Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Size: px
Start display at page:

Download "Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only"

Transcription

1 Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of this material is adapted from CAD/CAM Theory ad ractice, by Ibrahim Zeid, McGraw-Hill, 99. This material is be used strictly for teachig ad learig of this course. ezier curves. Defiig a ezier curve ezier curve was developed by the Frech egieer ierre ezier (9-999 i 96 for use i the desig of Reault automobile bodies. ierre ezier the wet o to develop the UNISURF CAD/CAM system. As show i Figure, the ezier curve is defied i terms of the locatios of + poits. These poits are called data or cotrol poits. They form the vertices of what is called the cotrol or ezier characteristic polygo. Figure shows cubic ezier curves for various cotrol poits. I a ezier curve, oly the first ad the last cotrol poits or vertices of the polygo actually lie o the curve. The curve is also always taget to the first ad last polygo segmets. I additio, the curve shape teds to follow the polygo shape. These three observatios should eable the user to sketch or predict the curve shape oce its cotrol poits are give. A closed ezier curve ca simply be geerated by closig its characteristic polygo or choosig ad to be coicidet. Figure also shows a example of closed curve.

2 u = k Cotrol poits (vertices ---- Characteristic polygo u = 4 Figure. Cubic ezier curve 5 4 Figure. Cubic ezier curves for various cotrol poits. Assigmet Costruct ezier curves similar to those i Figure usig your CAD software. Describe the procedure for costructig these curves.. arametric equatios of the ezier curve I geeral, a ezier curve sectio ca be fitted to ay umber of cotrol poits. The umber of cotrol poits to be approximated determies the degree of the ezier curve. For + cotrol poits, the ezier curve is defied by the followig polyomial of degree : ( = u ( i= i i,, where u is ay poit o the curve ad is a cotrol poit, are the erstei polyomials. The erstei polyomial serves as the bledig or basis fuctio for the ezier curve ad is give by i i,

3 where C (, i i i = C(, i u ( ezier curves i, ( is the biomial coefficiet C (, i! = ( i!( i! Equatio ( ca be expaded to give ( u = ( C(, u( C(, u + C(, u ( + u, ( u (4 From Equatio ( ad (, we ca get the followigs: =, u, ( = =, u = (,( u u = u,( =,, = (, = u( u ( = u, u =,, = (, = u(,( u = u ( ( = u, u Therefore for =, ( u = ( + u( + u ( + u. (5

4 Assigmet Derive ezier curve equatios similar to Equatio (5 for =,,. Explai what happes whe =,. Derive erstei polyomials for = 4, ad costruct the correspodig ezier curve equatio. Assigmet Assume the coordiates of 4 cotrol poits, write a Matlab program to draw the correspodig cotrol polygo. Use Δu =. to geerate the itermediate poits of the ezier curve usig Equatio (5. Use straight lies to coect these poits to geerate the curve. Usig proper trasformatio, create the frot, top, side, ad isometric views of the -dimesioal curve ad its cotrol polygo. Show your Matlab program too. From the discussio above, we ca see that the major differeces betwee the ezier curve ad the cubic splie curve are: ( The shape of ezier curve is cotrolled by its defiig poits oly. First derivatives are ot used i the curve developmet as i the case of the cubic splie. This allows the desiger a much better feel for the relatioship betwee iput (poits ad output (curve. ( The order or the degree of ezier curve is variable ad is related to the umber of poits defiig it; + poits defied ad th degree curve which permits higher-order cotiuity. This is ot the case for cubic splies where the degree is always cubic for a splie segmet. ( The ezier curve is smoother tha the cubic splie because it has higher-order derivatives.. roperties of the ezier curves A very useful property of a ezier is that it always passes through the first ad last cotrol poits. If we substitute u = ad i Equatio (4, the boudary coditios at the two ed poits are ( = = (6, ( The curve is taget to the first ad last segmets of the characteristic polygo. From Equatio (5, the first derivatives whe there are 4 cotrol poits ( = is give by ( u = ( + (( 6u( + (6u( u + u (7 4

