Composite functions. [Type the document subtitle] Composite functions, working them out.

Size: px
Start display at page:

Download "Composite functions. [Type the document subtitle] Composite functions, working them out."

Transcription

1 Composite unctions [Type the document subtitle] Composite unctions, workin them out. luxvis 11/19/01

2 Composite Functions What are they? In the real world, it is not uncommon or the output o one thin to depend on the input o another unction. For example the amount o tax we would pay depends on the ross salary the person makes. Such unctions are called composite unctions. So a unction is perormed irst and then a second unction is perormed on the result o the irst unction, that is what is actually takin place when we composition. Special terminoloy The composite unction, the composition o and is deined as ollows ( )( x) ( ( x)) For the above unction to be deined or to exist then a certain condition must be met namely Rane ( x) domain ( x) Formula Deinitions What it means ( )( x) ( ( x)) For to be deined Rane ( x) domain ( x) What is the domain o domain domain What is the rane o rane rane Example- ind Let us consider an example and we will see how this works in practice Consider the ollowin two unctions ( x) x and ( x) x 4 Say we will like to ind the ollowin composite unction and whether this unction exists Step 1- sketch both unctions to see what they look like and determine their domains and ranes Sketch the two unctions and ind their respective domains and ranes ( x) x Equation o the raph ( x) x Domain o the raph- what is the values o x it can have, Rane o the raph- values o y it can have [0, )

3 Now to sketch the raph o ( x) x 4 Equation o the raph ( x) x 4 Domain o the raph- what is the values o x it can have,, Rane o the raph- values o y it can have Now the reason we plotted these two raphs is to help us understand the restrictions that must be placed on the domain or the various composite unctions to be deined Step-- Work out Find ( )( x) ( ( x)) And this ives us the ollowin ( x) ( ( x)) ( x 4) ( x 4) Step -3- Work out i the unction is deined Now or this unction to be deined the condition Rane ( x) domain ( x) This means that the rane is within the domain o the ( x ) Let s see how this looks We have the ollowin operation x ( x) ( x) Domain (x) Rane (x) Domain : R - (-, ) Rane: R - (-, ) Domain (x) Rane (x) Domain: R - (-, ) Rane: R- (0, )

4 This is a way o showin the step visually. Notice how I am usin the number line to my advantae! So since rane o x ( ) is a subset o the domain o ( x ) then this composite unction exists. I like to put the domain o ( x ) on the bottom and the rane o x ( ) on the top, as it helps me see i the rane is within the domain o ( x ) here are the answers What it means ( )( x) ( ( x)) x 4 For to be deined Rane ( x) domain ( x) What is the domain o domain domain What is the rane o rane rane which is, which is, Example- Now let s see i we can ind the composite unction Let s ollow the previous steps ( x) ( ( x)) x ( ) x 4 For this to be deined then Rane ( x) domain ( x) Now this is the most important step as it shows the actual process that is takin place here

5 x ( x) ( x) So that ives us the ollowin Domain (x) Rane (x) [0, ) Domain (x) (-, ) Rane (x) Now remember that Rane ( x) domain ( x) The rane o (x) is a subset o the domain o (x), so this composite unction is deined. Important Points to Remember Formula- Deinitions What it means ( )( x) ( ( x)) For to be deined Rane ( x) domain ( x) What is the domain o domain domain What is the rane o rane rane

6 Diicult Example Consider the ollowin two unctions :{ x : x 3} R, ( x) 3 x and a) Show that is not deined R R x x :, ( ) 1 Let us sketch both raphs and work out their domains and ranes beore we answer the question :{ x : x 3} R, ( x) 3 x The raph that is been plotted :{ x : x 3} R, ( x) 3 x Domain o the raph,3 Rane o the raph 0, The raph that is been plotted : R R, ( x) x 1 Domain o the raph, Rane o the raph 1,

7 Now or to be deined the condition : R R, ( x) x 1 Let s see how this looks We have the ollowin operation x ( x) ( x) Domain (x) Rane (x) Domain (x) Rane (x) So it is clear that rane (x) is not a subset o the domain (x). So the composite unction is not deined. O course we could deine it i we restrict the domain o to [-1, 3]. Remember domain domain

