GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued

Size: px
Start display at page:

Download "GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued"

Transcription

1 GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued Spatial Analyst - Spatial Analyst is an ArcGIS extension designed to work with raster data - in lecture I went through a series of demonstrations illustrating the use of several important Spatial Analyst tools Density (revisited) used to create a continuous raster density surface from point or line features - a density surface can also be weighted by the value of an attribute - in the first example, the playa point values not weighted and show a simple density map - in the second example, the playa point values are weighted by the area of each playa (acres) playa density surface not weighted playa density surface weighted by area (acres per sq mile) darker areas represent areas with larger playas Interpolate to Raster (revisited) - used to interpolate a continuous raster surface from sample point values - interpolation methods include Spline, IDW, Kriging and Topo to Raster - These different interpolation methods produce similar results using different tools. - Spline - applies a smooth spline function to calculate the value of interpolated cells - IDW - applies an inverse distance weighting to calculate the value of interpolated cells - Kriging - applies a stochastic (statistical) function to calculate the values of interpolated cells Sample points Spline IDW Kriging 1

2 - Topo to Raster - interpolates topographic contours to create a raster surface Topographic contours Raster surface from contour lines Map Algebra - provides access to the Raster Calculator - the Raster Calculator allows you to apply arithmetic or algebraic functions to raster surfaces - can be used to convert the grid cell units of a raster layer (e.g. meters to feet) - can be used to subtract, add, multiply or divide two or more raster layers - note that the raster calculator is often used to create raster spatial models Map Algebra used to apply arithmetic or algebraic functions to raster surfaces - to create a new surface, ArcGIS applies the mathematical function to each cell (cell by cell analysis) - in this example, we subtracted the water table elevation in 2000 from the water table elevation in 2008 to calculate the change in the water table elevation Water Table 2008 Water Table 2000 Change in Water Table 2000 to = 2

3 - Viewshed (revisited) used to create a visibility surface relative to one or more observer points - user specifies the location and height of observation points - output raster shows cell that are not visible from the observation points (pink) and cells that are visible to one or more observation points (light green). - ArcGIS also calculates whether or not each cell is visible from each observation point - the cell values are number of observation points than can see that cell (in this case, 0, 1, 2 or 3) digital elevation model (DEM) viewshed derived from DEM Viewshed classified by cell value - Cut/Fill (used to calculate the change in volume between two elevation surfaces where surface material has been added or removed) 3

4 GIST 3300 / 5300 Spatial Analyst Continued Spatial Analyst Extension - distance - density - interpolation - map algebra - surface analysis Spatial Analyst Extension to ArcGIS - Density tools - Distance tools - Interpolation tools - Map Algebra - Surface Analysis 1

5 Spatial Analyst Interpolation tools - IDW - Kriging - Spline -Topo to Raster - used to interpolate a surface from sample points or contour lines Spatial Analyst Map Algebra tools - access to the Raster Calculator used to: - convert units in a raster (meters to feet) - add, subtract, multiply and divide rasters - build raster spatial models (site suitability) 2

6 Spatial Analyst Reclass tools - used to convert a continuous raster surface to a discrete raster e.g. convert a DEM to classified elevation ranges 3

GEOGRAPHIC INFORMATION SYSTEMS Lecture 25: 3D Analyst

GEOGRAPHIC INFORMATION SYSTEMS Lecture 25: 3D Analyst GEOGRAPHIC INFORMATION SYSTEMS Lecture 25: 3D Analyst 3D Analyst - 3D Analyst is an ArcGIS extension designed to work with TIN data (triangulated irregular network) - many of the tools in 3D Analyst also

More information

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lecture 9 Raster Data Analysis Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Raster Data Model The GIS raster data model represents datasets in which square

More information

Combine Yield Data From Combine to Contour Map Ag Leader

Combine Yield Data From Combine to Contour Map Ag Leader Combine Yield Data From Combine to Contour Map Ag Leader Exporting the Yield Data Using SMS Program 1. Data format On Hard Drive. 2. Start program SMS Basic. a. In the File menu choose Open. b. Click on

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS Quizzes Lab 8? WEEK EIGHT Lecture INTERPOLATION & SPATIAL ESTIMATION Joe Wheaton READING FOR TODAY WHAT CAN WE COLLECT AT POINTS?

