COMP 558 lecture 6 Sept. 27, 2010

Size: px
Start display at page:

Download "COMP 558 lecture 6 Sept. 27, 2010"

Transcription

1 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout of light that passes through the tube without hittig the sides. We measure the power 1 of light through the tube. The power of light that gets through the tube, depeds o the legth of the tube ad o the cross-sectioal area the tube (πr 2, where r is the tube radius). If you hold the area costat ad icrease the legth of the tube, you decrease the amout of light that passes through the tube because you will have a tighter restrictio o the directio of rays that ca pass through the tube. Similarly, if you hold the legth of the tube costat, ad you decrease the cross-sectioal area of the tube, you agai decrease the umber of rays that pass through the tube. Thus, the power of light that passes through the tube depeds o the legth ad cross sectioal area. Agle vs. solid agle For a thi tube, cosider the agle subteded by the diameter at the far ed of the tube, whe see from the axis at the opeig of the ear ed of the tube. This agle is approximately the ratio diameter. This agle is i uits of radias, i.e. which is the arclegth o the uit circle. Recall 1 tubelegth radia is degrees, π radias is 90 degrees, etc. 2π 2 To measure light, oe eeds to cosider a agular measuremet called solid agle. Solid agle is the area o a uit sphere that is subteded by a object, whe that object is viewed from a poit at the ceter of the sphere. The uits of solid agle are steradias. The maximum value of solid agle is 4π, which is the etire area of the uit sphere. For example, if you are iside a room, the the solid agle subteded by the walls ad ceilig ad floor of the room is 4π steradias. We said earlier that the power of light that passes through the tube depeds o the legth ad width of the tube. Alteratively, we ca express the power by the area of the ear ed of the tube ad by the solid agle subteded by the far ed of the tube whe see from ear ed. This leads us to the followig defiitio. Radiace Place oe ed of a small hollow tube at some poit x = (X,Y,Z) ad poit it i some directio l. Measure the power of light passig through the tube. Defie the radiace L(x,l) of the ray to be 1 Namely, light eergy per secod, measured i Watts. I am igorig color properties for ow. 1

2 the light power 2 per uit cross sectio area at x per uit steradia of the coe of rays arrivig at x, radiace, L(x, l) power cross sectio area solid agle I tryig to uderstad this defiitio, you should thik about a thi tube, so that the cross sectioal area ad solid agle are both very small. [ASIDE: If there is o scatterig of light i space (e.g. fog), the radiace is costat alog a light ray. Ituitively, if you place your thi tube at a poit X i space ad poit it i some directio l, ad the move the tube i this directio, the power that you get through the tube will ot chage (i.e. the brightess of the light you will see through the tube will ot chage). Thigs that we look at do ot get brighter whe we walk toward them. They get bigger (i terms of their solid agle) but they do t get brighter. Note: small light sources do seem to get dimmer as you move away from them. But the reaso is that the solid agle they subted gets smaller ot that the radiace decreases.] Irradiace Aother importat cocept is the total power of light that arrives at a surface per uit area. This is importat for uderstadig how much illumiatio is received by poits i the world, ad also how much light arrives at a pixel o the sesor plae. Today we ll examie poits i the world ad ext lecture we ll cosider the sesor plae. If you take a poit x o a surface, the light ca arrive at x from a hemisphere of directios. Usually oe talks about the amout of light arrivig i a small area cotaiig that poit, rather tha about the set of rays arrivig at precisely that poit. The reaso for talkig about a small arrival area is that it allows oe to capture the orietatio (ormal) of the surface at that poit. The irradiace E(x) is defied as the light power arrivig per uit area o the surface i a small eighborhood of x. Light ca arrive from a hemisphere of directios, so we divide the hemisphere 2 eergy per uit time 2

