Computer Vision II Lecture 14

Size: px
Start display at page:

Download "Computer Vision II Lecture 14"

Transcription

1 Outline of This Lecture Computer Vision II Lecture 14 Articulated Tracking I Single-Object Tracking Baesian Filtering Kalman Filters, EKF Particle Filters Multi-Object Tracking Data association MHT, (JPDAF, MCMCDA) Network flow optimization Bastian Leibe RWTH Aachen leibe@vision.rwth-aachen.de GP bod pose estimation (Model-based tracking, AAMs) Pictorial Structures 2 Image sources: Andreas Ess, Deva Ramanan, Ian Matthews Recap: Linear Assignment Formulation Recap: Linear Assignment Problem Form a matrix of pairwise similarit scores Example: Similarit based on motion prediction Predict motion for each trajector and assign scores for each measurement based on inverse (Mahalanobis) distance, such that closer measurements get higher scores. Formal definition Maximize subject to Those constraints ensure that Z is a permutation matrix Choose at most one match in each row and column to maximize sum of scores 3 The permutation matrix constraint ensures that we can onl match up one object from each row and column. Note: Alternativel, we can minimize cost rather than maximizing weights. Slide adapted from Robert Collins 4 Recap: Optimal Solution Recap: Min-Cost Flow Greed Algorithm Eas to program, quick to run, and ields prett good solutions in practice. But it often does not ield the optimal solution Hungarian Algorithm There is an algorithm called Kuhn-Munkres or Hungarian algorithm specificall developed to efficientl solve the linear assignment problem. Reduces assignment problem to bipartite graph matching. When starting from an N N matrix, it runs in O(N 3 ). If ou need LAP, ou should use it. Conversion into flow graph Transform weights into costs Add source/sink nodes with 0 cost. 5 Directed edges with a capacit of

2 Recap: Min-Cost Flow Recap: Min-Cost Flow Conversion into flow graph Pump N units of flow from source to sink. Conversion into flow graph Pump N units of flow from source to sink. Internal nodes pass on flow ( flow in = flow out). Find the optimal paths along which to ship the flow. 7 Internal nodes pass on flow ( flow in = flow out). Find the optimal paths along which to ship the flow. 8 Recap: Using Network Flow for Tracking Recap: Using Network Flow for Tracking Complication 1 Tracks can start later than frame1 (and end earlier than frame4) Connect the source and sink nodes to all intermediate nodes. Complication 2 Trivial solution: zero cost flow! 9 10 Recap: Network Flow Approach Recap: Min-Cost Formulation Solution: Divide each detection into 2 nodes Objective Function subject to Flow conservation at all nodes Edge capacities Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking using Network Flows, CVPR image source: [Zhang, Li, Nevatia, CVPR 08] Slide credit: Laura Leal 12 2

3 Topics of This Lecture Articulated Tracking Motivation Classes of Approaches Bod Pose Estimation as High-Dimensional Regression Representations Training data generation Latent variable space Learning a mapping between pose and appearance Review: Gaussian Processes Formulation GP Prediction Algorithm Applications Articulated Tracking under Egomotion 13 Examples Recover a person s bod articulation Track facial expressions Track detailed hand motion... Common properties Detailed parameterization in terms of joint locations or joint angles Two steps Pose estimation (in single frame) Tracking (using dnamics model) Challenging problem High-dimensional Hitting the limits of sensor data 14 image sources: T. Svoboda, D. Ramanan, I. Matthews, J. Oikonomidis Basic Classes of Approaches Wh Is It Difficult? Global methods Entire bod configuration is treated as a point in some high-dimensional space. Observations are also global feature vectors. View of pose estimation as a high-dimensional regression problem. Often in a subspace of tpical motions... = = Part-based methods Bod configuration is modeled as an assembl of movable parts with kinematic constraints. Local search for part configurations that provide a good explanation for the observed appearance under the kinematic constraints. View of pose estimation as probabilistic inference in a dnamic Graphical Model. 15 image sources: T. Jaeggli, D. Ramanan, T. Svoboda Challenges Poor imaging, motion blur, occlusions, etc. Difficult to extract sufficientl good figure-ground information Mapping is generall multi-modal: an image observation can represent more than one pose! Slide credit: Raquel Urtasun 16 Topics of This Lecture Bod Representation Motivation The bod can be approximated as kinematic tree Classes of Approaches Bod Pose Estimation as High-Dimensional Regression Representations Training data generation Latent variable space Learning a mapping between pose and appearance Parametrization via Joint locations Joint angles Relative joint angles along kinematic chain... Review: Gaussian Processes Formulation GP Prediction Algorithm Applications Articulated Tracking under Egomotion 17 Example using in the following 3D joint locations of 20 joints 60-dimensional space Slide adapted from Raquel Urtasun 18 image source: R. Urtasun 3