More information

Making Yield Contour Maps Using John Deere Data

Making Yield Contour Maps Using John Deere Data Making Yield Contour Maps Using John Deere Data Exporting the Yield Data Using JDOffice 1. Data Format On Hard Drive 2. Start program JD Office. a. From the PC Card menu on the left of the screen choose

More information

Geographic Surfaces. David Tenenbaum EEOS 383 UMass Boston

Geographic Surfaces. David Tenenbaum EEOS 383 UMass Boston Geographic Surfaces Up to this point, we have talked about spatial data models that operate in two dimensions How about the rd dimension? Surface the continuous variation in space of a third dimension

More information

GY461 GIS 1: Environmental Campus Topography Project with ArcGIS 9.x

GY461 GIS 1: Environmental Campus Topography Project with ArcGIS 9.x I. Introduction GY461 GIS 1: Environmental In this project you will use data from a topographic survey of the USA campus to generate 2 separate maps: 1. A color-coded 2-dimensional topographic contour

More information

Lesson 5 overview. Concepts. Interpolators. Assessing accuracy Exercise 5

Lesson 5 overview. Concepts. Interpolators. Assessing accuracy Exercise 5 Interpolation Tools Lesson 5 overview Concepts Sampling methods Creating continuous surfaces Interpolation Density surfaces in GIS Interpolators IDW, Spline,Trend, Kriging,Natural neighbors TopoToRaster

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Videos that show how to copy/paste data

More information

Creating Surfaces. Steve Kopp Steve Lynch

Creating Surfaces. Steve Kopp Steve Lynch Steve Kopp Steve Lynch Overview Learn the types of surfaces and the data structures used to store them Emphasis on surface interpolation Learn the interpolation workflow Understand how interpolators work

More information

Surface Analysis. Data for Surface Analysis. What are Surfaces 4/22/2010

Surface Analysis. Data for Surface Analysis. What are Surfaces 4/22/2010 Surface Analysis Cornell University Data for Surface Analysis Vector Triangulated Irregular Networks (TIN) a surface layer where space is partitioned into a set of non-overlapping triangles Attribute and

More information

DEM Artifacts: Layering or pancake effects

DEM Artifacts: Layering or pancake effects Outcomes DEM Artifacts: Stream networks & watersheds derived using ArcGIS s HYDROLOGY routines are only as good as the DEMs used. - Both DEM examples below have problems - Lidar and SRTM DEM products are

More information

Geol 588. GIS for Geoscientists II. Zonal functions. Feb 22, Zonal statistics. Interpolation. Zonal statistics Sp. Analyst Tools - Zonal.

Geol 588. GIS for Geoscientists II. Zonal functions. Feb 22, Zonal statistics. Interpolation. Zonal statistics Sp. Analyst Tools - Zonal. Zonal functions Geol 588 GIS for Geoscientists II Feb 22, 2011 Zonal statistics Interpolation Zonal statistics Sp. Analyst Tools - Zonal Choose correct attribute for zones (usually: must be unique ID for

More information

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University 1 Outline of This Week Last topic, we learned: Spatial autocorrelation of areal data Spatial regression

More information

What can we represent as a Surface?

What can we represent as a Surface? Geography 38/42:376 GIS II Topic 7: Surface Representation and Analysis (Chang: Chapters 13 & 15) DeMers: Chapter 10 What can we represent as a Surface? Surfaces can be used to represent: Continuously

More information

Statistical surfaces and interpolation. This is lecture ten

Statistical surfaces and interpolation. This is lecture ten Statistical surfaces and interpolation This is lecture ten Data models for representation of surfaces So far have considered field and object data models (represented by raster and vector data structures).