3 ito solid agles dω i ad the add up the cotributio of each oe: E(x) = L(x,l i ) (x) l i dω i where (x) is the uit ormal vector of the surface at x, ad dω i is a small solid agle cetered i the directio l i. The l i compoet is eeded because the radiace is defied per uit area o the surface. Cosider a small tube cetered o a ray i directio l i which has oe ed at the surface poit x. If the icomig ray is oblique to the surface, the the surface will itersect the tube at a oblique agle. The light through the tube will be be spread out over a area proportioal to 1/ l i 1. Thus, to get the power per uit area o the surface, rather tha the cross-sectioal area of the tube, we eed to multiply by l i 1. Special case 1: sulight Cosider the special case of a parallel source such as sulight. The su spas a small solid agle Ω su ad the radiace is approximately costat L su over that agle, so we ca write E(x) = L(x,l i )(x) l i dω i su L su (x) l i dω su L su Ω su (x) l su where L su is the radiace of the source, Ω su is the solid agle subteded by the source, ad l su is the directio to the ceter of the su. If you are strugglig with the l effect, thik of the (approximately) parallel rays from the su ad to otice that umber of rays that reach a uit area patch of surface is proportioal to (x) l, amely to the cosie of the agle betwee the surface ormal ad the light source. Cosider the sketch below. The parallel vectors idicate the parallel rays arrivig at the surface. The three boldface lies (bottom left) idicate three surfaces that havig differet surface ormals. The two dotted lies illustrate that as the surface ormal tilts away from the light source, the umber of rays reachig a uit area of the surface decreases. (Oly a slice is show, but you should imagie this picture is the same i each depth slice.) The umber of rays depeds o the legth of the dotted lie, which by simple trigoometry is (x) l. l 3

4 Special case 1: disk skylight i a room This case was discussed i class (see lecture slides). Details will be give i the lecture otes for lecture 7. Surface reflectace The above discussio was cocered with how much light arrives at a surface poit x per uit surface area. To model the itesity of light reflected from a surface poit x, we must specify ot just the irradiace (icomig light), but also say somethig about the surface material. There are may differet kids of surface materials ad they differ i visual appearace i may ways. For example, some surfaces are shiy ad others are ot. Surfaces that are shiy ca have very differet appearaces from each other: compare plastic, metal, velvet, leather, or ski, etc. Here I preset oly basic model for how people describe surface reflectace. This wo t give you much uderstadig of the topic, but it at least exposes you to the existece of the topic! Bidirectioal reflectace distributio fuctio (BRDF) Suppose that we were to illumiate the surface ear a poit x from oly a small set of directios cetered at l i which is a uit vector. This determies the compoet of the irradiace at x that is due to a small set of directios of icidet light. We ca the measure the radiace of the surface i some outgoig directio, say l out. The quatity of iterest is how this outgoig radiace i directio l out depeds o the icomig radiace l i. If we kow this depedece for all pairs l i ad l out, the we have characterized the reflectace properties of the surface. l out l i Oe captures this depedece by defiig a bidirectioal reflectace distributio fuctio(brdf): ρ(x,l i,l out ) which is defied such that: L(x,l out ) = ρ(x,l i,l out ) L(x,l i )(x) l i dω i 4

5 A BRDF ca be measured i a laboratory by sequetially illumiatig a surface at x with lights from each directio l i, ad the measurig the resultig outgoig radiace i each directio l out. (Details omitted.) Measurig ad modellig BRDF s is a very importat problem i computer visio. The applicatios are maily i computer graphics, where oe would like to be able to reder surfaces usig realistic BRDFs models that are obtaied from real surfaces, istead of the oversimplified models (e.g. Phog) that were used i classical computer graphics. Diffuse (matte, Lambertia) reflectace For may surfaces, the BRDF ρ(x,l i,l out ) is idepedet of l out ad l i. I particular, for such a surfaces, the radiace leavig a surface poit x is modelled as L(x,l out ) = ρ(x) L(x,l i )(x) l i dω i The costat ρ(x) specifies whether the surface is light or dark colored. For a black surface, ρ(x) would be ear zero. NoticethattheoutgoigradiaceforLambertiasurfacesdoesotdepedol out. Suchsurfaces, for which the reflected radiace is the same i all directios, are called Lambertia 3, or matte. May computer visio methods assume the surfaces are approximately Lambertia. The mai reaso is that this coditio helps oe to fid matchig poits i images take from differet viewpoits. Why? If a pixel has a particular itesity value from camera positio ad we wish to fid a correspodig pixel whe the same camera is moved to aother positio, the we oly eed to cosider poits that have the same image itesity. 3 after a 18th cetury scietist Joha Lambert who wrote a treatise o light 5

Lighting and Shading. Outline. Raytracing Example. Global Illumination. Local Illumination. Radiosity Example

Lighting and Shading. Outline. Raytracing Example. Global Illumination. Local Illumination. Radiosity Example CSCI 480 Computer Graphics Lecture 9 Lightig ad Shadig Light Sources Phog Illumiatio Model Normal Vectors [Agel Ch. 6.1-6.4] February 13, 2013 Jerej Barbic Uiversity of Souther Califoria http://www-bcf.usc.edu/~jbarbic/cs480-s13/

