Shape Optimization for Consumer-Level 3D Printing

Size: px
Start display at page:

Download "Shape Optimization for Consumer-Level 3D Printing"

Transcription

1 hape Optimization for Consumer-Level 3D Printing Przemyslaw Musialski TU Wien

2 Motivation 3D Modeling 3D Printing Przemyslaw Musialski 2

3 Motivation Przemyslaw Musialski 3

4 Przemyslaw Musialski 4

5 Example Przemyslaw Musialski 5

6 Goals 1. Optimize the shape to fulfill the desired goals Przemyslaw Musialski 6

7 Goals 1. Optimize the shape to fulfill the desired goals 2. Keep the input shape deformation minimal Przemyslaw Musialski 7

8 Related Work Optimization of Mass Properties [Prevost et al. 2013] [Baecher et al. 2014] tructural Optimization [tava et al. 2012] [Lu et al. 2014] Reduced Order Models [Pentland and Williams 1989] [von Tycowitch et al. 2013] Przemyslaw Musialski 8

9 hape Optimization

10 Input and Output Przemyslaw Musialski 10

11 Input and Output Input surface Przemyslaw Musialski 11

12 Input and Output input surface Przemyslaw Musialski 12

13 Input and Output input surface output: two surfaces outer offset surface inner offset surface solid body between and Przemyslaw Musialski 13

14 Offset urfaces surface deformation by offset: x i = x i + δ i v i Przemyslaw Musialski 14

15 Offset urfaces surface deformation by offset: x i = x i + δ i v i x i δ i v i for each vertex x i along v i x i add an individual offset δ i Przemyslaw Musialski 15

16 Offset urfaces surface deformation by offset: x i = x i + δ i v i x i δ i v i for each vertex x i along v i x i add an individual offset δ i Przemyslaw Musialski 16

17 Offset urfaces surface deformation by offset: x i = x i + δ i v i for each vertex x i along v i add an individual offset δ i Przemyslaw Musialski 17

18 Offset urfaces How far can we offset? Along which directions V? V Przemyslaw Musialski 18

19 Offset Bounds Przemyslaw Musialski 19

20 Offset Bounds global local Przemyslaw Musialski 20

21 Offset Bounds inside: skeleton Mean Curvature Flow [Tagliasacchi et al. 2012] Przemyslaw Musialski 21

22 Offset Vectors inside: skeleton Mean Curvature Flow [Tagliasacchi et al. 2012] offset along vectors v i V V Przemyslaw Musialski 22

23 Offset Vectors and Bounds inside: skeleton Mean Curvature Flow [Tagliasacchi et al. 2012] offset along vectors v i V outside a constant max. value V Przemyslaw Musialski 23

24 hape Optimization Problem minimize objective f as a function of δ : min δ f δ s. t. g(δ) subject to constraints g(δ) for example: f make shape float subject to g keep upright orientation Przemyslaw Musialski 24

25 hape Optimization Problem minimize objective f as a function of δ : min δ f (δ) n unknowns issues: problem is huge for large meshes scales very badly problem is underdetermined there exist many solutions (regularization needed) Przemyslaw Musialski 25

26 hape Optimization Problem minimize objective f as a function of δ : min δ f (δ) issues: problem is huge for large meshes scales very badly problem is underdetermined there exist many solutions (regularization needed) Przemyslaw Musialski 26

27 Order Reduction

28 Order Reduction order reduction: lower the dimensionality while preserving input-output behavior idea: project problem onto a lower dimensional space Manifold Harmonics Przemyslaw Musialski 28

29 Mesh Laplacian Input Mesh M Differential Operator Δ M Mesh Laplacian L M Przemyslaw Musialski 29

30 Manifold Harmonics diagonalization of the Laplacian matrix L pectral Theorem: L = ΓΛΓ T L Γ Λ Γ T Przemyslaw Musialski 30

31 Manifold Harmonics diagonalization of the Laplacian matrix L pectral Theorem: L = ΓΛΓ T generalization of the Fourier Transform for scalar functions on surfaces [VALLET, B. AND LÉVY, B pectral Geometry Processing with Manifold Harmonics. Computer Graphics Forum 27, 2, ] Przemyslaw Musialski 31