More information

Lecture 21 - Chapter 8 (Raster Analysis, part2)

Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Today: Digital Elevation Models (DEMs), Topographic functions (surface analysis): slope, aspect hillshade, viewshed,

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling

GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling Spatial Analysis in GIS (cont d) GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling - the basic types of analysis that can be accomplished with a GIS are outlined in The Esri Guide to GIS Analysis

More information

Lecture 20 - Chapter 8 (Raster Analysis, part1)

Lecture 20 - Chapter 8 (Raster Analysis, part1) GEOL 452/552 - GIS for Geoscientists I Lecture 20 - Chapter 8 (Raster Analysis, part) 4 lectures on rasters - but won t cover everything (Raster GIS course: Geol 588: GIS II (Spring 20) Today: Raster data,

More information

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham Getting Started with Spatial Analyst Steve Kopp Elizabeth Graham Spatial Analyst Overview Over 100 geoprocessing tools plus raster functions Raster and vector analysis Construct workflows with ModelBuilder,

More information

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham Getting Started with Spatial Analyst Steve Kopp Elizabeth Graham Workshop Overview Fundamentals of using Spatial Analyst What analysis capabilities exist and where to find them How to build a simple site

More information

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri 1 Preface POINTS, LINES, and POLYGONS are good at representing geographic objects with distinct shapes They are less good

More information

Raster GIS applications

Raster GIS applications Raster GIS applications Columns Rows Image: cell value = amount of reflection from surface DEM: cell value = elevation (also slope/aspect/hillshade/curvature) Thematic layer: cell value = category or measured

More information

Spatial Analysis with Raster Datasets

Spatial Analysis with Raster Datasets Spatial Analysis with Raster Datasets Francisco Olivera, Ph.D., P.E. Srikanth Koka Lauren Walker Aishwarya Vijaykumar Keri Clary Department of Civil Engineering April 21, 2014 Contents Brief Overview of

More information

Esri International User Conference. San Diego, California. Technical Workshops. July Creating Surfaces. Steve Kopp and Steve Lynch

Esri International User Conference. San Diego, California. Technical Workshops. July Creating Surfaces. Steve Kopp and Steve Lynch Esri International User Conference San Diego, California Technical Workshops July 2011 Creating Surfaces Steve Kopp and Steve Lynch Overview Learn the types of surfaces and the data structures used to

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS CONTOURS! Self-Paced Lab Due Friday! WEEK SIX Lecture RASTER ANALYSES Joe Wheaton YOUR EXCERCISE Integer Elevations Rounded up

More information

Introduction to 3D Analysis. Jinwu Ma Jie Chang Khalid Duri

Introduction to 3D Analysis. Jinwu Ma Jie Chang Khalid Duri Introduction to 3D Analysis Jinwu Ma Jie Chang Khalid Duri Area & Volume 3D Analyst Features Detect Change Determine Cut/Fill Calculate Surface Area & Volume Data Management Data Creation Data Conversion

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 Tobler s Law All places are related, but nearby places are related more than distant places Corollary:

More information

Beyond The Vector Data Model - Part Two

Beyond The Vector Data Model - Part Two Beyond The Vector Data Model - Part Two Introduction Spatial Analyst Extension (Spatial Analysis) What is your question? Selecting a method of analysis Map Algebra Who is the audience? What is Spatial

More information

Lab 9. Raster Analyses. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lab 9. Raster Analyses. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lab 9 Raster Analyses Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University How to Interpolate Surface Turn on the Spatial Analyst extension: Tools > Extensions >

More information

University of West Hungary, Faculty of Geoinformatics. Béla Márkus. Spatial Analysis 5. module SAN5. 3D analysis

University of West Hungary, Faculty of Geoinformatics. Béla Márkus. Spatial Analysis 5. module SAN5. 3D analysis University of West Hungary, Faculty of Geoinformatics Béla Márkus Spatial Analysis 5. module SAN5 3D analysis SZÉKESFEHÉRVÁR 2010 The right to this intellectual property is protected by the 1999/LXXVI

More information

Spatial Interpolation - Geostatistics 4/3/2018

Spatial Interpolation - Geostatistics 4/3/2018 Spatial Interpolation - Geostatistics 4/3/201 (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Distance between pairs of points Lag Mean Tobler s Law All places are related, but nearby places

More information

Creating Contours using ArcMap

Creating Contours using ArcMap Creating Contours with ArcMap and ArcScene Digital elevation models (DEMs) are geospatial datasets that contain elevation values sampled according to a regularly spaced rectangular grid. They can be used

More information

Surface Analysis with 3D Analyst

Surface Analysis with 3D Analyst 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Surface Analysis with 3D Analyst Khalid H. Duri Esri UC2013. Technical Workshop. Why use 3D GIS? Because

More information

How does Map Algebra work?