8 Composite Functions What does ( x) 1 mean? How do we know i exists? It means we substitute unction (x) into (x) For it to exist or be deined then it must meet this condition: : R R, ( x) x 1 :{ x : x 3} R, ( x) 3 x Let say (x) = 3x and (x) = x+ Find Answer 3 What is the best way o doin these type o questions One way is to ind the domain or each unction and then plot the rane o (X) and the domain o (x) and see i the condition meets :{ x : x 3} R, ( x) 3 x = (x+) = 3(x+) = 3x+6 Now is this deined? : R R, ( x) x 1 First we ind domain and rane o each o the above unction rane o (x) = R = (-, ) domain o (x) = R = (-, ) Draw a number line and you will see that rane is a subset or equal to the domain o (x) Rane (x): (-, Domain (x) :(-, 4 5 What happens i it is ( x ) What is the deinition or ( x ) Everythin is done the same except this time the deinition For domain domain rane rane For domain domain rane rane

9.3 Transform Graphs of Linear Functions Use this blank page to compile the most important things you want to remember for cycle 9.

9.3 Transform Graphs of Linear Functions Use this blank page to compile the most important things you want to remember for cycle 9. 9. Transorm Graphs o Linear Functions Use this blank page to compile the most important things you want to remember or cycle 9.: Sec Math In-Sync by Jordan School District, Utah is licensed under a 6 Function

More information

9.8 Graphing Rational Functions

9.8 Graphing Rational Functions 9. Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm P where P and Q are polynomials. Q An eample o a simple rational unction

More information

Skill Sets Chapter 5 Functions

Skill Sets Chapter 5 Functions Skill Sets Chapter 5 Functions No. Skills Examples o questions involving the skills. Sketch the graph o the (Lecture Notes Example (b)) unction according to the g : x x x, domain. x, x - Students tend

More information

Concavity. Notice the location of the tangents to each type of curve.

Concavity. Notice the location of the tangents to each type of curve. Concavity We ve seen how knowing where a unction is increasing and decreasing gives a us a good sense o the shape o its graph We can reine that sense o shape by determining which way the unction bends

More information

Larger K-maps. So far we have only discussed 2 and 3-variable K-maps. We can now create a 4-variable map in the

Larger K-maps. So far we have only discussed 2 and 3-variable K-maps. We can now create a 4-variable map in the EET 3 Chapter 3 7/3/2 PAGE - 23 Larger K-maps The -variable K-map So ar we have only discussed 2 and 3-variable K-maps. We can now create a -variable map in the same way that we created the 3-variable

More information

The Graph of an Equation Graph the following by using a table of values and plotting points.

The Graph of an Equation Graph the following by using a table of values and plotting points. Calculus Preparation - Section 1 Graphs and Models Success in math as well as Calculus is to use a multiple perspective -- graphical, analytical, and numerical. Thanks to Rene Descartes we can represent

More information

Rational Functions. Definition A rational function can be written in the form. where N(x) and D(x) are

Rational Functions. Definition A rational function can be written in the form. where N(x) and D(x) are Rational Functions Deinition A rational unction can be written in the orm () N() where N() and D() are D() polynomials and D() is not the zero polynomial. *To ind the domain o a rational unction we must

More information

Coarse Grained Parallel Maximum Matching In Convex Bipartite Graphs

Coarse Grained Parallel Maximum Matching In Convex Bipartite Graphs Coarse Grained Parallel Maximum Matchin In Convex Bipartite Graphs P. Bose, A. Chan, F. Dehne, and M. Latzel School o Computer Science Carleton University Ottawa, Canada K1S 5B6 jit,achan,dehne,mlatzel@scs.carleton.ca

More information

foldr CS 5010 Program Design Paradigms Lesson 5.4

foldr CS 5010 Program Design Paradigms Lesson 5.4 oldr CS 5010 Program Design Paradigms Lesson 5.4 Mitchell Wand, 2012-2014 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 1 Introduction In this lesson,

More information

Neighbourhood Operations

Neighbourhood Operations Neighbourhood Operations Neighbourhood operations simply operate on a larger neighbourhood o piels than point operations Origin Neighbourhoods are mostly a rectangle around a central piel Any size rectangle

More information

5.2 Properties of Rational functions

5.2 Properties of Rational functions 5. Properties o Rational unctions A rational unction is a unction o the orm n n1 polynomial p an an 1 a1 a0 k k1 polynomial q bk bk 1 b1 b0 Eample 3 5 1 The domain o a rational unction is the set o all

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

Chapter 4 Graphing Linear Equations and Functions

Chapter 4 Graphing Linear Equations and Functions Chapter 4 Graphing Linear Equations and Functions 4.1 Coordinates and Scatter plots on the calculator: On the graph paper below please put the following items: x and y axis, origin,quadrant numbering system,

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations Question 1: What is a rectangular coordinate system? Answer 1: The rectangular coordinate system is used to graph points and equations. To create the rectangular coordinate system,

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 4 Maxima and Minima o Functions o Several Variables We learned to ind the maxima and minima o a unction o a single variable earlier in the course. We had a second derivative test to determine

More information

1-2. Composition of Functions. OBJECTIVES Perform operations with functions. Find composite functions. Iterate functions using real numbers.