4 Image Representation Another Advantage of Silhouette Data Man possibilities... Popular choice: Silhouettes Eas to extract using background modeling techniques. Capture important information about bod shape. We will use them as an example for toda s lecture... Snthetic training data generation possible! Create sequences of Pose + Silhouette pairs Poses recorded with Mocap, used to animate 3D model Silhouette via 3D rendering pipeline Orientation ( ) Motion Capture 19 Video source: Hedvig Sidhenbladh Pose Data (p) Slide adapted from Stefan Gammeter 3D Rendering Silhouettes (s) 20 Snthetic Training Data Generation Snthetic Training Data Generation Varing bod proportions Different clothes models Animate with MoCap data Resulting snthetic training data (depth, bod part labels, silhouette) Example training sequence 21 Image source: Umer Rafi 22 Video source: Umer Rafi Learning a Mapping b/w Pose and Appearance Latent Variable Models Appearance prediction Regression problem High-dimensional data on both sides Low-dim. representation needed for learning! 3D joint locations segm. image ~60-dim. ~2500-dim. Training with Motion-capture stimuli Real dnamics from human actors Snthesized silhouettes for training Background subtraction for test T. Jaeggli, E. Koller-Meier, L. Van Gool, "Learning Generative Models for Monocular Bod Pose Estimation", ACCV image source: T. Jaeggli Joint angle pose space is huge! Onl a small portion contains valid bod poses. Restrict estimation to the subspace of valid poses for the task Latent variable models: PCA, FA, GPLVM, etc. 24 image source: R. Urtasun 4

5 generative mapping Example: Subspace of Walking Motion Articulated Motion in the Latent Space walking ccles have one main (periodic) DOF additional DOF encode walking stle Pose modeling in a subspace Pose model has 60 (highl dependent) DoF But gait is cclic, can be represented b a 2D latent space Capture the dependenc b dimensionalit reduction (PCA, FA, CCA, LLE, GPLVM,...) 25 image sources: S. Gammeter, T. Jaeggli Regression from latent space to Pose p(pose z) Silhouette p(silhouette z) Regressors need to be learned from training data. Slide adapted from Stefan Gammeter 26 Learning a Generative Mapping Example Results Bod Pose X : Bod Pose (high dim.) reconstruct pose Learn dim. red. (LLE) x : Bod Pose (low dim.) dnamic prior Difficulties Changing viewpoints Low resolution (50 px) Compression artifacts Disturbing objects (umbrella, bag) likelihood Y : Image (high dim.) : Appearance projection (BPCA) Descriptor: (low dim.) Appearance T. Jaeggli, E. Koller-Meier, L. Van Gool, "Learning Generative Models for Monocular Bod Pose Estimation", ACCV Slide credit: Tobias Jaeggli 27 Original video 28 Video sources: Hedvig Sidhenbladh, Tobias Jaeggli Representing Multiple Activities Switching b/w Multiple Activities Learn multiple models One model per activit Separate LLE embedding Separate dnamics Bod Pose X x Bod Pose X x Bod Pose Y X Appearance Y Appearance Y Appearance x Activit switching Low-res. traffic scene Transition from Walking to Running Original video Learn transition function Link the LLE spaces Find similar pose pairs Learn smooth transition Pose Estim. Input walk run Slide credit: Tobias Jaeggli 29 Activit switching 30 Videos b Tobias Jaeggli 5