How does Map Algebra work? Map Algebra How does Map Algebra work? Map Algebra uses math-like expressions containing operators and functions with raster data. Map Algebra operators, which are relational, Boolean, logical, combinatorial,

More information

L7 Raster Algorithms

L7 Raster Algorithms L7 Raster Algorithms NGEN6(TEK23) Algorithms in Geographical Information Systems by: Abdulghani Hasan, updated Nov 216 by Per-Ola Olsson Background Store and analyze the geographic information: Raster

More information

Working with Map Algebra

Working with Map Algebra Working with Map Algebra While you can accomplish much with the Spatial Analyst user interface, you can do even more with Map Algebra, the analysis language of Spatial Analyst. Map Algebra expressions

More information

GIS IN ECOLOGY: MORE RASTER ANALYSES

GIS IN ECOLOGY: MORE RASTER ANALYSES GIS IN ECOLOGY: MORE RASTER ANALYSES Contents Introduction... 2 More Raster Application Functions... 2 Data Sources... 3 Tasks... 4 Raster Recap... 4 Viewshed Determining Visibility... 5 Hydrology Modeling

More information

Lecture 22 - Chapter 8 (Raster Analysis, part 3)

Lecture 22 - Chapter 8 (Raster Analysis, part 3) GEOL 452/552 - GIS for Geoscientists I Lecture 22 - Chapter 8 (Raster Analysis, part 3) Today: Zonal Analysis (statistics) for polygons, lines, points, interpolation (IDW), Effects Toolbar, analysis masks

More information

Applied Cartography and Introduction to GIS GEOG 2017 EL. Lecture-7 Chapters 13 and 14

Applied Cartography and Introduction to GIS GEOG 2017 EL. Lecture-7 Chapters 13 and 14 Applied Cartography and Introduction to GIS GEOG 2017 EL Lecture-7 Chapters 13 and 14 Data for Terrain Mapping and Analysis DEM (digital elevation model) and TIN (triangulated irregular network) are two

More information

GIS Tools - Geometry. A GIS stores data as different layers of information Different feature types are stored in individual files.

GIS Tools - Geometry. A GIS stores data as different layers of information Different feature types are stored in individual files. A Definition of GIS GIS is a system of hardware, software, and procedures designed to support the capture, management, manipulation, analysis, modeling and display of spatially referenced data for solving

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are in the L12 subdirectory.

More information

Spatial Analysis (Vector) II

Spatial Analysis (Vector) II Spatial Analysis (Vector) II GEOG 300, Lecture 9 Dr. Anthony Jjumba 1 A Spatial Network is a set of geographic locations interconnected in a system by a number of routes is a system of linear features

More information

Suitability Modeling with GIS

Suitability Modeling with GIS Developed and Presented by Juniper GIS 1/33 Course Objectives What is Suitability Modeling? The Suitability Modeling Process Cartographic Modeling GIS Tools for Suitability Modeling Demonstrations of Models

More information

The 3D Analyst extension extends ArcGIS to support surface modeling and 3- dimensional visualization. 3D Shape Files

The 3D Analyst extension extends ArcGIS to support surface modeling and 3- dimensional visualization. 3D Shape Files NRM 435 Spring 2016 ArcGIS 3D Analyst Page#1 of 9 0B3D Analyst Extension The 3D Analyst extension extends ArcGIS to support surface modeling and 3- dimensional visualization. 3D Shape Files Analogous to

More information

Final project: Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I

Final project: Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Talk about class project (copy follow_along_data\ch8a_class_ex into U:\ArcGIS\ if needed) Catch up with lecture 20

More information

Lab 11: Terrain Analyses

Lab 11: Terrain Analyses Lab 11: Terrain Analyses What You ll Learn: Basic terrain analysis functions, including watershed, viewshed, and profile processing. There is a mix of old and new functions used in this lab. We ll explain

More information

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault Spatial Analysis of Raster Data 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 2 4 4 4 2 4 5 5 4 2 4 4 4 2 5 5 4 4 2 4 5 4 3 5 4 4 4 2 5 5 5 3 + = 0 = shale 1 = limestone 2 = fault 4 = no fault 2 =Fault in shale 3 =

