece, we said that whe light ecouters a smooth iterface betwee two trasparet

More information

Analysis of Server Resource Consumption of Meteorological Satellite Application System Based on Contour Curve

Analysis of Server Resource Consumption of Meteorological Satellite Application System Based on Contour Curve Advaces i Computer, Sigals ad Systems (2018) 2: 19-25 Clausius Scietific Press, Caada Aalysis of Server Resource Cosumptio of Meteorological Satellite Applicatio System Based o Cotour Curve Xiagag Zhao

More information

Małgorzata Sterna. Mateusz Cicheński, Mateusz Jarus, Michał Miszkiewicz, Jarosław Szymczak

Małgorzata Sterna. Mateusz Cicheński, Mateusz Jarus, Michał Miszkiewicz, Jarosław Szymczak Małgorzata Stera Mateusz Cicheński, Mateusz Jarus, Michał Miszkiewicz, Jarosław Szymczak Istitute of Computig Sciece Pozań Uiversity of Techology Pozań - Polad Scope of the Talk Problem defiitio MP Formulatio

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

The Adjacency Matrix and The nth Eigenvalue

The Adjacency Matrix and The nth Eigenvalue Spectral Graph Theory Lecture 3 The Adjacecy Matrix ad The th Eigevalue Daiel A. Spielma September 5, 2012 3.1 About these otes These otes are ot ecessarily a accurate represetatio of what happeed i class.

More information

COMP 558 lecture 6 Sept. 27, 2010

COMP 558 lecture 6 Sept. 27, 2010 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Convex hull ( 凸殻 ) property

Convex hull ( 凸殻 ) property Covex hull ( 凸殻 ) property The covex hull of a set of poits S i dimesios is the itersectio of all covex sets cotaiig S. For N poits P,..., P N, the covex hull C is the give by the expressio The covex hull

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Chapter 3. Floating Point Arithmetic

Chapter 3. Floating Point Arithmetic COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 3 Floatig Poit Arithmetic Review - Multiplicatio 0 1 1 0 = 6 multiplicad 32-bit ALU shift product right multiplier add

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

The golden search method: Question 1

The golden search method: Question 1 1. Golde Sectio Search for the Mode of a Fuctio The golde search method: Questio 1 Suppose the last pair of poits at which we have a fuctio evaluatio is x(), y(). The accordig to the method, If f(x())

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

Recursive Estimation

Recursive Estimation Recursive Estimatio Raffaello D Adrea Sprig 2 Problem Set: Probability Review Last updated: February 28, 2 Notes: Notatio: Uless otherwise oted, x, y, ad z deote radom variables, f x (x) (or the short

More information

Convergence results for conditional expectations

Convergence results for conditional expectations Beroulli 11(4), 2005, 737 745 Covergece results for coditioal expectatios IRENE CRIMALDI 1 ad LUCA PRATELLI 2 1 Departmet of Mathematics, Uiversity of Bologa, Piazza di Porta Sa Doato 5, 40126 Bologa,

More information

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard 1 A wireless keyboard is supplied with your computer. The wireless keyboard uses a stadard key arragemet with additioal keys that perform specific fuctios. Usig the Wireless Keyboard Two AA alkalie batteries

More information

Math 216A Notes, Week 4

Math 216A Notes, Week 4 Math 216A Notes, Week 4 Scribe: Jaso Erbele Disclaimer: These otes are ot early as polished ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk. 1. Probabilistic

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Chapter 18: Ray Optics Questions & Problems

Chapter 18: Ray Optics Questions & Problems Chapter 18: Ray Optics Questios & Problems c -1 2 1 1 1 h s θr= θi 1siθ 1 = 2si θ 2 = θ c = si ( ) + = m = = v s s f h s 1 Example 18.1 At high oo, the su is almost directly above (about 2.0 o from the

More information

Data Preprocessing. Motivation

Data Preprocessing. Motivation Data Preprocessig Mirek Riedewald Some slides based o presetatio by Jiawei Ha ad Michelie Kamber Motivatio Garbage-i, garbage-out Caot get good miig results from bad data Need to uderstad data properties

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Tutorial on Packet Time Metrics

Tutorial on Packet Time Metrics Power Matters. Tutorial o Packet Time Metrics Lee Cosart lee.cosart@microsemi.com ITS 204 204 Microsemi Corporatio. COMPANY POPIETAY Itroductio requecy trasport Oe-way: forward & reverse packet streams

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

Xiaozhou (Steve) Li, Atri Rudra, Ram Swaminathan. HP Laboratories HPL Keyword(s): graph coloring; hardness of approximation

Xiaozhou (Steve) Li, Atri Rudra, Ram Swaminathan. HP Laboratories HPL Keyword(s): graph coloring; hardness of approximation Flexible Colorig Xiaozhou (Steve) Li, Atri Rudra, Ram Swamiatha HP Laboratories HPL-2010-177 Keyword(s): graph colorig; hardess of approximatio Abstract: Motivated b y reliability cosideratios i data deduplicatio

More information

ECE4050 Data Structures and Algorithms. Lecture 6: Searching

ECE4050 Data Structures and Algorithms. Lecture 6: Searching ECE4050 Data Structures ad Algorithms Lecture 6: Searchig 1 Search Give: Distict keys k 1, k 2,, k ad collectio L of records of the form (k 1, I 1 ), (k 2, I 2 ),, (k, I ) where I j is the iformatio associated

More information

Chapter 4. Procedural Abstraction and Functions That Return a Value. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 4. Procedural Abstraction and Functions That Return a Value. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 4 Procedural Abstractio ad Fuctios That Retur a Value Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 4.1 Top-Dow Desig 4.2 Predefied Fuctios 4.3 Programmer-Defied Fuctios 4.4

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Cocurrecy Threads ad Cocurrecy i Java: Part 1 What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Visualization of Gauss-Bonnet Theorem

Visualization of Gauss-Bonnet Theorem Visualizatio of Gauss-Boet Theorem Yoichi Maeda maeda@keyaki.cc.u-tokai.ac.jp Departmet of Mathematics Tokai Uiversity Japa Abstract: The sum of exteral agles of a polygo is always costat, π. There are

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Threads ad Cocurrecy i Java: Part 1 1 Cocurrecy What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Algorithms for Disk Covering Problems with the Most Points

Algorithms for Disk Covering Problems with the Most Points Algorithms for Disk Coverig Problems with the Most Poits Bi Xiao Departmet of Computig Hog Kog Polytechic Uiversity Hug Hom, Kowloo, Hog Kog csbxiao@comp.polyu.edu.hk Qigfeg Zhuge, Yi He, Zili Shao, Edwi

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

Physics 11b Lecture #19

Physics 11b Lecture #19 Physics b Lecture #9 Geometrical Optics S&J Chapter 34, 35 What We Did Last Time Itesity (power/area) of EM waves is give by the Poytig vector See slide #5 of Lecture #8 for a summary EM waves are produced

More information