32 Manifold Harmonics diagonalization of the Laplacian matrix L pectral Theorem: L = ΓΛΓ T generalization of the Fourier Transform for scalar functions on surfaces [VALLET, B. AND LÉVY, B pectral Geometry Processing with Manifold Harmonics. Computer Graphics Forum 27, 2, ] Przemyslaw Musialski 32

33 Manifold Harmonics eigenfunctions Γ = [ γ 1 γ 2 γ n ] shape can be transformed to X = Γ T X γ 1 γ 2 γ 3 γ 4 γ 5 γ 6 γ 7 γ n Przemyslaw Musialski 33

34 Manifold Harmonics eigenfunctions Γ = [ γ 1 γ 2 γ n ] shape can be transformed to X = Γ T X reconstruction X k = Γ k X k with Γ k = [ γ 1 γ 2 γ k ] Przemyslaw Musialski 34

35 Manifold Harmonics eigenfunctions Γ = [ γ 1 γ 2 γ n ] shape can be transformed to X = Γ T X reconstruction X k = Γ k X k with Γ k = [ γ 1 γ 2 γ k ] Przemyslaw Musialski 35

36 Order Reduction project unknown offsets δ = δ 1, δ 2,, δ n T onto Γ k : α 1 γ 1 α 2 γ 2 α 3 γ 3 δ = Γ k α = α 4 γ 4 α 5 γ 5 α 6 γ 6 vector α = α 1, α 2,, α k T now contains the unknowns! α 7 γ 7 α k γ k Przemyslaw Musialski 36

37 Order Reduction project unknown offsets δ = δ 1, δ 2,, δ n T onto Γ k : x i = x i + δ i v i k α 1 γ 1 α 2 γ 2 α 3 γ 3 α 4 γ 4 α 5 γ 5 α 6 γ 6 x i = x i + j=1 α j γ ij v i α 7 γ 7 α k γ k Przemyslaw Musialski 37

38 Reduced hape Optimization Problem minimize objective f as a function of α: min α f (α) α 1 γ 1 α 2 γ 2 α 3 γ 3 (subject to constraints) α 4 γ 4 α 5 γ 5 α 6 γ 6 α 7 γ 7 α k γ k Przemyslaw Musialski 38

39 Reduced hape Optimization Problem minimize objective f as a function of α: min α f (α) k unknowns, k n α 1 γ 1 α 2 γ 2 α 3 γ 3 We deform only the low-frequencies and leave high-frequency details untouched! α 4 γ 4 α 5 γ 5 α 6 γ 6 δ = Γ k α α 7 γ 7 α k γ k Przemyslaw Musialski 39

40 Reduced hape Optimization Problem minimize objective f as a function of α: min α f (α) k unknowns, k n independent of mesh resolution implicit regularization numerically stable easy to implement δ = Γ k α Przemyslaw Musialski 40

41 Applications I: Mass Properties

42 Example Przemyslaw Musialski 42

43 Equilibrium F g = F b Buoyancy Force: F b Center of Buoyancy Center of Mass Mass Properties Gravity: F g P() Przemyslaw Musialski 43

44 Applications Gauss Divergence Theorem allows us to compute mass properties as a function of the surface Center of Buoyancy P m = M P x,y,z () = CoM = c x c y c z T P x 2,xy,,z 2 () = I = I x 2 I xy I xz I xy I y 2 I yz I xz I yz I z 2 Center of Mass Przemyslaw Musialski 44

45 Applications optimization problem Center of Buoyancy min α f P δ(α) an analytical gradient f = f P P δ δ α Center of Mass Przemyslaw Musialski 45

46 Applications static stability monostatic stability rotational stability static stability under storage volume and buoyancy Przemyslaw Musialski 46

47 pinning Turtle Przemyslaw Musialski 47

48 Rabbit Rolly-Polly Przemyslaw Musialski 48

49 Balanced Bottles Przemyslaw Musialski 49

50 objective f Evaluation infeasible number of basis functions k Przemyslaw Musialski 50

51 objective f Evaluation and Performance infeasible time in seconds Przemyslaw Musialski 51

52 objective f Evaluation and Performance infeasible t=87s t=0.4s Przemyslaw Musialski 52 t=4.4s