More information

Steps for Modeling a Proposed New Reservoir in GIS

Steps for Modeling a Proposed New Reservoir in GIS Steps for Modeling a Proposed New Reservoir in GIS Requirements: ArcGIS ArcMap, ArcScene, Spatial Analyst, and 3D Analyst There s a new reservoir proposed for Right Hand Fork in Logan Canyon. I wanted

More information

ROCKY FORK TRACT: VIEWSHED ANALYSIS REPORT

ROCKY FORK TRACT: VIEWSHED ANALYSIS REPORT ROCKY FORK TRACT: VIEWSHED ANALYSIS REPORT Prepared for: The Conservation Fund Prepared by: A Carroll GIS 3711 Skylark Trail Chattanoga, TN 37416 INTRODUCTION This report documents methods and results

More information

IMPROVING THE ACCURACY OF DIGITAL TERRAIN MODELS

IMPROVING THE ACCURACY OF DIGITAL TERRAIN MODELS STUDIA UNIV. BABEŞ BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000 IMPROVING THE ACCURACY OF DIGITAL TERRAIN MODELS GABRIELA DROJ Abstract. The change from paper maps to GIS, in various kinds of geographical

More information

Graphic Display of Vector Object

Graphic Display of Vector Object What is GIS? GIS stands for Geographic Information Systems, although the term Geographic Information Science is gaining popularity. A GIS is a software platform for storing, organizing, viewing, querying,

More information

Reality Check: Processing LiDAR Data. A story of data, more data and some more data

Reality Check: Processing LiDAR Data. A story of data, more data and some more data Reality Check: Processing LiDAR Data A story of data, more data and some more data Red River of the North Red River of the North Red River of the North Red River of the North Introduction and Background

More information

Map Analysis of Raster Data I 3/8/2018

Map Analysis of Raster Data I 3/8/2018 Map Analysis of Raster Data I /8/8 Spatial Analysis of Raster Data What is Spatial Analysis? = shale = limestone 4 4 4 4 5 5 4 4 4 4 5 5 4 4 4 5 4 5 4 4 4 5 5 5 + = = fault =Fault in shale 4 = no fault

More information

Surface Creation & Analysis with 3D Analyst

Surface Creation & Analysis with 3D Analyst Esri International User Conference July 23 27 San Diego Convention Center Surface Creation & Analysis with 3D Analyst Khalid Duri Surface Basics Defining the surface Representation of any continuous measurement

More information

Raster Analysis. Overview Neighborhood Analysis Overlay Cost Surfaces. Arthur J. Lembo, Jr. Salisbury University

Raster Analysis. Overview Neighborhood Analysis Overlay Cost Surfaces. Arthur J. Lembo, Jr. Salisbury University Raster Analysis Overview Neighborhood Analysis Overlay Cost Surfaces Why we use Raster GIS In our previous discussion of data models, we indicated that Raster GIS is often used because: Raster is better

More information

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM Lecture 13: Advanced Data Models: Terrain mapping and Analysis Contents of Lecture Surface Data Models DEM GRID Model TIN Model Visibility Analysis Geography 373 Spring, 2006 Changjoo Kim 11/29/2006 1

More information

Mapping the Thickness of the Rocky Flats Alluvium and Reconstructing the Pleistocene Rocky Flats Paleogeography (with Spatial Analyst).

Mapping the Thickness of the Rocky Flats Alluvium and Reconstructing the Pleistocene Rocky Flats Paleogeography (with Spatial Analyst). Exercise 8 Mapping the Thickness of the Rocky Flats Alluvium and Reconstructing the Pleistocene Rocky Flats Paleogeography (with Spatial Analyst). Due: Thursday, February 15, 2018 Goal: Creating Rasters

More information

Lecture 4: Digital Elevation Models

Lecture 4: Digital Elevation Models Lecture 4: Digital Elevation Models GEOG413/613 Dr. Anthony Jjumba 1 Digital Terrain Modeling Terms: DEM, DTM, DTEM, DSM, DHM not synonyms. The concepts they illustrate are different Digital Terrain Modeling

More information

Purpose: To explore the raster grid and vector map element concepts in GIS.