More information

Light and shading. Source: A. Efros

Light and shading. Source: A. Efros Light ad shadig Source: A. Efros Image formatio What determies the brightess of a image piel? Sesor characteristics Light source properties Eposure Surface shape ad orietatio Optics Surface reflectace

More information

Normals. In OpenGL the normal vector is part of the state Set by glnormal*()

Normals. In OpenGL the normal vector is part of the state Set by glnormal*() Ray Tracig 1 Normals OpeG the ormal vector is part of the state Set by glnormal*() -glnormal3f(x, y, z); -glnormal3fv(p); Usually we wat to set the ormal to have uit legth so cosie calculatios are correct

More information

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation The Nature of Light Chapter Reflectio ad Refractio of Light Sectios: 5, 8 Problems: 6, 7, 4, 30, 34, 38 Particles of light are called photos Each photo has a particular eergy E = h ƒ h is Plack s costat

More information

27 Refraction, Dispersion, Internal Reflection

27 Refraction, Dispersion, Internal Reflection Chapter 7 Refractio, Dispersio, Iteral Reflectio 7 Refractio, Dispersio, Iteral Reflectio Whe we talked about thi film iterferece, we said that whe light ecouters a smooth iterface betwee two trasparet

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION METU EE 584 Lecture Notes by A.Aydi ALATAN 0 EE 584 MACHINE VISION Itroductio elatio with other areas Image Formatio & Sesig Projectios Brightess Leses Image Sesig METU EE 584 Lecture Notes by A.Aydi ALATAN

More information

Computer Graphics. Surface Rendering Methods. Content. Polygonal rendering. Global rendering. November 14, 2005

Computer Graphics. Surface Rendering Methods. Content. Polygonal rendering. Global rendering. November 14, 2005 Computer Graphics urface Rederig Methods November 4, 2005 Cotet Polygoal rederig flat shadig Gouraud shadig Phog shadig Global rederig ray tracig radiosity Polygoal Rederig hadig a polygoal mesh flat or

More information

Apparent Depth. B' l'

Apparent Depth. B' l' REFRACTION by PLANE SURFACES Apparet Depth Suppose we have a object B i a medium of idex which is viewed from a medium of idex '. If '

More information

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV Lecture 7 7 Refractio ad Sell s Law Readig Assigmet: Read Kipis Chapter 4 Refractio of Light, Sectio III, IV 7. History I Eglish-speakig coutries, the law of refractio is kow as Sell s Law, after the Dutch

More information

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed.

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed. MASSACHUSETTS INSTITUTE of TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.161 Moder Optics Project Laboratory 6.637 Optical Sigals, Devices & Systems Problem Set No. 1 Geometric optics

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Physics 11b Lecture #19

Physics 11b Lecture #19 Physics b Lecture #9 Geometrical Optics S&J Chapter 34, 35 What We Did Last Time Itesity (power/area) of EM waves is give by the Poytig vector See slide #5 of Lecture #8 for a summary EM waves are produced

More information

Chapter 18: Ray Optics Questions & Problems

Chapter 18: Ray Optics Questions & Problems Chapter 18: Ray Optics Questios & Problems c -1 2 1 1 1 h s θr= θi 1siθ 1 = 2si θ 2 = θ c = si ( ) + = m = = v s s f h s 1 Example 18.1 At high oo, the su is almost directly above (about 2.0 o from the

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Computer Graphics. Shading. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion. The Physics

Computer Graphics. Shading. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion. The Physics Comuter Grahics Illumiatio Models & The Physics 2 Local vs. Global Illumiatio Models Examle Local model direct ad local iteractio of each object with the light. Ambiet Diffuse Global model: iteractios

More information

Visualization of Gauss-Bonnet Theorem

Visualization of Gauss-Bonnet Theorem Visualizatio of Gauss-Boet Theorem Yoichi Maeda maeda@keyaki.cc.u-tokai.ac.jp Departmet of Mathematics Tokai Uiversity Japa Abstract: The sum of exteral agles of a polygo is always costat, π. There are

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Assignment 5; Due Friday, February 10

Assignment 5; Due Friday, February 10 Assigmet 5; Due Friday, February 10 17.9b The set X is just two circles joied at a poit, ad the set X is a grid i the plae, without the iteriors of the small squares. The picture below shows that the iteriors