1-2. Composition of Functions. OBJECTIVES Perform operations with functions. Find composite functions. Iterate functions using real numbers. - OBJECTIVES Perorm operations with unctions. Find composite unctions. Iterate unctions using real numbers. Composition o Functions BUSINESS Each year, thousands o people visit Yellowstone National Park

More information

Transformations of Functions. Shifting Graphs. Similarly, you can obtain the graph of. g x x 2 2 f x 2. Vertical and Horizontal Shifts

Transformations of Functions. Shifting Graphs. Similarly, you can obtain the graph of. g x x 2 2 f x 2. Vertical and Horizontal Shifts 0_007.qd /7/05 : AM Page 7 7 Chapter Functions and Their Graphs.7 Transormations o Functions What ou should learn Use vertical and horizontal shits to sketch graphs o unctions. Use relections to sketch

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Math 2A Vector Calculus Chapter 11 Test Fall 07 Name Show your work. Don t use a calculator. Write responses on separate paper.

Math 2A Vector Calculus Chapter 11 Test Fall 07 Name Show your work. Don t use a calculator. Write responses on separate paper. Math A Vector Calculus Chapter Test Fall 7 Name Show our work. Don t use a calculator. Write responses on separate paper.. Consider the nice, smooth unction z, whose contour map is shown at right. a. Estimate

More information

ES 240: Scientific and Engineering Computation. a function f(x) that can be written as a finite series of power functions like

ES 240: Scientific and Engineering Computation. a function f(x) that can be written as a finite series of power functions like Polynomial Deinition a unction () that can be written as a inite series o power unctions like n is a polynomial o order n n ( ) = A polynomial is represented by coeicient vector rom highest power. p=[3-5

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION EP08 Computational Metods in Psics Notes on Lecture Numerical Dierentiation 1 NUMERICAL DIFFERENTIATION For a unction irst and second derivatives are given as ollows: Metod First Derivative Truncation

More information

Did you ever think that a four hundred year-old spider may be why we study linear relationships today?

Did you ever think that a four hundred year-old spider may be why we study linear relationships today? Show Me: Determine if a Function is Linear M8221 Did you ever think that a four hundred year-old spider may be why we study linear relationships today? Supposedly, while lying in bed Rene Descartes noticed

More information

UNIT #2 TRANSFORMATIONS OF FUNCTIONS

UNIT #2 TRANSFORMATIONS OF FUNCTIONS Name: Date: UNIT # TRANSFORMATIONS OF FUNCTIONS Part I Questions. The quadratic unction ollowing does,, () has a turning point at have a turning point? 7, 3, 5 5, 8. I g 7 3, then at which o the The structure

More information

MATRIX ALGORITHM OF SOLVING GRAPH CUTTING PROBLEM

MATRIX ALGORITHM OF SOLVING GRAPH CUTTING PROBLEM UDC 681.3.06 MATRIX ALGORITHM OF SOLVING GRAPH CUTTING PROBLEM V.K. Pogrebnoy TPU Institute «Cybernetic centre» E-mail: vk@ad.cctpu.edu.ru Matrix algorithm o solving graph cutting problem has been suggested.

More information

Using VCS with the Quartus II Software

Using VCS with the Quartus II Software Using VCS with the Quartus II Sotware December 2002, ver. 1.0 Application Note 239 Introduction As the design complexity o FPGAs continues to rise, veriication engineers are inding it increasingly diicult

More information

Reflection and Refraction

Reflection and Refraction Relection and Reraction Object To determine ocal lengths o lenses and mirrors and to determine the index o reraction o glass. Apparatus Lenses, optical bench, mirrors, light source, screen, plastic or

More information

Understanding Signal to Noise Ratio and Noise Spectral Density in high speed data converters

Understanding Signal to Noise Ratio and Noise Spectral Density in high speed data converters Understanding Signal to Noise Ratio and Noise Spectral Density in high speed data converters TIPL 4703 Presented by Ken Chan Prepared by Ken Chan 1 Table o Contents What is SNR Deinition o SNR Components

More information

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis Given graph of y f = and sketch:. Linear Transformation cf ( b + a) + d a. translate a along the -ais. f b. scale b along the -ais c. scale c along the y-ais d. translate d along the y-ais Transformation