53 Applications II: Modal ynthesis

54 Natural Frequencies I Frequency: 440 Hz Concert pitch A Przemyslaw Musialski 54

55 Natural Frequencies II 1 st mode (pitch) 440 Hz 2 nd mode (1 st overtone) 1060 Hz 3 rd mode (2 nd overtone) 2790 Hz Overtone spectrum characteristic sound of object Przemyslaw Musialski 55

56 Natural Frequencies III Natural modes depend on material shape Przemyslaw Musialski 56

57 Modal Analysis material properties finite element analysis experimental analysis 610 Hz 1461 Hz 1645 Hz 2701 Hz 3201 Hz Przemyslaw Musialski 57

58 Goal: Modal ynthesis shape optimization fabrication Przemyslaw Musialski 58

59 Vertex-Normal Parametrization Use offset surfaces Constant wall thickness outer surface = user input single optimization parameter δ controls offset magnitude Przemyslaw Musialski 60 inner surface is offset along vertex normals

60 Vertex-Normal Parametrization Large offsets and high curvatures self-intersections Przemyslaw Musialski 61

61 hape Parametrization Use Reduced Basis with Manifold Harmonics Przemyslaw Musialski 62

62 hape Parametrization Use Reduced Basis with Manifold Harmonics Define offsets δ as linear combination of basis functions Γ k δ = Γ k α = X + k i=1 Przemyslaw Musialski 63

63 hape Optimization Use non-linear optimization routine (Matlab) p 0 target pitch p... pitch of incument solution α coefficient vector min α f α = p p 0 2 Przemyslaw Musialski 64

64 Fabrication Material good acoustic properties cast into complex shape Tin melting point of 230 C Young s modulus of 50 GPa Przemyslaw Musialski 65

65 Fabrication Oval bell molds from sand Rabbit bell molds from caoutchouc Przemyslaw Musialski 66

66 Bell Przemyslaw Musialski 67

67 Bell Przemyslaw Musialski 68

68 Rabbit Przemyslaw Musialski 69

69 Rabbit Przemyslaw Musialski 70

70 Results Aluminium plates Bell Median error of 1.7% 0.7% with parameter estimation Error of 2.8% Rabbit Bell Error of 11% 6% with parameter estimation Przemyslaw Musialski 71

71 Discussion & Limitations skeleton dependence our method relies on the skeleton we use iterative mesh contraction (Mean Curvature Flow) design space limitation we can only offset a surface up to the skeleton Przemyslaw Musialski 72

72 Conclusions we proposed a novel framework for shape optimization we provide an elegant and efficient basis-reduction we demonstrate the method by optimizing mass properties natural frequencies Przemyslaw Musialski 73

73 Publications Musialski, P., Auzinger, T., Birsak, M., Wimmer, M. & Kobbelt, L. Reduced-Order hape Optimization Using Offset urfaces. ACM Trans. Graph. (Proc. ACM IGGRAPH 2015) 34, 102:1 102:9 (2015). Hafner, C., Musialski, P., Auzinger, T., Wimmer, M. & Kobbelt, L. Optimization of natural frequencies for fabrication-aware shape modeling. in ACM IGGRAPH 2015 Posters - IGGRAPH (ACM Press, 2015). Hafner, C. Optimization of Natural Frequencies for Fabrication- Aware hape Modeling, Master Thesis, TU-Wien (2015) Przemyslaw Musialski 74

74 Thank you! Przemyslaw Musialski 75

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Skeleton Based As-Rigid-As-Possible Volume Modeling

Skeleton Based As-Rigid-As-Possible Volume Modeling Skeleton Based As-Rigid-As-Possible Volume Modeling Computer Science Department, Rutgers University As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

ME Optimization of a Frame

ME Optimization of a Frame ME 475 - Optimization of a Frame Analysis Problem Statement: The following problem will be analyzed using Abaqus. 4 7 7 5,000 N 5,000 N 0,000 N 6 6 4 3 5 5 4 4 3 3 Figure. Full frame geometry and loading