More information

AP B mirrors and lenses websheet 23.2

AP B mirrors and lenses websheet 23.2 Name: Class: _ Date: _ ID: A AP B mirrors ad leses websheet 232 Multiple Choice Idetify the choice that best completes the statemet or aswers the questio 1 The of light ca chage whe light is refracted

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

Introduction to Sigma Notation

Introduction to Sigma Notation Itroductio to Siga Notatio Steph de Silva //207 What is siga otatio? is the capital Greek letter for the soud s I this case, it s just shorthad for su Siga otatio is what we use whe we have a series of

More information

Derivation of perspective stereo projection matrices with depth, shape and magnification consideration

Derivation of perspective stereo projection matrices with depth, shape and magnification consideration Derivatio of perspective stereo projectio matrices with depth, shape ad magificatio cosideratio Patrick Oberthür Jauary 2014 This essay will show how to costruct a pair of stereoscopic perspective projectio

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

The Graphs of Polynomial Functions

The Graphs of Polynomial Functions Sectio 4.3 The Graphs of Polyomial Fuctios Objective 1: Uderstadig the Defiitio of a Polyomial Fuctio Defiitio Polyomial Fuctio 1 2 The fuctio ax a 1x a 2x a1x a0 is a polyomial fuctio of degree where

More information

Counting Regions in the Plane and More 1

Counting Regions in the Plane and More 1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September 016 1. Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1 Visio & Perceptio Simple model: simple reflectace/illumiatio model Eye illumiatio source i( 1, 2 ) image: x( 1, 2 )=i( 1, 2 )r( 1, 2 ) reflectace term r( 1, 2 ) where 0 < i( 1, 2 ) < 0 < r( 1, 2 ) < 1

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Computers and Scientific Thinking

Computers and Scientific Thinking Computers ad Scietific Thikig David Reed, Creighto Uiversity Chapter 15 JavaScript Strigs 1 Strigs as Objects so far, your iteractive Web pages have maipulated strigs i simple ways use text box to iput

More information

A Resource for Free-standing Mathematics Qualifications

A Resource for Free-standing Mathematics Qualifications Ope.ls The first sheet is show elow. It is set up to show graphs with equatios of the form = m + c At preset the values of m ad c are oth zero. You ca chage these values usig the scroll ars. Leave the

More information

Lenses and Imaging (Part I)

Lenses and Imaging (Part I) Leses ad Imagig (Part I) Why is imagig ecessary: Huyge s priciple Spherical & parallel ray budles, poits at ifiity efractio at spherical surfaces (paraial approimatio) Optical power ad imagig coditio Matri

More information

Accuracy Improvement in Camera Calibration

Accuracy Improvement in Camera Calibration Accuracy Improvemet i Camera Calibratio FaJie L Qi Zag ad Reihard Klette CITR, Computer Sciece Departmet The Uiversity of Aucklad Tamaki Campus, Aucklad, New Zealad fli006, qza001@ec.aucklad.ac.z r.klette@aucklad.ac.z

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

Lenses and imaging. MIT 2.71/ /10/01 wk2-a-1

Lenses and imaging. MIT 2.71/ /10/01 wk2-a-1 Leses ad imagig Huyges priciple ad why we eed imagig istrumets A simple imagig istrumet: the pihole camera Priciple of image formatio usig leses Quatifyig leses: paraial approimatio & matri approach Focusig

More information

Lecture 2: Spectra of Graphs

Lecture 2: Spectra of Graphs Spectral Graph Theory ad Applicatios WS 20/202 Lecture 2: Spectra of Graphs Lecturer: Thomas Sauerwald & He Su Our goal is to use the properties of the adjacecy/laplacia matrix of graphs to first uderstad

More information

Lenses and Imaging (Part I) Parabloid mirror: perfect focusing

Lenses and Imaging (Part I) Parabloid mirror: perfect focusing Leses ad Imagig (Part I) eview: paraboloid reflector, focusig Why is imagig ecessary: Huyges priciple Spherical & parallel ray budles, poits at ifiity efractio at spherical surfaces (paraial approimatio)

More information

The Platonic solids The five regular polyhedra

The Platonic solids The five regular polyhedra The Platoic solids The five regular polyhedra Ole Witt-Hase jauary 7 www.olewitthase.dk Cotets. Polygos.... Topologically cosideratios.... Euler s polyhedro theorem.... Regular ets o a sphere.... The dihedral

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

The Adjacency Matrix and The nth Eigenvalue

The Adjacency Matrix and The nth Eigenvalue Spectral Graph Theory Lecture 3 The Adjacecy Matrix ad The th Eigevalue Daiel A. Spielma September 5, 2012 3.1 About these otes These otes are ot ecessarily a accurate represetatio of what happeed i class.