5 Therefore the taget vectors at the startig ad edig poits are ( ( = (8 ad vertices. ( ( = (9 Similarly, it ca be show that the secod derivative at is determied by,, ; or, i geeral, the r-th derivative at a edpoit is determied by its r eighborig Assigmet 4 rove from Equatio (4 that i geeral, the first derivatives at the startig ad edig poits are give by Equatio ( ad (, respectively: ( ( = ( = ( ( ( where ad ( defie the first ad last segmets of the curve polygo. ( Aother useful property of the ezier curve is that the curve is symmetric with respect to u ad (-u. This meas that the sequece of cotrol poits defiig the curve ca be reversed without chage of the curve shape; that is, reversig the directio of parametrizatio does ot chage the curve shape. This ca be achieved by substitutig i Equatio (4 ad oticig that C(, i = C(, i i, ( u i, i, has a maximum value of C (, i( i / i u = v. This is a result of the fact that ad are symmetric if they are plotted as fuctios of u. The iterpolatio polyomial i ( i / occurrig at u = i / which ca be obtaied from the equatio d (, / du =. i This implies that each cotrol poit is most ifluetial o the curve shape at u = i /. For example, for a cubic ezier curve,,,, ad are most ifluetial whe u =,,, ad respectively. Therefore, each cotrol poit is weighed by its bledig fuctio for each u value. 5

6 Assigmet 5, Derive the maximum values of these 4 fuctios, u, u, ad, ad the values of u at the maximum. lot these 4 fuctios ad check whether your derivatio is correct.,, (, ( The curve shape ca be modified by either chagig oe or more vertices of its polygo or by keepig the polygo fixed ad specifyig multiple coicidet poits at a vertex, as show i Figure. I Figure (a, the vertex * is pulled to the ew positio. I Figure (b, is assiged a multiplicity k, that is, or cotrol poits are placed o the same positio. The higher the multiplicity, the more the curve is pulled toward. * k= k= k= (a Chagig a vertex (b Specifyig multiple coicidet poits at a vertex Figure. Modificatios of cubic ezier curve. Assigmet 6 Use your CAD software to geerate figures similar to Figure. Aother importat property of ay ezier curve is that it lies withi the covex polygo boudary of the cotrol poits. This is called the covex hull property. This follows from the properties of ezier bledig fuctio: they are all positive ad for ay valid value of u the sum of the fuctios is always equal to for ay degree of i, ezier curve. Ay curve positio is simply a weighted sum of the cotrol poit positios. If the polygo defiig a curve segmet degeerates to a straight lie, the resultig segmet must therefore be liear. Also, the size of the covex hull is a upper boud o the size of the curve itself; that is, the curve always lies iside its covex hull. This is a useful property for graphics fuctios such as displayig or clippig the curve. A ezier curve still has some disadvatages. First, the curve does ot pass through the cotrol poits, which may be icoveiet to some desigers. Secod, the curve lacks 6

7 local cotrol. It oly has the global cotrol ature. If oe cotrol poit is chaged, the whole curve chages. The degree of the ezier curve depeds o the umber of cotrol poits. Oly 4 cotrol poits are eeded for a cubic ezier Curve. High order curves may result if there are may cotrol poits. Whe curves of may cotrol poits are to be geerated, they ca be formed by piecig several ezier sectios of lower degree together. iecig together smaller sectios also gives us better cotrol over the shape of the curve i small regios. Sice ezier curves passes through edpoits, it is easy to match curve sectios with cotiuity. Also, ezier curve have the importat property that it tagets to the cotrol polygo at the ed poits. Therefore we ca obtai C joiig the edpoit to the adjacet cotrol poits colliear. C cotiuity by makig the two lies 7