More information

CS485/685 Computer Vision Spring 2012 Dr. George Bebis Programming Assignment 2 Due Date: 3/27/2012

CS485/685 Computer Vision Spring 2012 Dr. George Bebis Programming Assignment 2 Due Date: 3/27/2012 CS8/68 Computer Vision Spring 0 Dr. George Bebis Programming Assignment Due Date: /7/0 In this assignment, you will implement an algorithm or normalizing ace image using SVD. Face normalization is a required

More information

4.2 Linear Equations in Point-Slope Form

4.2 Linear Equations in Point-Slope Form 4.2 Linear Equations in Point-Slope Form Learning Objectives Write an equation in point-slope form. Graph an equation in point-slope form. Write a linear function in point-slope form. Solve real-world

More information

Performance and Overhead Measurements. on the Makbilan. Department of Computer Science. The Hebrew University of Jerusalem

Performance and Overhead Measurements. on the Makbilan. Department of Computer Science. The Hebrew University of Jerusalem Perormance and Overhead Measurements on the Makbilan Yosi Ben-Asher Dror G. Feitelson Dtment o Computer Science The Hebrew University o Jerusalem 91904 Jerusalem, Israel E-mail: yosi,dror@cs.huji.ac.il

More information

From Java to C A Supplement to Computer Algorithms, Third Edition. Sara Baase Allen Van Gelder

From Java to C A Supplement to Computer Algorithms, Third Edition. Sara Baase Allen Van Gelder From Java to C A Supplement to Computer Alorithms, Third Edition Sara Baase Allen Van Gelder October 30, 2004 ii clcopyriht 2000, 2001 Sara Baase and Allen Van Gelder. All rihts reserved. This document

More information

COMP 250 Fall graph traversal Nov. 15/16, 2017

COMP 250 Fall graph traversal Nov. 15/16, 2017 Graph traversal One problem we oten need to solve when working with graphs is to decide i there is a sequence o edges (a path) rom one vertex to another, or to ind such a sequence. There are various versions

More information

The λ-calculus. 1 Background on Computability. 2 Programming Paradigms and Functional Programming. 1.1 Alan Turing. 1.

The λ-calculus. 1 Background on Computability. 2 Programming Paradigms and Functional Programming. 1.1 Alan Turing. 1. The λ-calculus 1 Background on Computability The history o computability stretches back a long ways, but we ll start here with German mathematician David Hilbert in the 1920s. Hilbert proposed a grand

More information

8.2 Graph and Write Equations of Parabolas

8.2 Graph and Write Equations of Parabolas 8.2 Graph and Write Equations of Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation of a parabola given the

More information

PATH PLANNING OF UNMANNED AERIAL VEHICLE USING DUBINS GEOMETRY WITH AN OBSTACLE

PATH PLANNING OF UNMANNED AERIAL VEHICLE USING DUBINS GEOMETRY WITH AN OBSTACLE Proceeding o International Conerence On Research, Implementation And Education O Mathematics And Sciences 2015, Yogyakarta State University, 17-19 May 2015 PATH PLANNING OF UNMANNED AERIAL VEHICLE USING

More information

The λ-calculus. 1 Background on Computability. 2 Some Intuition for the λ-calculus. 1.1 Alan Turing. 1.2 Alonzo Church

The λ-calculus. 1 Background on Computability. 2 Some Intuition for the λ-calculus. 1.1 Alan Turing. 1.2 Alonzo Church The λ-calculus 1 Background on Computability The history o computability stretches back a long ways, but we ll start here with German mathematician David Hilbert in the 1920s. Hilbert proposed a grand

More information

Name Class Date. To translate three units to the left, 3 from the -coordinate. To translate two units down, 2 from the -coordinate.

Name Class Date. To translate three units to the left, 3 from the -coordinate. To translate two units down, 2 from the -coordinate. Name Class Date 1-1 Eploring Transormations Going Deeper Essential question: What patterns govern transormations o unctions? 1 F-BF.2.3 EXPLORE Translating Points Translate the point (-2, 5) three units

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

Binary Morphological Model in Refining Local Fitting Active Contour in Segmenting Weak/Missing Edges

Binary Morphological Model in Refining Local Fitting Active Contour in Segmenting Weak/Missing Edges 0 International Conerence on Advanced Computer Science Applications and Technologies Binary Morphological Model in Reining Local Fitting Active Contour in Segmenting Weak/Missing Edges Norshaliza Kamaruddin,