Purpose: To explore the raster grid and vector map element concepts in GIS. GIS INTRODUCTION TO RASTER GRIDS AND VECTOR MAP ELEMENTS c:wou:nssi:vecrasex.wpd Purpose: To explore the raster grid and vector map element concepts in GIS. PART A. RASTER GRID NETWORKS Task A- Examine

More information

Dijkstra's Algorithm

Dijkstra's Algorithm Shortest Path Algorithm Dijkstra's Algorithm To find the shortest path from the origin node to the destination node No matrix calculation Floyd s Algorithm To find all the shortest paths from the nodes

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki April 3, 2014 Lecture 11: Raster Analysis GIS Related? 4/3/2014 ENGRG 59910 Intro to GIS 2 1 Why we use Raster GIS In our previous discussion of data models,

More information

Module 7 Raster operations

Module 7 Raster operations Introduction Geo-Information Science Practical Manual Module 7 Raster operations 7. INTRODUCTION 7-1 LOCAL OPERATIONS 7-2 Mathematical functions and operators 7-5 Raster overlay 7-7 FOCAL OPERATIONS 7-8

More information

Field-Scale Watershed Analysis

Field-Scale Watershed Analysis Conservation Applications of LiDAR Field-Scale Watershed Analysis A Supplemental Exercise for the Hydrologic Applications Module Andy Jenks, University of Minnesota Department of Forest Resources 2013

More information

Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis

Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis Module content 18.1. Creating a TIN 18.2. Spatial Analyst Viewsheds, Slopes, Hillshades and Density. 18.1 Creating a TIN Sometimes

More information

LAB #7 Creating TIN and 3D scenes (ArcScene) GISC, UNIVERSITY OF CALIFORNIA BERKELEY

LAB #7 Creating TIN and 3D scenes (ArcScene) GISC, UNIVERSITY OF CALIFORNIA BERKELEY LAB #7 Creating TIN and 3D scenes (ArcScene) GISC, UNIVERSITY OF CALIFORNIA BERKELEY The purpose of this laboratory is to introduce and explore surface data analysis using a vector data model: TIN. We

More information

Basics of Using LiDAR Data

Basics of Using LiDAR Data Conservation Applications of LiDAR Basics of Using LiDAR Data Exercise #2: Raster Processing 2013 Joel Nelson, University of Minnesota Department of Soil, Water, and Climate This exercise was developed

More information

Python Raster Analysis

Python Raster Analysis 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Python Raster Analysis Kevin M. Johnston Ryan DeBruyn Nawajish Noman Esri UC2013. Technical Workshop. The

More information

Python - Raster Analysis

Python - Raster Analysis Esri International User Conference San Diego, California Technical Workshops July 2012 Python - Raster Analysis Kevin M. Johnston Ryan DeBruyn The problem that is being addressed You have a complex modeling

More information

LiDAR Derived Contours

LiDAR Derived Contours LiDAR Derived Contours Final Delivery June 10, 2009 Prepared for: Prepared by: Metro 600 NE Grand Avenue Portland, OR 97232 Watershed Sciences, Inc. 529 SW Third Avenue, Suite 300 Portland, OR 97204 Metro

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models Feature Types and Data Models How Does a GIS Work? - a GIS operates on the premise that all of the features in the real world can

More information

Buckskin Detachment Surface Interpolation, Southern Lincoln Ranch Basin, Buckskin Mountains, Western Arizona Hal Hundley

Buckskin Detachment Surface Interpolation, Southern Lincoln Ranch Basin, Buckskin Mountains, Western Arizona Hal Hundley Buckskin Detachment Surface Interpolation, Southern Lincoln Ranch Basin, Buckskin Mountains, Western Arizona Hal Hundley Introduction The Lincoln Ranch basin in Buckskin Mountains in west-central Arizona

More information

The Reference Library Generating Low Confidence Polygons

The Reference Library Generating Low Confidence Polygons GeoCue Support Team In the new ASPRS Positional Accuracy Standards for Digital Geospatial Data, low confidence areas within LIDAR data are defined to be where the bare earth model might not meet the overall

More information

Raster Analysis. Overview Neighborhood Analysis Overlay Cost Surfaces. Arthur J. Lembo, Jr. Salisbury University