More information

359. Parametrization-based shape optimization of shell structures in the case of free vibrations

359. Parametrization-based shape optimization of shell structures in the case of free vibrations 359. Parametrization-based shape optimization of shell structures in the case of free vibrations D. Dagys 1, V. Ostasevicius 2, R. Gaidys 3 1,2,3 Kaunas University of Technology, K. Donelaicio 73, LT-44029,

More information

Computing and Processing Correspondences with Functional Maps

Computing and Processing Correspondences with Functional Maps Computing and Processing Correspondences with Functional Maps SIGGRAPH 2017 course Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal,

More information

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models C. Aberle, A. Hakim, and U. Shumlak Aerospace and Astronautics University of Washington, Seattle American Physical Society

More information

Time-of-Flight Surface De-noising through Spectral Decomposition

Time-of-Flight Surface De-noising through Spectral Decomposition Time-of-Flight Surface De-noising through Spectral Decomposition Thiago R. dos Santos, Alexander Seitel, Hans-Peter Meinzer, Lena Maier-Hein Div. Medical and Biological Informatics, German Cancer Research

More information

Laplacian Operator and Smoothing

Laplacian Operator and Smoothing Laplacian Operator and Smoothing Xifeng Gao Acknowledgements for the slides: Olga Sorkine-Hornung, Mario Botsch, and Daniele Panozzo Applications in Geometry Processing Smoothing Parameterization Remeshing

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry Lecturer: Adrian Butscher, Justin Solomon Scribe: Adrian Buganza-Tepole CS 468 (Spring 2013) Discrete Differential Geometry Lecture 19: Conformal Geometry Conformal maps In previous lectures we have explored

More information

Scanning Real World Objects without Worries 3D Reconstruction

Scanning Real World Objects without Worries 3D Reconstruction Scanning Real World Objects without Worries 3D Reconstruction 1. Overview Feng Li 308262 Kuan Tian 308263 This document is written for the 3D reconstruction part in the course Scanning real world objects

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2 Universidad de Chile The numerical simulation of complex PDE problems Facultad de Ciencias Físicas y Matemáticas P. Frey, M. De Buhan Year 2008 MA691 & CC60X A numerical simulation project The finite element

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Easy modeling generate new shapes by deforming existing ones

Easy modeling generate new shapes by deforming existing ones Deformation I Deformation Motivation Easy modeling generate new shapes by deforming existing ones Motivation Easy modeling generate new shapes by deforming existing ones Motivation Character posing for

More information

Surface Curvature Estimation for Edge Spinning Algorithm *

Surface Curvature Estimation for Edge Spinning Algorithm * Surface Curvature Estimation for Edge Spinning Algorithm * Martin Cermak and Vaclav Skala University of West Bohemia in Pilsen Department of Computer Science and Engineering Czech Republic {cermakm skala}@kiv.zcu.cz

More information

Animation of 3D surfaces

Animation of 3D surfaces Animation of 3D surfaces 2013-14 Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible

More information

Skeleton-Based Shape Deformation using Simplex Transformations

Skeleton-Based Shape Deformation using Simplex Transformations Computer Graphics International 2006 Skeleton-Based Shape Deformation using Simplex Transformations Han-Bing Yan, Shi-Min Hu and Ralph Martin Outline Motivation Introduction Mesh segmentation using skeleton

More information

Justin Solomon MIT, Spring

Justin Solomon MIT, Spring Justin Solomon MIT, Spring 2017 http://www.gogeometry.com Instructor: Justin Solomon Email: jsolomon@mit.edu Office: 32-D460 Office hours: Wednesdays, 1pm-3pm Geometric Data Processing

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Structural re-design of engine components

Structural re-design of engine components Structural re-design of engine components Product design cycle Design Development Testing Structural optimization Product knowledge Design freedom 2/18 Structural re-design of engine components Product

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Parametric Study of Engine Rigid Body Modes

Parametric Study of Engine Rigid Body Modes Parametric Study of Engine Rigid Body Modes Basem Alzahabi and Samir Nashef C. S. Mott Engineering and Science Center Dept. Mechanical Engineering Kettering University 17 West Third Avenue Flint, Michigan,