Cubic Polynomial Curves with a Shape Parameter

Cubic Polynomial Curves with a Shape Parameter roceedigs of the th WSEAS Iteratioal Coferece o Robotics Cotrol ad Maufacturig Techology Hagzhou Chia April -8 00 (pp5-70) Cubic olyomial Curves with a Shape arameter MO GUOLIANG ZHAO YANAN Iformatio ad

More information

Convex hull ( 凸殻 ) property

Convex hull ( 凸殻 ) property Covex hull ( 凸殻 ) property The covex hull of a set of poits S i dimesios is the itersectio of all covex sets cotaiig S. For N poits P,..., P N, the covex hull C is the give by the expressio The covex hull

More information

Bezier curves. 1. Defining a Bezier curve. A closed Bezier curve can simply be generated by closing its characteristic polygon

Bezier curves. 1. Defining a Bezier curve. A closed Bezier curve can simply be generated by closing its characteristic polygon Curve represetato Copyrght@, YZU Optmal Desg Laboratory. All rghts reserved. Last updated: Yeh-Lag Hsu (--). Note: Ths s the course materal for ME55 Geometrc modelg ad computer graphcs, Yua Ze Uversty.

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Reading. Parametric curves. Mathematical curve representation. Curves before computers. Required: Angel , , , 11.9.

Reading. Parametric curves. Mathematical curve representation. Curves before computers. Required: Angel , , , 11.9. Readig Required: Agel.-.3,.5.,.6-.7,.9. Optioal Parametric curves Bartels, Beatty, ad Barsky. A Itroductio to Splies for use i Computer Graphics ad Geometric Modelig, 987. Fari. Curves ad Surfaces for

More information

Parametric curves. Reading. Parametric polynomial curves. Mathematical curve representation. Brian Curless CSE 457 Spring 2015

Parametric curves. Reading. Parametric polynomial curves. Mathematical curve representation. Brian Curless CSE 457 Spring 2015 Readig Required: Agel 0.-0.3, 0.5., 0.6-0.7, 0.9 Parametric curves Bria Curless CSE 457 Sprig 05 Optioal Bartels, Beatty, ad Barsy. A Itroductio to Splies for use i Computer Graphics ad Geometric Modelig,

More information

Consider the following population data for the state of California. Year Population

Consider the following population data for the state of California. Year Population Assigmets for Bradie Fall 2016 for Chapter 5 Assigmet sheet for Sectios 5.1, 5.3, 5.5, 5.6, 5.7, 5.8 Read Pages 341-349 Exercises for Sectio 5.1 Lagrage Iterpolatio #1, #4, #7, #13, #14 For #1 use MATLAB

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

Parabolic Path to a Best Best-Fit Line:

Parabolic Path to a Best Best-Fit Line: Studet Activity : Fidig the Least Squares Regressio Lie By Explorig the Relatioship betwee Slope ad Residuals Objective: How does oe determie a best best-fit lie for a set of data? Eyeballig it may be

More information

Counting Regions in the Plane and More 1

Counting Regions in the Plane and More 1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September 016 1. Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o

More information

Lecture 24: Bezier Curves and Surfaces. thou shalt be near unto me Genesis 45:10

Lecture 24: Bezier Curves and Surfaces. thou shalt be near unto me Genesis 45:10 Lecture 24: Bezier Curves ad Surfaces thou shalt be ear uto me Geesis 45:0. Iterpolatio ad Approximatio Freeform curves ad surfaces are smooth shapes ofte describig ma-made objects. The hood of a car,

More information

Reading. Subdivision curves and surfaces. Subdivision curves. Chaikin s algorithm. Recommended:

Reading. Subdivision curves and surfaces. Subdivision curves. Chaikin s algorithm. Recommended: Readig Recommeded: Stollitz, DeRose, ad Salesi. Wavelets for Computer Graphics: Theory ad Applicatios, 996, sectio 6.-6.3, 0., A.5. Subdivisio curves ad surfaces Note: there is a error i Stollitz, et al.,