Raster Analysis. Overview Neighborhood Analysis Overlay Cost Surfaces. Arthur J. Lembo, Jr. Salisbury University Raster Analysis Overview Neighborhood Analysis Overlay Cost Surfaces Exam results Mean: 74% STDEV: 15% High: 92 Breakdown: A: 1 B: 2 C: 2 D: 1 F: 2 We will review the exam next Tuesday. Start thinking

More information

Creating a Custom DEM and Measuring Bathymetric Change for the Multnomah Channel & Willamette River Confluence

Creating a Custom DEM and Measuring Bathymetric Change for the Multnomah Channel & Willamette River Confluence Creating a Custom DEM and Measuring Bathymetric Change for the Multnomah Channel & Willamette River Confluence Meara Butler Josh Schane GEOG 593 Fall 2012 Multnomah Channel begins three miles upstream

More information

Python Raster Analysis. Kevin M. Johnston Nawajish Noman

Python Raster Analysis. Kevin M. Johnston Nawajish Noman Python Raster Analysis Kevin M. Johnston Nawajish Noman Outline Managing rasters and performing analysis with Map Algebra How to access the analysis capability - Demonstration Complex expressions and optimization

More information

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O TOPICS COVERED Spatial Analyst basics Raster / Vector conversion Raster data

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

Masking Lidar Cliff-Edge Artifacts

Masking Lidar Cliff-Edge Artifacts Masking Lidar Cliff-Edge Artifacts Methods 6/12/2014 Authors: Abigail Schaaf is a Remote Sensing Specialist at RedCastle Resources, Inc., working on site at the Remote Sensing Applications Center in Salt

More information

Western Land Area Programmatic Environmental Assessment. APPENDIX F: Viewshed Study

Western Land Area Programmatic Environmental Assessment. APPENDIX F: Viewshed Study APPENDIX F: Viewshed Study Dulles International Airport Western Land Area Viewshed Study FINAL Prepared by: EAC/Archaeology, Inc. September 26, 2017 Western Land Area This page is left intentionally blank.

More information

GIS LAB 8. Raster Data Applications Watershed Delineation

GIS LAB 8. Raster Data Applications Watershed Delineation GIS LAB 8 Raster Data Applications Watershed Delineation This lab will require you to further your familiarity with raster data structures and the Spatial Analyst. The data for this lab are drawn from

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

Spa$al Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spa$al Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spa$al Analysis and Modeling (GIST 432/532) Guofeng Cao Department of Geosciences Texas Tech University Representa$on of Spa$al Data Representa$on of Spa$al Data Models Object- based model: treats the

More information

Cell based GIS. Introduction to rasters

Cell based GIS. Introduction to rasters Week 9 Cell based GIS Introduction to rasters topics of the week Spatial Problems Modeling Raster basics Application functions Analysis environment, the mask Application functions Spatial Analyst in ArcGIS

More information

DEM Artifacts: Layering or pancake effects

DEM Artifacts: Layering or pancake effects Outcomes DEM Artifacts: Stream networks & watersheds derived using ArcGIS s HYDROLOGY routines are only as good as the DEMs used. - Both DEM examples below have problems - Lidar and SRTM DEM products are

More information

Lab 11: Terrain Analyses

Lab 11: Terrain Analyses Lab 11: Terrain Analyses What You ll Learn: Basic terrain analysis functions, including watershed, viewshed, and profile processing. There is a mix of old and new functions used in this lab. We ll explain

More information

DIGITAL TERRAIN MODELS

DIGITAL TERRAIN MODELS DIGITAL TERRAIN MODELS 1 Digital Terrain Models Dr. Mohsen Mostafa Hassan Badawy Remote Sensing Center GENERAL: A Digital Terrain Models (DTM) is defined as the digital representation of the spatial distribution

More information

1. Which diagram best represents the location of the isolines for the elevation field of this landscape? (1) (2) (3) (4)

1. Which diagram best represents the location of the isolines for the elevation field of this landscape? (1) (2) (3) (4) Base your answers to questions 1 through 5 on your knowledge of earth science and on the diagram below which represents the elevation data for a certain landscape region. Points A, B, C, and D are specific

More information

The Volume and Extent of the Lake Created by the Bridge of the Gods, Colombia River