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information

Practical Implementation at tri-ace

Practical Implementation at tri-ace Physically Based Shadig Models i Film ad Game Productio: Practical Implemetatio at tri-ace 1. Itroductio Yoshiharu Gotada tri-ace, Ic. I this paper, we preset our practical examples of physically based

More information

Ch 9.3 Geometric Sequences and Series Lessons

Ch 9.3 Geometric Sequences and Series Lessons Ch 9.3 Geometric Sequeces ad Series Lessos SKILLS OBJECTIVES Recogize a geometric sequece. Fid the geeral, th term of a geometric sequece. Evaluate a fiite geometric series. Evaluate a ifiite geometric

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

1. Introduction o Microscopic property responsible for MRI Show and discuss graphics that go from macro to H nucleus with N-S pole

1. Introduction o Microscopic property responsible for MRI Show and discuss graphics that go from macro to H nucleus with N-S pole Page 1 Very Quick Itroductio to MRI The poit of this itroductio is to give the studet a sufficietly accurate metal picture of MRI to help uderstad its impact o image registratio. The two major aspects

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Basic Optics: Index of Refraction

Basic Optics: Index of Refraction Basic Optics: Idex of Refractio Deser materials have lower speeds of light Idex of Refractio = where c = speed of light i vacuum v = velocity i medium Eve small chages ca create differece i Higher idex

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Optimal Mapped Mesh on the Circle

Optimal Mapped Mesh on the Circle Koferece ANSYS 009 Optimal Mapped Mesh o the Circle doc. Ig. Jaroslav Štigler, Ph.D. Bro Uiversity of Techology, aculty of Mechaical gieerig, ergy Istitut, Abstract: This paper brigs out some ideas ad

More information

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem Exact Miimum Lower Boud Algorithm for Travelig Salesma Problem Mohamed Eleiche GeoTiba Systems mohamed.eleiche@gmail.com Abstract The miimum-travel-cost algorithm is a dyamic programmig algorithm to compute

More information

Spherical Mirrors. Types of spherical mirrors. Lecture convex mirror: the. geometrical center is on the. opposite side of the mirror as

Spherical Mirrors. Types of spherical mirrors. Lecture convex mirror: the. geometrical center is on the. opposite side of the mirror as Lecture 14-1 Spherical Mirrors Types of spherical mirrors covex mirror: the geometrical ceter is o the opposite side of the mirror as the object. cocave mirror: the geometrical ceter is o the same side

More information

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Octahedral Graph Scaling

Octahedral Graph Scaling Octahedral Graph Scalig Peter Russell Jauary 1, 2015 Abstract There is presetly o strog iterpretatio for the otio of -vertex graph scalig. This paper presets a ew defiitio for the term i the cotext of

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Project 2.5 Improved Euler Implementation

Project 2.5 Improved Euler Implementation Project 2.5 Improved Euler Implemetatio Figure 2.5.10 i the text lists TI-85 ad BASIC programs implemetig the improved Euler method to approximate the solutio of the iitial value problem dy dx = x+ y,

More information

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard 1 A wireless keyboard is supplied with your computer. The wireless keyboard uses a stadard key arragemet with additioal keys that perform specific fuctios. Usig the Wireless Keyboard Two AA alkalie batteries

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Cocurrecy Threads ad Cocurrecy i Java: Part 1 What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Evaluation scheme for Tracking in AMI

Evaluation scheme for Tracking in AMI A M I C o m m u i c a t i o A U G M E N T E D M U L T I - P A R T Y I N T E R A C T I O N http://www.amiproject.org/ Evaluatio scheme for Trackig i AMI S. Schreiber a D. Gatica-Perez b AMI WP4 Trackig:

More information

Illumination Distribution from Shadows

Illumination Distribution from Shadows Illumiatio Distributio from Shadows Imari Sat0 Yoichi Sat0 Katsushi Ikeuchi Istitute of Idustrial Sciece, The Uiversity of Tokyo 7-22- 1 Roppogi, Miato-ku, Tokyo 106-8558, Japa { imarik, ysato, ki} 0iis.u-tokyo.ac.jp