More information

Lab 9 - GEOMETRICAL OPTICS

Lab 9 - GEOMETRICAL OPTICS 161 Name Date Partners Lab 9 - GEOMETRICAL OPTICS OBJECTIVES Optics, developed in us through study, teaches us to see - Paul Cezanne Image rom www.weidemyr.com To examine Snell s Law To observe total internal

More information

Chapter 3 Image Enhancement in the Spatial Domain

Chapter 3 Image Enhancement in the Spatial Domain Chapter 3 Image Enhancement in the Spatial Domain Yinghua He School o Computer Science and Technology Tianjin University Image enhancement approaches Spatial domain image plane itsel Spatial domain methods

More information

1 Introduction to Theory of Gearing, Design, and Generation of Noncircular Gears

1 Introduction to Theory of Gearing, Design, and Generation of Noncircular Gears 1 Introduction to Theory o Gearing, Design, and Generation o Noncircular Gears 1.1 Historical Comments Designers have tried or many years to apply noncircular gears in automatic machines and instruments.

More information

Using a Projected Subgradient Method to Solve a Constrained Optimization Problem for Separating an Arbitrary Set of Points into Uniform Segments

Using a Projected Subgradient Method to Solve a Constrained Optimization Problem for Separating an Arbitrary Set of Points into Uniform Segments Using a Projected Subgradient Method to Solve a Constrained Optimization Problem or Separating an Arbitrary Set o Points into Uniorm Segments Michael Johnson May 31, 2011 1 Background Inormation The Airborne

More information

Binary recursion. Unate functions. If a cover C(f) is unate in xj, x, then f is unate in xj. x

Binary recursion. Unate functions. If a cover C(f) is unate in xj, x, then f is unate in xj. x Binary recursion Unate unctions! Theorem I a cover C() is unate in,, then is unate in.! Theorem I is unate in,, then every prime implicant o is unate in. Why are unate unctions so special?! Special Boolean

More information

Some Inequalities Involving Fuzzy Complex Numbers

Some Inequalities Involving Fuzzy Complex Numbers Theory Applications o Mathematics & Computer Science 4 1 014 106 113 Some Inequalities Involving Fuzzy Complex Numbers Sanjib Kumar Datta a,, Tanmay Biswas b, Samten Tamang a a Department o Mathematics,

More information

Point-Slope Form of an Equation

Point-Slope Form of an Equation Name: Date: Page 1 of 9 Point-Slope Form of an Equation 1. Graph the equation = + 4 b starting at (0,4) and moving to another point on the line using the slope. 2. Now draw another graph of = + 4. This

More information

COMS W4705, Spring 2015: Problem Set 2 Total points: 140

COMS W4705, Spring 2015: Problem Set 2 Total points: 140 COM W4705, pring 2015: Problem et 2 Total points: 140 Analytic Problems (due March 2nd) Question 1 (20 points) A probabilistic context-ree grammar G = (N, Σ, R,, q) in Chomsky Normal Form is deined as

More information

THE FINANCIAL CALCULATOR

THE FINANCIAL CALCULATOR Starter Kit CHAPTER 3 Stalla Seminars THE FINANCIAL CALCULATOR In accordance with the AIMR calculator policy in eect at the time o this writing, CFA candidates are permitted to use one o two approved calculators

More information

Lesson 12: The Graph of the Equation y = f(x)

Lesson 12: The Graph of the Equation y = f(x) Classwork In Module 1, you graphed equations such as 4x + y = 10 by plotting the points on the Cartesian coordinate plane that corresponded to all of the ordered pairs of numbers (x, y) that were in the

More information

Piecewise polynomial interpolation

Piecewise polynomial interpolation Chapter 2 Piecewise polynomial interpolation In ection.6., and in Lab, we learned that it is not a good idea to interpolate unctions by a highorder polynomials at equally spaced points. However, it transpires

More information

Computer Data Analysis and Use of Excel

Computer Data Analysis and Use of Excel Computer Data Analysis and Use o Excel I. Theory In this lab we will use Microsot EXCEL to do our calculations and error analysis. This program was written primarily or use by the business community, so

More information

Revision Topic 11: Straight Line Graphs

Revision Topic 11: Straight Line Graphs Revision Topic : Straight Line Graphs The simplest way to draw a straight line graph is to produce a table of values. Example: Draw the lines y = x and y = 6 x. Table of values for y = x x y - - - - =

More information

Multi-step transformations

Multi-step transformations October 6, 2016 Transformations (section 1.6) Day 4 page 1 Multi-step transformations Objective: Apply transformations involving multiple steps or multiple substitutions. Upcoming: We will have a test