The Volume and Extent of the Lake Created by the Bridge of the Gods, Colombia River Rachel Markoff 12/1/2011 GEO 327G/386G Term Project The Volume and Extent of the Lake Created by the Bridge of the Gods, Colombia River 1. Introduction The Bonneville Landslide occurred on the Colombia

More information

WMS 10.1 Tutorial GSSHA WMS Basics Watershed Delineation using DEMs and 2D Grid Generation Delineate a watershed and create a GSSHA model from a DEM

WMS 10.1 Tutorial GSSHA WMS Basics Watershed Delineation using DEMs and 2D Grid Generation Delineate a watershed and create a GSSHA model from a DEM v. 10.1 WMS 10.1 Tutorial GSSHA WMS Basics Watershed Delineation using DEMs and 2D Grid Generation Delineate a watershed and create a GSSHA model from a DEM Objectives Learn how to delineate a watershed

More information

TOPOLOGICAL 3D ELEVATION DATA INTERPOLATION OF ASTER GDEM BASED ON CONTINUOUS DEFORMATION

TOPOLOGICAL 3D ELEVATION DATA INTERPOLATION OF ASTER GDEM BASED ON CONTINUOUS DEFORMATION TOPOLOGICAL 3D ELEVATION DATA INTERPOLATION OF ASTER GDEM BASED ON CONTINUOUS DEFORMATION Dr. Ali Jamali, Universiti Teknologi Malaysia, Malaysia Prof. Francesc Antón Castro, School of Mathematical and

More information

Point clouds and DEMs

Point clouds and DEMs Point clouds and DEMs J Ramón Arrowsmith School of Earth and Space Exploration Arizona State University Christopher J. Crosby UNAVCO Tutorial notes (April 2016) Point clouds and DEMs 1. Download tahoe.las

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information

ArcGIS Enterprise Building Raster Analytics Workflows. Mike Muller, Jie Zhang

ArcGIS Enterprise Building Raster Analytics Workflows. Mike Muller, Jie Zhang ArcGIS Enterprise Building Raster Analytics Workflows Mike Muller, Jie Zhang Introduction and Context Raster Analytics What is Raster Analytics? The ArcGIS way to create and execute spatial analysis models

More information

Vector Data Analysis Working with Topographic Data. Vector data analysis working with topographic data.

Vector Data Analysis Working with Topographic Data. Vector data analysis working with topographic data. Vector Data Analysis Working with Topographic Data Vector data analysis working with topographic data. 1 Triangulated Irregular Network Triangulated Irregular Network 2 Triangulated Irregular Networks

More information

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater.

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater. Overview: In this week's lab you will identify areas within Webster Township that are most vulnerable to surface and groundwater contamination by conducting a risk analysis with raster data. You will create

More information

Report: Comparison of Methods to Produce Digital Terrain Models

Report: Comparison of Methods to Produce Digital Terrain Models Report: Comparison of Methods to Produce Digital Terrain Models Evan J Fedorko West Virginia GIS Technical Center 27 April 2005 Introduction This report compares Digital Terrain Models (DTM) created through

More information

ELEVATION SURFACE INTERPOLATION OF POINT DATA USING DIFFERENT TECHNIQUES A GIS APPROACH

ELEVATION SURFACE INTERPOLATION OF POINT DATA USING DIFFERENT TECHNIQUES A GIS APPROACH ELEVATION SURFACE INTERPOLATION OF POINT DATA USING DIFFERENT TECHNIQUES A GIS APPROACH Kulapraote Prathuchai Geoinforatics Center, Asian Institute of Technology, 58 Moo9, Klong Luang, Pathuthani, Thailand.

More information

Follow-Up on the Nueces River Groundwater Problem Uvalde Co. TX

Follow-Up on the Nueces River Groundwater Problem Uvalde Co. TX Follow-Up on the Nueces River Groundwater Problem Uvalde Co. TX Analysis by Ryan Kraft 12/4/2014 1 Problem Formulation A reduction in discharge was detected at a gauging station along a portion of the

More information

Surface Modeling with GIS

Surface Modeling with GIS Surface Modeling with GIS By Abdul Mohsen Al Maskeen ID # 889360 For CRP 514: Introduction to GIS Course Instructor: Dr. Baqer Al-Ramadan Date: December 29, 2004 1 Outline Page # Outline -------------------------------------------------------------

More information