6 Topics of This Lecture Classification vs. Regression Motivation Classes of Approaches Bod Pose Estimation as High-Dimensional Regression Representations Training data generation Latent variable space Learning a mapping between pose and appearance Review: Gaussian Processes Formulation GP Prediction Algorithm In classification: 2 {-1, 1} In regression: 2 R Applications Articulated Tracking under Egomotion 31 Slide credit: Raquel Urtasun 32 Gaussian Process Regression Gaussian Process Regression Regular regression: f(x) GP Regression Ver eas to appl Automatic confidence estimate of the result Well-suited for pose regression tasks x GP regression: μ (x)+σ(x) μ (x) μ (x)-σ(x) In the following, I will give a quick intro to GPs Focus on main concepts and results A far more detailed discussion will be given in the Advanced Machine Learning lecture (next semester). x Slide credit: Stefan Gammeter Gaussian Process Gaussian distribution Probabilit distribution over scalars / vectors. Gaussian process (generalization of Gaussian distrib.) Describes properties of functions. Function: Think of a function as a long vector where each entr specifies the function value f(x i ) at a particular point x i. Issue: How to deal with infinite number of points? If ou ask onl for properties of the function at a finite number of points Then inference in Gaussian Process gives ou the same answer if ou ignore the infinitel man other points. Definition A Gaussian process (GP) is a collection of random variables an finite number of which has a joint Gaussian distribution. Slide credit: Bernt Schiele 35 Gaussian Process Example prior over functions p(f) Represents our prior belief about functions before seeing an data. Although specific functions don t have mean of zero, the mean of f(x) values for an fixed x is zero (here). Favors smooth functions I.e. functions cannot var too rapidl Smoothness is induced b the covariance function of the Gaussian Process. Learning in Gaussian processes Is mainl defined b finding suitable properties of the covariance function. 36 Slide credit: Bernt Schiele Image source: Rasmussen & Williams,

7 Gaussian Process Gaussian Process: Squared Exponential A Gaussian process is completel defined b Mean function m(x) and m(x) = E[f(x)] Tpical covariance function Squared exponential (SE) Covariance function specifies the covariance between pairs of random variables Covariance function k(x,x ) k(x; x 0 ) = E[(f(x) m(x)(f(x 0 ) m(x 0 ))] We write the Gaussian process (GP) f(x)» GP(m(x); k(x; x 0 )) Remarks Covariance between the outputs is written as a function between the inputs. The squared exponential covariance function corresponds to a Baesian linear regression model with an infinite number of basis functions. For an positive definite covariance function k(.,.), there exists a (possibl infinite) expansion in terms of basis functions. Slide adapted from Bernt Schiele 37 Slide credit: Bernt Schiele 38 Gaussian Process: Prior over Functions GP Prediction with Nois Observations Distribution over functions: Specification of covariance function implies distribution over functions. I.e. we can draw samples from the distribution of functions evaluated at a (finite) number of points. Assume we have a set of observations: with noise ¾ n Joint distribution of the training outputs f and test outputs f * according to the prior: Procedure We choose a number of input points X? We write the corresponding covariance matrix (e.g. using SE) element-wise: K(X? ; X? ) Then we generate a random Gaussian vector with this covariance matrix: f?» N(0; K(X? ; X? )) Example of 3 functions sampled 39 Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006 K(X, X * ) contains covariances for all pairs of training and test points. To get the posterior (after including the observations) We need to restrict the above prior to contain onl those functions which agree with the observed values. Think of generating functions from the prior and rejecting those that disagree with the observations (obviousl prohibitive). Slide credit: Bernt Schiele 40 Result: Prediction with Nois Observations GP Regression Algorithm Calculation of posterior: Corresponds to conditioning the joint Gaussian prior distribution on the observations: Ver simple algorithm ¹f? = E[f? jx; X? ; t] with: Based on the following equations (Matrix inv. Cholesk fact.) This is the ke result that defines Gaussian process regression! The predictive distribution is a Gaussian whose mean and variance depend on the test points X * and on the kernel k(x,x ), evaluated on the training data X. Slide credit: Bernt Schiele Image source: Rasmussen & Williams,