More information

Shape optimization of free-form shells consisting of developable surfaces

Shape optimization of free-form shells consisting of developable surfaces 26 30 September, 2016, Tokyo, Japan K. Kawaguchi, M. Ohsaki, T. Takeuchi (eds.) Shape optimization of free-form shells consisting of developable surfaces Kengo NAKAMURA*, Makoto OHSAKI a, Jinglan CUI b

More information

Purdue e-pubs. Purdue University. Jeongil Park Samsung Electronics Co. Nasir Bilal Purdue University. Douglas E. Adams Purdue University

Purdue e-pubs. Purdue University. Jeongil Park Samsung Electronics Co. Nasir Bilal Purdue University. Douglas E. Adams Purdue University Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 26 Development of a Two-Dimensional Finite Element Model of a Suction Valve for Reduction

More information

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Fernando Prevedello Regis Ataídes Nícolas Spogis Wagner Ortega Guedes Fabiano Armellini

More information

Assignment 4: Mesh Parametrization

Assignment 4: Mesh Parametrization CSCI-GA.3033-018 - Geometric Modeling Assignment 4: Mesh Parametrization In this exercise you will Familiarize yourself with vector field design on surfaces. Create scalar fields whose gradients align

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Mesh-Based Inverse Kinematics

Mesh-Based Inverse Kinematics CS468, Wed Nov 9 th 2005 Mesh-Based Inverse Kinematics R. W. Sumner, M. Zwicker, C. Gotsman, J. Popović SIGGRAPH 2005 The problem 1 General approach Learn from experience... 2 As-rigid-as-possible shape

More information

Generative Part Structural Analysis Fundamentals

Generative Part Structural Analysis Fundamentals CATIA V5 Training Foils Generative Part Structural Analysis Fundamentals Version 5 Release 19 September 2008 EDU_CAT_EN_GPF_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Vector Integration : Surface Integrals

Vector Integration : Surface Integrals Vector Integration : Surface Integrals P. Sam Johnson April 10, 2017 P. Sam Johnson Vector Integration : Surface Integrals April 10, 2017 1/35 Overview : Surface Area and Surface Integrals You know how

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

Dynamic Points: When Geometry Meets Physics. Xiaohu Guo Stony Brook

Dynamic Points: When Geometry Meets Physics. Xiaohu Guo Stony Brook Dynamic Points: When Geometry Meets Physics Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Point Based Graphics Pipeline Acquisition Modeling Rendering laser scanning

More information

Exam paper: Numerical Analysis of Continua I

Exam paper: Numerical Analysis of Continua I Exam paper: Numerical Analysis of Continua I Tuesday April th:. - 2. Code: 8W3, BMT 3. Biomedical Technology Eindhoven University of Technology This is an open book exam. It comprises questions. The questions

More information

GUIDED WAVE PROPAGATION IN PLATE HAVING TRUSSED STRUCTURES

GUIDED WAVE PROPAGATION IN PLATE HAVING TRUSSED STRUCTURES Jurnal Mekanikal June 2014, No 37, 26-30 GUIDED WAVE PROPAGATION IN PLATE HAVING TRUSSED STRUCTURES Lee Boon Shing and Zair Asrar Ahmad Faculty of Mechanical Engineering, University Teknologi Malaysia,

More information

Optimization to Reduce Automobile Cabin Noise

Optimization to Reduce Automobile Cabin Noise EngOpt 2008 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 01-05 June 2008. Optimization to Reduce Automobile Cabin Noise Harold Thomas, Dilip Mandal, and Narayanan Pagaldipti

More information

9 FREE VIBRATION AND EARTHQUAKE ANALYSIS OF A BUILDING

9 FREE VIBRATION AND EARTHQUAKE ANALYSIS OF A BUILDING TUTORIAL MANUAL 9 FREE VIBRATION AND EARTHQUAKE ANALYSIS OF A BUILDING This example demonstrates the natural frequency of a long five-storey building when subjected to free vibration and earthquake loading.

More information

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 211 Riemann Sum Approach Suppose we wish to integrate w f (x, y, z), a continuous function, on the box-shaped region

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Parametric Representation of Scroll Geometry with Variable Wall Thickness. * Corresponding Author: ABSTRACT 1.