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

Math 10C Long Range Plans

Math 10C Long Range Plans Math 10C Log Rage Plas Uits: Evaluatio: Homework, projects ad assigmets 10% Uit Tests. 70% Fial Examiatio.. 20% Ay Uit Test may be rewritte for a higher mark. If the retest mark is higher, that mark will

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

2D Isogeometric Shape Optimization considering both control point positions and weights as design variables

2D Isogeometric Shape Optimization considering both control point positions and weights as design variables 1 th World Cogress o tructural ad Multidiscipliary Optimizatio May 19-24, 213, Orlado, Florida, UA 2D Isogeometric hape Optimizatio cosiderig both cotrol poit positios ad weights as desig variables Yeo-Ul

More information

EVALUATION OF ALGORITHMS FOR SURFACE INTERPOLATION OVER TRIANGULAR PATCH. Jenn-Taur Lee

EVALUATION OF ALGORITHMS FOR SURFACE INTERPOLATION OVER TRIANGULAR PATCH. Jenn-Taur Lee EVALUATION OF ALGORITHMS FOR SURFACE INTERPOLATION OVER TRIANGULAR PATCH Je-Taur Lee Departmet of Civil ad Evirometal Egieerig Uiversity of Wiscosi-Madiso Madiso, WI 53706 ABSTRACT Surface iterpolatio

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

South Slave Divisional Education Council. Math 10C

South Slave Divisional Education Council. Math 10C South Slave Divisioal Educatio Coucil Math 10C Curriculum Package February 2012 12 Strad: Measuremet Geeral Outcome: Develop spatial sese ad proportioal reasoig It is expected that studets will: 1. Solve

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Study on Bezier Curve Variable Step-length Algorithm

Study on Bezier Curve Variable Step-length Algorithm Available olie at www.sciecedirect.com Physics Procedia 25 (2012 ) 1781 1786 2012 Iteratioal Coferece o Solid State Devices ad Materials Sciece Study o Bezier Curve Variable Step-legth Algorithm Guorog

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

The Graphs of Polynomial Functions

The Graphs of Polynomial Functions Sectio 4.3 The Graphs of Polyomial Fuctios Objective 1: Uderstadig the Defiitio of a Polyomial Fuctio Defiitio Polyomial Fuctio 1 2 The fuctio ax a 1x a 2x a1x a0 is a polyomial fuctio of degree where

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

APPLICATION NOTE PACE1750AE BUILT-IN FUNCTIONS

APPLICATION NOTE PACE1750AE BUILT-IN FUNCTIONS APPLICATION NOTE PACE175AE BUILT-IN UNCTIONS About This Note This applicatio brief is iteded to explai ad demostrate the use of the special fuctios that are built ito the PACE175AE processor. These powerful

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

Section 7.2: Direction Fields and Euler s Methods

Section 7.2: Direction Fields and Euler s Methods Sectio 7.: Directio ields ad Euler s Methods Practice HW from Stewart Tetbook ot to had i p. 5 # -3 9-3 odd or a give differetial equatio we wat to look at was to fid its solutio. I this chapter we will

More information

Extended Space Mapping with Bézier Patches and Volumes

Extended Space Mapping with Bézier Patches and Volumes Eteded Space Mappig with Béier Patches ad Volumes Bejami Schmitt 1, 2 Aleader Pasko 1 Vladimir Savcheko 1 Abstract We eplore a geeral eteded space mappig as a framework for trasformig a hypersurface i

More information

Orientation. Orientation 10/28/15

Orientation. Orientation 10/28/15 Orietatio Orietatio We will defie orietatio to mea a object s istataeous rotatioal cofiguratio Thik of it as the rotatioal equivalet of positio 1 Represetig Positios Cartesia coordiates (x,y,z) are a easy

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Intermediate Statistics

Intermediate Statistics Gait Learig Guides Itermediate Statistics Data processig & display, Cetral tedecy Author: Raghu M.D. STATISTICS DATA PROCESSING AND DISPLAY Statistics is the study of data or umerical facts of differet

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed.