8 Computational Complexit Complexit of GP model Training effort: O(N 3 ) through matrix inversion Test effort: O(N 2 ) through vector-matrix multiplication Complexit of basis function model Training effort: O(M 3 ) Test effort: O(M 2 ) Discussion Exact GP methods become infeasible for large training sets. Need to use approximate techniques whenever #training examples > Topics of This Lecture Motivation Classes of Approaches Bod Pose Estimation as High-Dimensional Regression Representations Training data generation Latent variable space Learning a mapping between pose and appearance Review: Gaussian Processes Formulation GP Prediction Algorithm 43 Applications Articulated Tracking under Egomotion 44 Articulated Multi-Person Tracking using GP 1...N Articulated Multi-Person Tracking Idea: Onl perform articulated tracking where it s eas! Multi-person tracking Solves hard data association problem Articulated tracking Onl on individual tracklets between occlusions GP regression on full-bod pose 45 [Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV 08] Multi-Person tracking Recovers trajectories and solves data association Estimates detailed bod pose for each tracked person 46 [Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV 08] Articulated Tracking under Egomotion Summar: Articulated Tracking with Global Models Pros: View as regression problem (pose appearance) Lots of machine learning techniques available Research focus on handling the ambiguities Training on MoCap data possible Accurate models for human dnamics Guided segmentation for each frame No reliance on background modeling Approach applicable to scenarios with moving camera Feedback from bod pose estimate to improve segmentation 47 [Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV 08] Cons: High-dimensional problem Global model Can handle onl those articulations it has previousl seen Not robust against partial occlusion Difficult to get good appearance representation MoCap data Can snthesize silhouettes, but not appearance Restricted to background subtraction 48 8

Computer Vision II Lecture 14

Computer Vision II Lecture 14 Computer Vision II Lecture 14 Articulated Tracking I 08.07.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Outline of This Lecture Single-Object Tracking Bayesian

More information

Computer Vision 2 Lecture 8

Computer Vision 2 Lecture 8 Computer Vision 2 Lecture 8 Multi-Object Tracking (30.05.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

More information

3D Human Motion Analysis and Manifolds

3D Human Motion Analysis and Manifolds D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N 3D Human Motion Analysis and Manifolds Kim Steenstrup Pedersen DIKU Image group and E-Science center Motivation

More information

Outline of this Talk

Outline of this Talk Outline of this Talk Data Association associate common detections across frames matching up who is who Two frames: linear assignment problem Generalize to three or more frames increasing solution quality

More information

Monocular Human Motion Capture with a Mixture of Regressors. Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France

Monocular Human Motion Capture with a Mixture of Regressors. Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France Monocular Human Motion Capture with a Mixture of Regressors Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France IEEE Workshop on Vision for Human-Computer Interaction, 21 June 2005 Visual

More information

Part-Based Models for Object Class Recognition Part 2

Part-Based Models for Object Class Recognition Part 2 High Level Computer Vision Part-Based Models for Object Class Recognition Part 2 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de https://www.mpi-inf.mpg.de/hlcv Class of Object

More information

Part-Based Models for Object Class Recognition Part 2

Part-Based Models for Object Class Recognition Part 2 High Level Computer Vision Part-Based Models for Object Class Recognition Part 2 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de https://www.mpi-inf.mpg.de/hlcv Class of Object

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Many slides adapted from B. Schiele Machine Learning Lecture 3 Probability Density Estimation II 26.04.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Gaussian Processes Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann SS08, University of Freiburg, Department for Computer Science Announcement

More information

Human Upper Body Pose Estimation in Static Images

Human Upper Body Pose Estimation in Static Images 1. Research Team Human Upper Body Pose Estimation in Static Images Project Leader: Graduate Students: Prof. Isaac Cohen, Computer Science Mun Wai Lee 2. Statement of Project Goals This goal of this project