Parametric Representation of Scroll Geometry with Variable Wall Thickness. * Corresponding Author: ABSTRACT 1. 1268, Page 1 Parametric Representation of Scroll Geometry with Variable Wall Thickness Bryce R. Shaffer 1 * and Eckhard A. Groll 2 1 Air Squared Inc. Broomfield, CO, USA 2 Purdue University, Mechanical

More information

The Finite Element Method

The Finite Element Method The Finite Element Method A Practical Course G. R. Liu and S. S. Quek Chapter 1: Computational modeling An overview 1 CONTENTS INTRODUCTION PHYSICAL PROBLEMS IN ENGINEERING COMPUTATIONAL MODELLING USING

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

REDUCTION OF STRUCTURE BORNE SOUND BY NUMERICAL OPTIMIZATION

REDUCTION OF STRUCTURE BORNE SOUND BY NUMERICAL OPTIMIZATION PACS REFERENCE: 43.4.+s REDUCTION OF STRUCTURE BORNE SOUND BY NUMERICAL OPTIMIZATION Bös, Joachim; Nordmann, Rainer Department of Mechatronics and Machine Acoustics Darmstadt University of Technology Magdalenenstr.

More information

IDETC POINT-BASED SHAPE MONITORING OF PLATE BENDING FOR LARGE-SCALE STORAGE TANKS

IDETC POINT-BASED SHAPE MONITORING OF PLATE BENDING FOR LARGE-SCALE STORAGE TANKS Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC2017 August 6-9, 2017, Cleveland, Ohio, USA IDETC2017-68105

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

Surface Reconstruction

Surface Reconstruction Eurographics Symposium on Geometry Processing (2006) Surface Reconstruction 2009.12.29 Some methods for surface reconstruction Classification 1. Based on Delaunay triangulation(or Voronoi diagram) Alpha

More information

Separation of CT Nominal-Actual Comparisons for Compensation of Plastic Injection Molds

Separation of CT Nominal-Actual Comparisons for Compensation of Plastic Injection Molds Separation of CT Nominal-Actual Comparisons for Compensation of Plastic Injection Molds Robert Schmitt 1, Christopher Isenberg 1 1 WZL of RWTH Aachen University, Steinbachstr. 19, 52074 Aachen, Germany,

More information

Assignment 5: Shape Deformation

Assignment 5: Shape Deformation CSCI-GA.3033-018 - Geometric Modeling Assignment 5: Shape Deformation Goal of this exercise In this exercise, you will implement an algorithm to interactively deform 3D models. You will construct a two-level

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

Brain Surface Conformal Spherical Mapping

Brain Surface Conformal Spherical Mapping Brain Surface Conformal Spherical Mapping Min Zhang Department of Industrial Engineering, Arizona State University mzhang33@asu.edu Abstract It is well known and proved that any genus zero surface can

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Aero-Vibro Acoustics For Wind Noise Application. David Roche and Ashok Khondge ANSYS, Inc.

Aero-Vibro Acoustics For Wind Noise Application. David Roche and Ashok Khondge ANSYS, Inc. Aero-Vibro Acoustics For Wind Noise Application David Roche and Ashok Khondge ANSYS, Inc. Outline 1. Wind Noise 2. Problem Description 3. Simulation Methodology 4. Results 5. Summary Thursday, October

More information

An optimization method for generating self-equilibrium shape of curved surface from developable surface

An optimization method for generating self-equilibrium shape of curved surface from developable surface 25-28th September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.) An optimization method for generating self-equilibrium shape of curved surface from developable surface Jinglan CI *, Maoto

More information

MAT-Test A New Method of Thin Film Materials Characterisation. LPCVD silicon nitride film bent through 90º

MAT-Test A New Method of Thin Film Materials Characterisation. LPCVD silicon nitride film bent through 90º MAT-Test A New Method of Thin Film Materials Characterisation LPCVD silicon nitride film bent through 90º Introduction Measurements of Thin-Film Materials Properties There is a present and growing need

More information

FREE VIBRATION AND EARTHQUAKE ANALYSIS OF A BUILDING

FREE VIBRATION AND EARTHQUAKE ANALYSIS OF A BUILDING 8 FREE VIBRATION AND EARTHQUAKE ANALYSIS OF A BUILDING This example demonstrates the natural frequency of a long five-storey building when subjected to free vibration and earthquake loading. The building