More information

GEOMETRICAL OPTICS OBJECTIVES

GEOMETRICAL OPTICS OBJECTIVES Geometrical Optics 207 Name Date Partners OBJECTIVES OVERVIEW GEOMETRICAL OPTICS To examine Snell s Law and observe total internal relection. To understand and use the lens equations. To ind the ocal length

More information

Practice Test (page 391) 1. For each line, count squares on the grid to determine the rise and the run. Use slope = rise

Practice Test (page 391) 1. For each line, count squares on the grid to determine the rise and the run. Use slope = rise Practice Test (page 91) 1. For each line, count squares on the grid to determine the rise and the. Use slope = rise 4 Slope of AB =, or 6 Slope of CD = 6 9, or Slope of EF = 6, or 4 Slope of GH = 6 4,

More information

Scalable Test Problems for Evolutionary Multi-Objective Optimization

Scalable Test Problems for Evolutionary Multi-Objective Optimization Scalable Test Problems or Evolutionary Multi-Objective Optimization Kalyanmoy Deb Kanpur Genetic Algorithms Laboratory Indian Institute o Technology Kanpur PIN 8 6, India deb@iitk.ac.in Lothar Thiele,

More information

Section 6.2: Properties of Graphs of Quadratic Functions. Vertex:

Section 6.2: Properties of Graphs of Quadratic Functions. Vertex: Section 6.2: Properties of Graphs of Quadratic Functions determine the vertex of a quadratic in standard form sketch the graph determine the y intercept, x intercept(s), the equation of the axis of symmetry,

More information

Appendix: Instruments

Appendix: Instruments Appendix A Appendix: Instruments This appendix presents the instruments used in the experiment. These instruments can be used verbatim to repeat the experiment; a electronic copy is available upon request.

More information

Linear Network Coding

Linear Network Coding IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003 371 Linear Network Codin Shuo-Yen Robert Li, Senior Member, IEEE, Raymond W. Yeun, Fellow, IEEE, Nin Cai Abstract Consider a communication

More information

A Fault Model Centered Modeling Framework for Self-healing Computing Systems

A Fault Model Centered Modeling Framework for Self-healing Computing Systems A Fault Model Centered Modeling Framework or Sel-healing Computing Systems Wei Lu 1, Yian Zhu 1, Chunyan Ma 1, and Longmei Zhang 2 1 Department o Sotware and Microelectronics, Northwestern Polytechnical

More information

Lesson 8 - Practice Problems

Lesson 8 - Practice Problems Lesson 8 - Practice Problems Section 8.1: A Case for the Quadratic Formula 1. For each quadratic equation below, show a graph in the space provided and circle the number and type of solution(s) to that

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

GRAPHING WORKSHOP. A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation.

GRAPHING WORKSHOP. A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation. GRAPHING WORKSHOP A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation. The figure below shows a straight line drawn through the three points (2, 3), (-3,-2),

More information

1.5 Part - 2 Inverse Relations and Inverse Functions

1.5 Part - 2 Inverse Relations and Inverse Functions 1.5 Part - 2 Inverse Relations and Inverse Functions What happens when we reverse the coordinates of all the ordered pairs in a relation? We obviously get another relation, but does it have any similarities

More information

MAPI Computer Vision. Multiple View Geometry

MAPI Computer Vision. Multiple View Geometry MAPI Computer Vision Multiple View Geometry Geometry o Multiple Views 2- and 3- view geometry p p Kpˆ [ K R t]p Geometry o Multiple Views 2- and 3- view geometry Epipolar Geometry The epipolar geometry

More information

OCC and Its Variants. Jan Lindström. Helsinki 7. November Seminar on real-time systems UNIVERSITY OF HELSINKI. Department of Computer Science

OCC and Its Variants. Jan Lindström. Helsinki 7. November Seminar on real-time systems UNIVERSITY OF HELSINKI. Department of Computer Science OCC and Its Variants Jan Lindström Helsinki 7. November 1997 Seminar on real-time systems UNIVERSITY OF HELSINKI Department o Computer Science Contents 1 Introduction 1 2 Optimistic Concurrency Control

More information

A Proposed Approach for Solving Rough Bi-Level. Programming Problems by Genetic Algorithm

A Proposed Approach for Solving Rough Bi-Level. Programming Problems by Genetic Algorithm Int J Contemp Math Sciences, Vol 6, 0, no 0, 45 465 A Proposed Approach or Solving Rough Bi-Level Programming Problems by Genetic Algorithm M S Osman Department o Basic Science, Higher Technological Institute

More information

Activity One: Getting started with linear programming. This problem is based on a problem in the Algebra II Indicators for Goal 1.