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 26.04.206 Discriminative Approaches (5 weeks) Linear

More information

CS 664 Flexible Templates. Daniel Huttenlocher

CS 664 Flexible Templates. Daniel Huttenlocher CS 664 Flexible Templates Daniel Huttenlocher Flexible Template Matching Pictorial structures Parts connected by springs and appearance models for each part Used for human bodies, faces Fischler&Elschlager,

More information

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models Emanuele Ruffaldi Lorenzo Peppoloni Alessandro Filippeschi Carlo Alberto Avizzano 2014 IEEE International

More information

Predicting 3D People from 2D Pictures

Predicting 3D People from 2D Pictures Predicting 3D People from 2D Pictures Leonid Sigal Michael J. Black Department of Computer Science Brown University http://www.cs.brown.edu/people/ls/ CIAR Summer School August 15-20, 2006 Leonid Sigal

More information

Announcements. Recognition I. Optical Flow: Where do pixels move to? dy dt. I + y. I = x. di dt. dx dt. = t

Announcements. Recognition I. Optical Flow: Where do pixels move to? dy dt. I + y. I = x. di dt. dx dt. = t Announcements I Introduction to Computer Vision CSE 152 Lecture 18 Assignment 4: Due Toda Assignment 5: Posted toda Read: Trucco & Verri, Chapter 10 on recognition Final Eam: Wed, 6/9/04, 11:30-2:30, WLH

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Tracking Generic Human Motion via Fusion of Low- and High-Dimensional Approaches

Tracking Generic Human Motion via Fusion of Low- and High-Dimensional Approaches XU, CUI, ZHAO, ZHA: TRACKING GENERIC HUMAN MOTION VIA FUSION 1 Tracking Generic Human Motion via Fusion of Low- and High-Dimensional Approaches Yuandong Xu xuyd@cis.pku.edu.cn Jinshi Cui cjs@cis.pku.edu.cn

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Vision Lecture 2 Motion and Optical Flow Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de 28.1.216 Man slides adapted from K. Grauman, S. Seitz, R. Szeliski,

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

Modeling 3D Human Poses from Uncalibrated Monocular Images

Modeling 3D Human Poses from Uncalibrated Monocular Images Modeling 3D Human Poses from Uncalibrated Monocular Images Xiaolin K. Wei Texas A&M University xwei@cse.tamu.edu Jinxiang Chai Texas A&M University jchai@cse.tamu.edu Abstract This paper introduces an

More information

Tracking wrapup Course recap. Announcements

Tracking wrapup Course recap. Announcements Tracking wrapup Course recap Tuesda, Dec 1 Announcements Pset 4 grades and solutions available toda Reminder: Pset 5 due 12/4, extended to 12/8 if needed Choose between Section I (short answers) and II

More information

Part I : Filtering and Data Association. Part II : Crowd-scene Analysis

Part I : Filtering and Data Association. Part II : Crowd-scene Analysis Part I : Filtering and Data Association Part II : Crowd-scene Analysis, Shanghai, China Bob Collins, July 2012 What is Tracking? typical idea: tracking a single target in isolation. Appearance-Based Tracking

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Computer Vision II Lecture 4 Color based Tracking 29.04.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Single-Object Tracking Background modeling

More information

Combining PGMs and Discriminative Models for Upper Body Pose Detection

Combining PGMs and Discriminative Models for Upper Body Pose Detection Combining PGMs and Discriminative Models for Upper Body Pose Detection Gedas Bertasius May 30, 2014 1 Introduction In this project, I utilized probabilistic graphical models together with discriminative

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Raquel Urtasun & Rich Zemel University of Toronto Nov 4, 2015 Urtasun & Zemel (UofT) CSC 411: 14-PCA & Autoencoders Nov 4, 2015 1 / 18