More information

Model parametrization strategies for Newton-based acoustic full waveform

Model parametrization strategies for Newton-based acoustic full waveform Model parametrization strategies for Newton-based acoustic full waveform inversion Amsalu Y. Anagaw, University of Alberta, Edmonton, Canada, aanagaw@ualberta.ca Summary This paper studies the effects

More information

From processing to learning on graphs

From processing to learning on graphs From processing to learning on graphs Patrick Pérez Maths and Images in Paris IHP, 2 March 2017 Signals on graphs Natural graph: mesh, network, etc., related to a real structure, various signals can live

More information

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends Imagine stream processor; Bill Dally, Stanford Connection Machine CM; Thinking Machines Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid Jeffrey Bolz Eitan Grinspun Caltech Ian Farmer

More information

Stable and Multiscale Topological Signatures

Stable and Multiscale Topological Signatures Stable and Multiscale Topological Signatures Mathieu Carrière, Steve Oudot, Maks Ovsjanikov Inria Saclay Geometrica April 21, 2015 1 / 31 Shape = point cloud in R d (d = 3) 2 / 31 Signature = mathematical

More information

Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 1627, FI-70211, Finland

Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 1627, FI-70211, Finland Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 627, FI-72, Finland timo.lahivaara@uku.fi INTRODUCTION The modeling of the acoustic wave fields often

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS.

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. 1. 3D AIRWAY TUBE RECONSTRUCTION. RELATED TO FIGURE 1 AND STAR METHODS

More information

Inspire : Topography Optimization. Updated by Sanjay Nainani

Inspire : Topography Optimization. Updated by Sanjay Nainani Inspire 2017.3: Topography Optimization Updated by Sanjay Nainani Import model Steps to Import: Select File Import Select the file Start.stmod Review Thickness Steps to Review: Select the parts from the

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry 1 Math Review Lecture 14 15 May 2013 Discrete Exterior Calculus Lecturer: Justin Solomon Scribe: Cassidy Saenz Before we dive into Discrete Exterior

More information

Animation of 3D surfaces.

Animation of 3D surfaces. Animation of 3D surfaces Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible =

More information

MEEN 3360 Engineering Design and Simulation Spring 2016 Homework #1 This homework is due Tuesday, February 2, From your book and other

MEEN 3360 Engineering Design and Simulation Spring 2016 Homework #1 This homework is due Tuesday, February 2, From your book and other MEEN 3360 Engineering Design and Simulation Spring 2016 Homework #1 This homework is due Tuesday, February 2, 2016 1.0 From your book and other sources, write a paragraph explaining CFD and finite element

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity

Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity November 8th, 2006 Outline Motivation Motivation Motivation for Modelling Breast Deformation Mesh Generation

More information

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels Edge Detection Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface

More information

Pose analysis using spectral geometry

Pose analysis using spectral geometry Vis Comput DOI 10.1007/s00371-013-0850-0 ORIGINAL ARTICLE Pose analysis using spectral geometry Jiaxi Hu Jing Hua Springer-Verlag Berlin Heidelberg 2013 Abstract We propose a novel method to analyze a

More information

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Email: jrkumar@iitk.ac.in Curve representation 1. Wireframe models There are three types

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION

RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION Zaimović-Uzunović, N. * ; Lemeš, S. ** ; Ćurić, D. *** ; Topčić, A. **** * University of Zenica, Fakultetska 1, 72000 Zenica, Bosnia and Herzegovina, nzaimovic@mf.unze.ba

More information

Autodesk Moldflow Insight AMI Cool Analysis Products

Autodesk Moldflow Insight AMI Cool Analysis Products Autodesk Moldflow Insight 2012 AMI Cool Analysis Products Revision 1, 22 March 2012. This document contains Autodesk and third-party software license agreements/notices and/or additional terms and conditions

More information

THIS paper presents the recent advances in mesh deformation

THIS paper presents the recent advances in mesh deformation 1 On Linear Variational Surface Deformation Methods Mario Botsch Computer Graphics Laboratory ETH Zurich Olga Sorkine Computer Graphics Group TU Berlin Abstract This survey reviews the recent advances

More information