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed. MASSACHUSETTS INSTITUTE of TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.161 Moder Optics Project Laboratory 6.637 Optical Sigals, Devices & Systems Problem Set No. 1 Geometric optics

More information

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem Exact Miimum Lower Boud Algorithm for Travelig Salesma Problem Mohamed Eleiche GeoTiba Systems mohamed.eleiche@gmail.com Abstract The miimum-travel-cost algorithm is a dyamic programmig algorithm to compute

More information

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method A ew Morphological 3D Shape Decompositio: Grayscale Iterframe Iterpolatio Method D.. Vizireau Politehica Uiversity Bucharest, Romaia ae@comm.pub.ro R. M. Udrea Politehica Uiversity Bucharest, Romaia mihea@comm.pub.ro

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

Smooth Spline Surfaces over Irregular Meshes

Smooth Spline Surfaces over Irregular Meshes Smooth Splie Surfaces over Irregular Meshes Charles Loop Apple Computer, Ic. Abstract A algorithm for creatig smooth splie surfaces over irregular meshes is preseted. The algorithm is a geeralizatio of

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Polymorph: Morphing Among Multiple Images

Polymorph: Morphing Among Multiple Images Feature Article Polymorph: Morphig Amog Multiple Images Image metamorphosis has prove to be a powerful visual effects tool. May breathtakig examples ow appear i film ad televisio, depictig the fluid trasformatio

More information

Assignment 5; Due Friday, February 10

Assignment 5; Due Friday, February 10 Assigmet 5; Due Friday, February 10 17.9b The set X is just two circles joied at a poit, ad the set X is a grid i the plae, without the iteriors of the small squares. The picture below shows that the iteriors

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

Computers and Scientific Thinking

Computers and Scientific Thinking Computers ad Scietific Thikig David Reed, Creighto Uiversity Chapter 15 JavaScript Strigs 1 Strigs as Objects so far, your iteractive Web pages have maipulated strigs i simple ways use text box to iput

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES

INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES INTERNATIONAL JOURNAL OF GEOMETRY Vol. 2 (2013), No. 1, 5-22 INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES NENAD U. STOJANOVIĆ Abstract. If above each side of a regular polygo

More information

Mathematics and Art Activity - Basic Plane Tessellation with GeoGebra

Mathematics and Art Activity - Basic Plane Tessellation with GeoGebra 1 Mathematics ad Art Activity - Basic Plae Tessellatio with GeoGebra Worksheet: Explorig Regular Edge-Edge Tessellatios of the Cartesia Plae ad the Mathematics behid it. Goal: To eable Maths educators

More information

New Results on Energy of Graphs of Small Order

New Results on Energy of Graphs of Small Order Global Joural of Pure ad Applied Mathematics. ISSN 0973-1768 Volume 13, Number 7 (2017), pp. 2837-2848 Research Idia Publicatios http://www.ripublicatio.com New Results o Eergy of Graphs of Small Order

More information

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a 4. [10] Usig a combiatorial argumet, prove that for 1: = 0 = Let A ad B be disjoit sets of cardiality each ad C = A B. How may subsets of C are there of cardiality. We are selectig elemets for such a subset

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Computing the minimum distance between two Bézier curves

Computing the minimum distance between two Bézier curves Computig the miimum distace betwee two Bézier curves Xiao-Diao Che, Liqiag Che, Yigag Wag, Gag Xu, Ju-Hai Yog, Jea-Claude Paul To cite this versio: Xiao-Diao Che, Liqiag Che, Yigag Wag, Gag Xu, Ju-Hai

More information

The golden search method: Question 1

The golden search method: Question 1 1. Golde Sectio Search for the Mode of a Fuctio The golde search method: Questio 1 Suppose the last pair of poits at which we have a fuctio evaluatio is x(), y(). The accordig to the method, If f(x())