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

Behaviour based particle filtering for human articulated motion tracking

Behaviour based particle filtering for human articulated motion tracking Loughborough University Institutional Repository Behaviour based particle filtering for human articulated motion tracking This item was submitted to Loughborough University's Institutional Repository by

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 14-PCA & Autoencoders 1 / 18

More information

Computer Vision 2 Lecture 1

Computer Vision 2 Lecture 1 Computer Vision 2 Lecture 1 Introduction (14.04.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de Organization

More information

Pairwise Threshold for Gaussian Mixture Classification and its Application on Human Tracking Enhancement

Pairwise Threshold for Gaussian Mixture Classification and its Application on Human Tracking Enhancement Pairwise Threshold for Gaussian Mixture Classification and its Application on Human Tracking Enhancement Daegeon Kim Sung Chun Lee Institute for Robotics and Intelligent Systems University of Southern

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

Inferring 3D from 2D

Inferring 3D from 2D Inferring 3D from 2D History Monocular vs. multi-view analysis Difficulties structure of the solution and ambiguities static and dynamic ambiguities Modeling frameworks for inference and learning top-down

More information

Computer Vision Lecture 6

Computer Vision Lecture 6 Course Outline Computer Vision Lecture 6 Segmentation Image Processing Basics Structure Extraction Segmentation Segmentation as Clustering Graph-theoretic Segmentation 12.11.2015 Recognition Global Representations

More information

Visual Motion Analysis and Tracking Part II

Visual Motion Analysis and Tracking Part II Visual Motion Analysis and Tracking Part II David J Fleet and Allan D Jepson CIAR NCAP Summer School July 12-16, 16, 2005 Outline Optical Flow and Tracking: Optical flow estimation (robust, iterative refinement,

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps Georgios Floros, Benito van der Zander and Bastian Leibe RWTH Aachen University, Germany http://www.vision.rwth-aachen.de floros@vision.rwth-aachen.de

More information

Last Lecture. Edge Detection. Filtering Pyramid

Last Lecture. Edge Detection. Filtering Pyramid Last Lecture Edge Detection Filtering Pramid Toda Motion Deblur Image Transformation Removing Camera Shake from a Single Photograph Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis and William T.

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Topologically-Constrained Latent Variable Models

Topologically-Constrained Latent Variable Models Topologicall-Constrained Latent Variable Models Kewords: Gaussian processes, Latent Variable Models, Topolog, Dimensionalit Reduction, Human Motion Raquel Urtasun UC Berkele EECS & ICSI; CSAIL MIT David

More information

Articulated Pose Estimation with Flexible Mixtures-of-Parts

Articulated Pose Estimation with Flexible Mixtures-of-Parts Articulated Pose Estimation with Flexible Mixtures-of-Parts PRESENTATION: JESSE DAVIS CS 3710 VISUAL RECOGNITION Outline Modeling Special Cases Inferences Learning Experiments Problem and Relevance Problem:

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition

Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition Emotion Recognition In The Wild Challenge and Workshop (EmotiW 2013) Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan,

More information

18 October, 2013 MVA ENS Cachan. Lecture 6: Introduction to graphical models Iasonas Kokkinos

18 October, 2013 MVA ENS Cachan. Lecture 6: Introduction to graphical models Iasonas Kokkinos Machine Learning for Computer Vision 1 18 October, 2013 MVA ENS Cachan Lecture 6: Introduction to graphical models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision! Fitting EECS 598-08 Fall 2014! Foundations of Computer Vision!! Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! Readings: FP 10; SZ 4.3, 5.1! Date: 10/8/14!! Materials on these

More information

Part-Based Models for Object Class Recognition Part 3

Part-Based Models for Object Class Recognition Part 3 High Level Computer Vision! Part-Based Models for Object Class Recognition Part 3 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de! http://www.d2.mpi-inf.mpg.de/cv ! State-of-the-Art

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials)

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials) Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 16 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 3 milestone due May 29 Should already be well on way Contact us for difficulties

More information

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 18 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir 3D Graphics Pipeline Modeling (Creating 3D Geometry) Course Outline Rendering (Creating, shading

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

What is the SLAM problem?