Activity One: Getting started with linear programming. This problem is based on a problem in the Algebra II Indicators for Goal 1. Linear Programming Goals: 1. Describe graphically, algebraically, and verbally real-world phenomena as functions; identify the independent and dependent variables (3.01) 2. Translate among graphic, algebraic,

More information

Curl, Divergence, and Gradient in Cylindrical and Spherical Coordinate Systems

Curl, Divergence, and Gradient in Cylindrical and Spherical Coordinate Systems APPENDIX B Cul, Divegence, and Gadient in Cylindical and Spheical Coodinate Systems In Sections 3., 3.4, and 6., we intoduced the cul, divegence, and gadient, espectively, and deived the expessions o them

More information

Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET

Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET 1. The ollowing n data points, ( x ), ( x ),.. ( x, ) 1, y 1, y n y n quadratic spline interpolation the x-data needs to be (A) equally

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

Warm-Up. Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)

Warm-Up. Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2) Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) ) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,) 8.4 Graph and Write Equations of Ellipses What are the major parts of

More information

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3)

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3) Co-ordinate Geometry Co-ordinates Every point has two co-ordinates. (3, 2) x co-ordinate y co-ordinate Plot the following points on the plane..(3, 2) A (4, 1) D (2, 5) G (6, 3) B (3, 3) E ( 4, 4) H (6,

More information

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2 Lenses 2 L ENSES 2. Sherical reracting suraces In order to start discussing lenses uantitatively, it is useul to consider a simle sherical surace, as shown in Fig. 2.. Our lens is a semi-ininte rod with

More information

Step 1. Use a ruler or straight-edge to determine a line of best fit. One example is shown below.

Step 1. Use a ruler or straight-edge to determine a line of best fit. One example is shown below. Linear Models Modeling 1 ESSENTIALS Example Draw a straight line through the scatter plot so that the line represents a best fit approximation to the points. Then determine the equation for the line drawn.

More information

Functions. Name. Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. y = x + 5 x y.

Functions. Name. Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. y = x + 5 x y. Lesson 1 Functions Name Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. 1. = + = + = 2 3 = 2 3 Using an XY Coordinate Pegboard, graph the line on a coordinate

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

Learning Implied Global Constraints

Learning Implied Global Constraints Learning Implied Global Constraints Christian Bessiere LIRMM-CNRS U. Montpellier, France bessiere@lirmm.r Remi Coletta LRD Montpellier, France coletta@l-rd.r Thierry Petit LINA-CNRS École des Mines de

More information

Forms of Linear Equations

Forms of Linear Equations 6. 1-6.3 Forms of Linear Equations Name Sec 6.1 Writing Linear Equations in Slope-Intercept Form *Recall that slope intercept form looks like y = mx + b, where m = slope and b = y=intercept 1) Writing

More information

Homework for Section 5.1

Homework for Section 5.1 Homework for Section 5.1 1. reate the rotation R(T) 2. reate the reflection F(T) of the triangle T shown below 90 degrees of the triangle T shown below across clockwise about the center point of rotation.

More information

The Rational Zero Theorem

The Rational Zero Theorem The Rational Zero Theorem Our goal in this section is to learn how we can ind the rational zeros o the polynomials. For example: x = x 4 + x x x + ( ) We could randomly try some actors and use synthetic

More information

ITU - Telecommunication Standardization Sector. G.fast: Far-end crosstalk in twisted pair cabling; measurements and modelling ABSTRACT

ITU - Telecommunication Standardization Sector. G.fast: Far-end crosstalk in twisted pair cabling; measurements and modelling ABSTRACT ITU - Telecommunication Standardization Sector STUDY GROUP 15 Temporary Document 11RV-22 Original: English Richmond, VA. - 3-1 Nov. 211 Question: 4/15 SOURCE 1 : TNO TITLE: G.ast: Far-end crosstalk in

More information

3-6 Lines in the Coordinate Plane

3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Substitute the given values of m, x, and y into the equation y = mx + b and solve for b. 1. m = 2, x = 3, and

More information

Conic Sections. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Conic Sections. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Conic Sections MATH 211, Calculus II J. Robert Buchanan Department o Mathematics Spring 2018 Introduction The conic sections include the parabola, the ellipse, and the hyperbola. y y y x x x Parabola A

More information

Geometric Registration for Deformable Shapes 2.2 Deformable Registration

Geometric Registration for Deformable Shapes 2.2 Deformable Registration Geometric Registration or Deormable Shapes 2.2 Deormable Registration Variational Model Deormable ICP Variational Model What is deormable shape matching? Example? What are the Correspondences? Eurographics