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Threads ad Cocurrecy i Java: Part 1 1 Cocurrecy What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

World Scientific Research Journal (WSRJ) ISSN: Research on Fresnel Lens Optical Receiving Antenna in Indoor Visible

World Scientific Research Journal (WSRJ) ISSN: Research on Fresnel Lens Optical Receiving Antenna in Indoor Visible World Scietific Research Joural (WSRJ) ISSN: 2472-3703 www.wsr-j.org Research o Fresel Les Optical Receivig Atea i Idoor Visible Light Commuicatio Zhihua Du College of Electroics Egieerig, Chogqig Uiversity

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

FURTHER INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

FURTHER INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mathematics Revisio Guides More Trigoometric ad Log Itegrals Page of 7 MK HOME TUITION Mathematics Revisio Guides Level: AS / A Level AQA : C Edexcel: C OCR: C OCR MEI: C FURTHER INTEGRATION TECHNIQUES

More information

How to Select the Best Refractive Index

How to Select the Best Refractive Index How to Select the Best Refractive Idex Jeffrey Bodycomb, Ph.D. HORIBA Scietific www.horiba.com/us/particle 2013HORIBA, Ltd. All rights reserved. Outlie Laser Diffractio Calculatios Importace of Refractive

More information

Section 7.2: Direction Fields and Euler s Methods

Section 7.2: Direction Fields and Euler s Methods Sectio 7.: Directio ields ad Euler s Methods Practice HW from Stewart Tetbook ot to had i p. 5 # -3 9-3 odd or a give differetial equatio we wat to look at was to fid its solutio. I this chapter we will

More information

Math 10C Long Range Plans

Math 10C Long Range Plans Math 10C Log Rage Plas Uits: Evaluatio: Homework, projects ad assigmets 10% Uit Tests. 70% Fial Examiatio.. 20% Ay Uit Test may be rewritte for a higher mark. If the retest mark is higher, that mark will

More information

Aberrations in Lens & Mirrors (Hecht 6.3)

Aberrations in Lens & Mirrors (Hecht 6.3) Aberratios i Les & Mirrors (Hecht 6.3) Aberratios are failures to focus to a "poit" Both mirrors ad les suffer from these Some are failures of paraxial assumptio 3 5 θ θ si( θ ) = θ + L 3! 5! Paraxial

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

Protected points in ordered trees

Protected points in ordered trees Applied Mathematics Letters 008 56 50 www.elsevier.com/locate/aml Protected poits i ordered trees Gi-Sag Cheo a, Louis W. Shapiro b, a Departmet of Mathematics, Sugkyukwa Uiversity, Suwo 440-746, Republic

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

Why Do We Care About Lighting? Computer Graphics Lighting. The Surface Normal. Flat Shading (Per-face) Setting a Surface Normal in OpenGL

Why Do We Care About Lighting? Computer Graphics Lighting. The Surface Normal. Flat Shading (Per-face) Setting a Surface Normal in OpenGL Lightig Why Do We Care About Lightig? Lightig dis-ambiguates 3D scees This work is licesed uder a Creative Commos Attributio-NoCommercial- NoDerivatives 4.0 Iteratioal Licese Mike Bailey mjb@cs.oregostate.edu

More information

South Slave Divisional Education Council. Math 10C

South Slave Divisional Education Council. Math 10C South Slave Divisioal Educatio Coucil Math 10C Curriculum Package February 2012 12 Strad: Measuremet Geeral Outcome: Develop spatial sese ad proportioal reasoig It is expected that studets will: 1. Solve

More information

Lecture # 09: Flow visualization techniques: schlieren and shadowgraphy

Lecture # 09: Flow visualization techniques: schlieren and shadowgraphy AerE 344 Lecture Notes Lecture # 9: Flow visualizatio techiques: schliere ad shadowgraph Dr. Hui Hu Dr. Re M Waldma Departmet of Aerospace Egieerig owa State Uiversit Ames, owa 5, U.S.A Sources/ Further

More information

Section 4. Imaging and Paraxial Optics

Section 4. Imaging and Paraxial Optics 4-1 Sectio 4 Imagig ad Paraxial Optics Optical Sstems A optical sstem is a collectio of optical elemets (leses ad mirrors). While the optical sstem ca cotai multiple optical elemets, the first order properties

More information