What is the SLAM problem? SLAM Tutorial Slides by Marios Xanthidis, C. Stachniss, P. Allen, C. Fermuller Paul Furgale, Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart What is the SLAM problem? The

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

Visuelle Perzeption für Mensch- Maschine Schnittstellen

Visuelle Perzeption für Mensch- Maschine Schnittstellen Visuelle Perzeption für Mensch- Maschine Schnittstellen Vorlesung, WS 2009 Prof. Dr. Rainer Stiefelhagen Dr. Edgar Seemann Institut für Anthropomatik Universität Karlsruhe (TH) http://cvhci.ira.uka.de

More information

Lecture 8 Fitting and Matching

Lecture 8 Fitting and Matching Lecture 8 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi-model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Robust Articulated ICP for Real-Time Hand Tracking

Robust Articulated ICP for Real-Time Hand Tracking Robust Articulated-ICP for Real-Time Hand Tracking Andrea Tagliasacchi* Sofien Bouaziz Matthias Schröder* Mario Botsch Anastasia Tkach Mark Pauly * equal contribution 1/36 Real-Time Tracking Setup Data

More information

EECS 442 Computer vision. Fitting methods

EECS 442 Computer vision. Fitting methods EECS 442 Computer vision Fitting methods - Problem formulation - Least square methods - RANSAC - Hough transforms - Multi-model fitting - Fitting helps matching! Reading: [HZ] Chapters: 4, 11 [FP] Chapters:

More information

Tracking People on a Torus

Tracking People on a Torus IEEE TRANSACTION ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE (UNDER REVIEW) Tracking People on a Torus Ahmed Elgammal Member, IEEE, and Chan-Su Lee, Student Member, IEEE, Department of Computer Science,

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Zhu Li Dept of CSEE,

More information

Motion Capture. Motion Capture in Movies. Motion Capture in Games

Motion Capture. Motion Capture in Movies. Motion Capture in Games Motion Capture Motion Capture in Movies 2 Motion Capture in Games 3 4 Magnetic Capture Systems Tethered Sensitive to metal Low frequency (60Hz) Mechanical Capture Systems Any environment Measures joint

More information

Graphical Models and Their Applications

Graphical Models and Their Applications Graphical Models and Their Applications Tracking Nov 26, 2o14 Bjoern Andres & Bernt Schiele http://www.d2.mpi-inf.mpg.de/gm slides adapted from Stefan Roth @ TU Darmstadt Face Tracking Face tracking using

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Course Outline Computer Vision II Lecture 4 Single-Object Tracking Background modeling Template based tracking Color based Tracking Color based tracking Contour based tracking Tracking by online classification

More information

Stereo: the graph cut method

Stereo: the graph cut method Stereo: the graph cut method Last lecture we looked at a simple version of the Marr-Poggio algorithm for solving the binocular correspondence problem along epipolar lines in rectified images. The main

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

Computer Vision Lecture 6

Computer Vision Lecture 6 Computer Vision Lecture 6 Segmentation 12.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Image Processing Basics Structure Extraction Segmentation

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

Robert Collins CSE486, Penn State. Lecture 09: Stereo Algorithms

Robert Collins CSE486, Penn State. Lecture 09: Stereo Algorithms Lecture 09: Stereo Algorithms left camera located at (0,0,0) Recall: Simple Stereo System Y y Image coords of point (X,Y,Z) Left Camera: x T x z (, ) y Z (, ) x (X,Y,Z) z X right camera located at (T x,0,0)

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

Lecture 9 Fitting and Matching

Lecture 9 Fitting and Matching Lecture 9 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi- model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

CS448A: Experiments in Motion Capture. CS448A: Experiments in Motion Capture

CS448A: Experiments in Motion Capture. CS448A: Experiments in Motion Capture CS448A: Experiments in Motion Capture Christoph Bregler, bregler@stanford.edu Gene Alexander, gene.alexander@stanford.edu CS448A: Experiments in Motion Capture Project Course Lectures on all key-algorithms