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

FEATURE RECOGNITION OF ROTATIONAL PARTS USING BIQUADRATIC BEZIER PATCHES

FEATURE RECOGNITION OF ROTATIONAL PARTS USING BIQUADRATIC BEZIER PATCHES roceedigs of the Iteratioal Coferece o Mechaical Egieerig 7 (ICME7) 9-31 December 7, Dhaka, Bagladesh ICME7- FEATURE RECOGNITION OF ROTATIONAL ARTS USING BIQUADRATIC BEZIER ATCHES J. Kumar 1 ad N. Roy

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

Algorithms Chapter 3 Growth of Functions

Algorithms Chapter 3 Growth of Functions Algorithms Chapter 3 Growth of Fuctios Istructor: Chig Chi Li 林清池助理教授 chigchi.li@gmail.com Departmet of Computer Sciece ad Egieerig Natioal Taiwa Ocea Uiversity Outlie Asymptotic otatio Stadard otatios

More information

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 5 Fuctios for All Subtasks Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 5.1 void Fuctios 5.2 Call-By-Referece Parameters 5.3 Usig Procedural Abstractio 5.4 Testig ad Debuggig

More information

State-space feedback 6 challenges of pole placement

State-space feedback 6 challenges of pole placement State-space feedbac 6 challeges of pole placemet J Rossiter Itroductio The earlier videos itroduced the cocept of state feedbac ad demostrated that it moves the poles. x u x Kx Bu It was show that whe

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Lecture 18. Optimization in n dimensions

Lecture 18. Optimization in n dimensions Lecture 8 Optimizatio i dimesios Itroductio We ow cosider the problem of miimizig a sigle scalar fuctio of variables, f x, where x=[ x, x,, x ]T. The D case ca be visualized as fidig the lowest poit of

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

1. Sketch a concave polygon and explain why it is both concave and a polygon. A polygon is a simple closed curve that is the union of line segments.

1. Sketch a concave polygon and explain why it is both concave and a polygon. A polygon is a simple closed curve that is the union of line segments. SOLUTIONS MATH / Fial Review Questios, F5. Sketch a cocave polygo ad explai why it is both cocave ad a polygo. A polygo is a simple closed curve that is the uio of lie segmets. A polygo is cocave if it

More information

XIV. Congress of the International Society for Photogrammetry Hamburg 1980

XIV. Congress of the International Society for Photogrammetry Hamburg 1980 XIV. Cogress of the Iteratioal Society for Photogrammetry Hamburg 980 Commissio V Preseted Paper ALTAN, M. O. Techical Uiversity of Istabul Chair of Photograrretry ad Adjustmet A COMPARISON BETWEEN -PARAMETER

More information

1.8 What Comes Next? What Comes Later?

1.8 What Comes Next? What Comes Later? 35 1.8 What Comes Next? What Comes Later? A Practice Uderstadig Task For each of the followig tables, CC BY Hiroaki Maeda https://flic.kr/p/6r8odk describe how to fid the ext term i the sequece, write

More information

A Taste of Maya. Character Setup

A Taste of Maya. Character Setup This tutorial goes through the steps to add aimatio cotrols to a previously modeled character. The character i the scee below is wearig clothes made with Cloth ad the sceery has bee created with Pait Effects.

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

FINITE DIFFERENCE TIME DOMAIN METHOD (FDTD)

FINITE DIFFERENCE TIME DOMAIN METHOD (FDTD) FINIT DIFFRNC TIM DOMAIN MTOD (FDTD) The FDTD method, proposed b Yee, 1966, is aother umerical method, used widel for the solutio of M problems. It is used to solve ope-regio scatterig, radiatio, diffusio,

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation The Nature of Light Chapter Reflectio ad Refractio of Light Sectios: 5, 8 Problems: 6, 7, 4, 30, 34, 38 Particles of light are called photos Each photo has a particular eergy E = h ƒ h is Plack s costat