More information

Projection Model, 3D Reconstruction and Rigid Motion Estimation from Non-central Catadioptric Images

Projection Model, 3D Reconstruction and Rigid Motion Estimation from Non-central Catadioptric Images Projection Model, 3D Reconstruction and Rigid Motion Estimation rom Non-central Catadioptric Images Nuno Gonçalves and Helder Araújo Institute o Systems and Robotics - Coimbra University o Coimbra Polo

More information

Fractions, Decimal Fractions. Whole Numbers. and Percentages. Decimals. Ratio. Special Numbers. Algebra. Scientific Notation

Fractions, Decimal Fractions. Whole Numbers. and Percentages. Decimals. Ratio. Special Numbers. Algebra. Scientific Notation Whole Numbers Fractions, Decimal Fractions 4.03a 4.03b I can solve problems in context using whole numbers I can use the order of operations to carry out a calculation 4.07a and Percentages I know when

More information

A Constant Rate of Change Name Part 1

A Constant Rate of Change Name Part 1 A Constant Rate of Change Name Part 1 Consider the function table below. Complete this page by solving the problems at the bottom. Use a separate sheet of paper for your descriptions and explanations.

More information

SIMULATION OPTIMIZER AND OPTIMIZATION METHODS TESTING ON DISCRETE EVENT SIMULATIONS MODELS AND TESTING FUNCTIONS

SIMULATION OPTIMIZER AND OPTIMIZATION METHODS TESTING ON DISCRETE EVENT SIMULATIONS MODELS AND TESTING FUNCTIONS SIMULATION OPTIMIZER AND OPTIMIZATION METHODS TESTING ON DISCRETE EVENT SIMULATIONS MODELS AND TESTING UNCTIONS Pavel Raska (a), Zdenek Ulrych (b), Petr Horesi (c) (a) Department o Industrial Engineering

More information

WK # Given: f(x) = ax2 + bx + c

WK # Given: f(x) = ax2 + bx + c Alg2H Chapter 5 Review 1. Given: f(x) = ax2 + bx + c Date or y = ax2 + bx + c Related Formulas: y-intercept: ( 0, ) Equation of Axis of Symmetry: x = Vertex: (x,y) = (, ) Discriminant = x-intercepts: When

More information

A New Algorithm for Determining Ultimate Pit Limits Based on Network Optimization

A New Algorithm for Determining Ultimate Pit Limits Based on Network Optimization IJMGE Int. J. Min.& Geo-Eng. Vol.47, No.2, Dec. 2013, pp. 129-137 A New Algorithm or Determining Ultimate Pit Limits Based on Network Optimization Ali Asghar Khodayari School o Mining Engineering, College

More information

Ad-hoc Workflow: Problems and Solutions

Ad-hoc Workflow: Problems and Solutions Ad-hoc Worklow: Problems and Solutions M. Voorhoeve and W. van der Aalst Dept. o Mathematics and Computing Science Eindhoven University o Technology Eindhoven, The Netherlands, 5600MB Abstract The paper

More information

Example 1: Give the coordinates of the points on the graph.

Example 1: Give the coordinates of the points on the graph. Ordered Pairs Often, to get an idea of the behavior of an equation, we will make a picture that represents the solutions to the equation. A graph gives us that picture. The rectangular coordinate plane,

More information

Intelligent knowledge-based system for the automated screwing process control

Intelligent knowledge-based system for the automated screwing process control Intelligent knowledge-based system or the automated screwing process control YULIYA LEBEDYNSKA yuliya.lebedynska@tu-cottbus.de ULRICH BERGER Chair o automation Brandenburg University o Technology Cottbus

More information

2-3 Graphing Rational Functions

2-3 Graphing Rational Functions 2-3 Graphing Rational Functions Factor What are the end behaviors of the Graph? Sketch a graph How to identify the intercepts, asymptotes and end behavior of a rational function. How to sketch the graph

More information

Classifier Evasion: Models and Open Problems

Classifier Evasion: Models and Open Problems Classiier Evasion: Models and Open Problems Blaine Nelson 1, Benjamin I. P. Rubinstein 2, Ling Huang 3, Anthony D. Joseph 1,3, and J. D. Tygar 1 1 UC Berkeley 2 Microsot Research 3 Intel Labs Berkeley

More information

2-4 Graphing Rational Functions

2-4 Graphing Rational Functions 2-4 Graphing Rational Functions Factor What are the zeros? What are the end behaviors? How to identify the intercepts, asymptotes, and end behavior of a rational function. How to sketch the graph of a

More information