More information

Classification: Linear Discriminant Functions

Classification: Linear Discriminant Functions Classification: Linear Discriminant Functions CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Discriminant functions Linear Discriminant functions

More information

Outline. Data Association Scenarios. Data Association Scenarios. Data Association Scenarios

Outline. Data Association Scenarios. Data Association Scenarios. Data Association Scenarios Outline Data Association Scenarios Track Filtering and Gating Global Nearest Neighbor (GNN) Review: Linear Assignment Problem Murthy s k-best Assignments Algorithm Probabilistic Data Association (PDAF)

More information

Automatic Tracking of Moving Objects in Video for Surveillance Applications

Automatic Tracking of Moving Objects in Video for Surveillance Applications Automatic Tracking of Moving Objects in Video for Surveillance Applications Manjunath Narayana Committee: Dr. Donna Haverkamp (Chair) Dr. Arvin Agah Dr. James Miller Department of Electrical Engineering

More information

Recognition: Face Recognition. Linda Shapiro EE/CSE 576

Recognition: Face Recognition. Linda Shapiro EE/CSE 576 Recognition: Face Recognition Linda Shapiro EE/CSE 576 1 Face recognition: once you ve detected and cropped a face, try to recognize it Detection Recognition Sally 2 Face recognition: overview Typical

More information

Conditional Visual Tracking in Kernel Space

Conditional Visual Tracking in Kernel Space Conditional Visual Tracking in Kernel Space Cristian Sminchisescu 1,2,3 Atul Kanujia 3 Zhiguo Li 3 Dimitris Metaxas 3 1 TTI-C, 1497 East 50th Street, Chicago, IL, 60637, USA 2 University of Toronto, Department

More information

Fitting (LMedS, RANSAC)

Fitting (LMedS, RANSAC) Fitting (LMedS, RANSAC) Thursday, 23/03/2017 Antonis Argyros e-mail: argyros@csd.uoc.gr LMedS and RANSAC What if we have very many outliers? 2 1 Least Median of Squares ri : Residuals Least Squares n 2

More information

Learning Articulated Skeletons From Motion

Learning Articulated Skeletons From Motion Learning Articulated Skeletons From Motion Danny Tarlow University of Toronto, Machine Learning with David Ross and Richard Zemel (and Brendan Frey) August 6, 2007 Point Light Displays It's easy for humans

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Tracking People. Tracking People: Context

Tracking People. Tracking People: Context Tracking People A presentation of Deva Ramanan s Finding and Tracking People from the Bottom Up and Strike a Pose: Tracking People by Finding Stylized Poses Tracking People: Context Motion Capture Surveillance

More information

Graphical Models for Human Motion Modeling

Graphical Models for Human Motion Modeling Graphical Models for Human Motion Modeling Kooksang Moon and Vladimir Pavlović Rutgers University, Department of Computer Science Piscataway, NJ 8854, USA Abstract. The human figure exhibits complex and

More information

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required:

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required: Reading Required: Projections Brian Curless CSE 457 Spring 2013 Angel, 5.1-5.6 Further reading: Fole, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences

Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences Presentation of the thesis work of: Hedvig Sidenbladh, KTH Thesis opponent: Prof. Bill Freeman, MIT Thesis supervisors

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm Robot Mapping FastSLAM Feature-based SLAM with Particle Filters Cyrill Stachniss Particle Filter in Brief! Non-parametric, recursive Bayes filter! Posterior is represented by a set of weighted samples!

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Augmented Reality, Advanced SLAM, Applications

Augmented Reality, Advanced SLAM, Applications Augmented Reality, Advanced SLAM, Applications Prof. Didier Stricker & Dr. Alain Pagani alain.pagani@dfki.de Lecture 3D Computer Vision AR, SLAM, Applications 1 Introduction Previous lectures: Basics (camera,

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Nov 2009 Perspective projection and affine motion Goals Today Perspective projection 3D motion Wed Projects Friday Regularization and robust statistics

More information