More information

Efficient Free-Form Surface Modeling with Uncertainty

Efficient Free-Form Surface Modeling with Uncertainty IEEE Iteratioal oferece o Robotics ad utomatio, Mieapolis, US, pril 1996, 1825-183. Efficiet Free-Form Surface Modelig with Ucertaity Miguel gel García Luis asañez Divisio of Robotics ad rtificial Itelligece

More information

Accuracy Improvement in Camera Calibration

Accuracy Improvement in Camera Calibration Accuracy Improvemet i Camera Calibratio FaJie L Qi Zag ad Reihard Klette CITR, Computer Sciece Departmet The Uiversity of Aucklad Tamaki Campus, Aucklad, New Zealad fli006, qza001@ec.aucklad.ac.z r.klette@aucklad.ac.z

More information

Chapter 3 MATHEMATICAL MODELING OF TOLERANCE ALLOCATION AND OVERVIEW OF EVOLUTIONARY ALGORITHMS

Chapter 3 MATHEMATICAL MODELING OF TOLERANCE ALLOCATION AND OVERVIEW OF EVOLUTIONARY ALGORITHMS 28 Chapter 3 MATHEMATICAL MODELING OF TOLERANCE ALLOCATION AND OVERVIEW OF EVOLUTIONARY ALGORITHMS Tolerace sythesis deals with the allocatio of tolerace values to various dimesios of idividual compoets

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Counting the Number of Minimum Roman Dominating Functions of a Graph

Counting the Number of Minimum Roman Dominating Functions of a Graph Coutig the Number of Miimum Roma Domiatig Fuctios of a Graph SHI ZHENG ad KOH KHEE MENG, Natioal Uiversity of Sigapore We provide two algorithms coutig the umber of miimum Roma domiatig fuctios of a graph

More information

A Resource for Free-standing Mathematics Qualifications

A Resource for Free-standing Mathematics Qualifications Ope.ls The first sheet is show elow. It is set up to show graphs with equatios of the form = m + c At preset the values of m ad c are oth zero. You ca chage these values usig the scroll ars. Leave the

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Parallel Polygon Approximation Algorithm Targeted at Reconfigurable Multi-Ring Hardware

Parallel Polygon Approximation Algorithm Targeted at Reconfigurable Multi-Ring Hardware Parallel Polygo Approximatio Algorithm Targeted at Recofigurable Multi-Rig Hardware M. Arif Wai* ad Hamid R. Arabia** *Califoria State Uiversity Bakersfield, Califoria, USA **Uiversity of Georgia, Georgia,

More information

Chapter 10. Defining Classes. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 10. Defining Classes. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 10 Defiig Classes Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 10.1 Structures 10.2 Classes 10.3 Abstract Data Types 10.4 Itroductio to Iheritace Copyright 2015 Pearso Educatio,

More information

Graceful Labelings of Pendant Graphs

Graceful Labelings of Pendant Graphs Rose-Hulma Udergraduate Mathematics Joural Volume Issue Article 0 Graceful Labeligs of Pedat Graphs Alessadra Graf Norther Arizoa Uiversity, ag@au.edu Follow this ad additioal works at: http://scholar.rose-hulma.edu/rhumj

More information

Tuned Ternary Quad Subdivision

Tuned Ternary Quad Subdivision Tued Terary Quad Subdivisio Tiayu Ni ad Ahmad H. Nasri 2 Dept. CISE, Uiversity of Florida 2 Dept. of Computer Sciece America Uiversity of Beirut Abstract. A well-documeted problem of Catmull ad Clark subdivisio

More information

Overview Chapter 12 A display model

Overview Chapter 12 A display model Overview Chapter 12 A display model Why graphics? A graphics model Examples Bjare Stroustrup www.stroustrup.com/programmig 3 Why bother with graphics ad GUI? Why bother with graphics ad GUI? It s very

More information

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 )

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 ) EE26: Digital Desig, Sprig 28 3/6/8 EE 26: Itroductio to Digital Desig Combiatioal Datapath Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Combiatioal Logic Blocks Multiplexer Ecoders/Decoders

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information