Raster model. Alexandre Gonçalves, DECivil, IST

Size: px
Start display at page:

Download "Raster model. Alexandre Gonçalves, DECivil, IST"

Transcription

1 Raster model 1. Resolution 2. Values and data types 3. Storage 4. Fitting rasters 5. Map algebra 6. Interpolation 7. Conversion vector raster 8. Vector vs. raster 1

2 Raster model Divides the space into a regular grid of cells in a specific order each cell has one assigned value each place is occupied by a single cell 2

3 Resolution spatial spectral (number of distinct values that can be stored) 3

4 Value and data types Values Integer Real Alphanumeric (coded) Data Continuous functions Categorical data 4

5 Pixel Generally a pixel has been assigned a single value maybe inadequate: a border can cross a pixel rules for deciding the classification Information for a area is usually composed by several layers 5

6 Structure and storage 6

7 Coordinates image coordinates real coordinates 7

8 Structure: Zones and Regions Zones are groups of cells that share the same value Regions are contiguous zones Null

9 Structure: Associated tables Only to integer-valued rasters Value and Count of zones (not of regions) always available Other attributes may be added Null

10 Affine transformation 10

11 Storage Row major ABBB ABBB AABB AAAB Column major AAAA BBAA BBBA BBBB Run Length Encoding (RLE) Row Major 1A3B1A3B2A1B3A1B RLE Column Major 4A2B2A3B1A4B 11

12 1) Linear Scan Storage 2) Interleaved Scan (TV) 3) Byte Offset 4) Zig Zag Order 5) Sub Block Scan Order 6a) Peano Order 6b) Peano Order Non-equal Cell Sizes 7) Hilbert Order 8) Morton Order 12

13 Storage quadtrees original 1ª partition 13

14 Storage quadtrees 2ª partition 3ª partition 14

15 Storage quadtrees 4ª partition final tree 15

16 Storage The generic model is implemented in diverse computational formats: GRID proprietary format ESRI JPEG, TIFF, MrSid standard format for display but not for analysis; generically need an additional file to get the location (chamado world file) Type Image File World File TIFF image.tif image.tfw Bitmap image.bmp image.bpw BIL image.bil image.blw JPEG image.jpg image.jpw 16

17 Fitting rasters Before the analysis, grids must be made compatible Need for resampling the grid Change in the projection system Change in the width of cells Georeferencing 17

18 Fitting rasters georeferencing Corrected image Original image (grid) Reference map Original image 18

19 1st Order u = a0 + a1x +a2y y = b0 + b1x +b2y Fitting rasters polynomial transformation (6 coefficients) 2nd Order (12 coefficients) 2 2 u = a0 + a1x + a2y + a3xy + a4x + a5 y y = b0 + b1x + b2y + b3xy + b4x + b5y 2 2 3rd Order (20 coefficients) u = a0 + a1x + a2y + a3xy + a4x + a5 y + a6x y + a7xy + a8x + a9y 2 y = b0 + b1x + b2y + b3xy + b4x + b5 y + b6x y + b7xy + b8x + b9y

20 Fitting rasters Pixel value in the corrected image is the value of the nearest pixel in the original image. Advantages Computationally simple Does not change original values Applies to nominal scales Disadvantages nearest neighbor Objects may displace up to half pixel Structures get a zigzag shape 20

21 Fitting rasters bilinear interpolation The value of the pixel in the corrected image is a weighted average value of the 4 closest pixels in the original image. Advantages Smoothes the image Disadvantages Smoothes the image Changes pixel values 21

22 Fitting rasters cubic convolution Pixel value in the corrected image is given by some weight of the 16 closest pixels in the original image. Advantages Less interpolation artifacts because the neighborhood is larger Disadvantages Computationally intensive Changes pixel values May extrapolate in places where local variation is large 22

23 Local functions Map algebra Focal functions Zonal functions Global functions 23

24 Local functions combine the values of one or more rasters to produce a new raster using the same cell positions in each one _ Null Null Null Null Null Null = Pop 2000 Pop 1990 Var Pop 24

25 Local functions Arithmetic operators Basic operators (+,-,*,/) available. Rounding and precedence. Boolean operators Logic operators (AND, OR, NOT) available. Output: 0=FALSE, 1=TRUE Input: 0=FALSE, ~0=TRUE 25

26 Local functions Null 0 2 Null Null Null Null Null AND = Null Null Null Null 0 2 Null Null 0 1 Null Null Null Null AND = Null Null Null

27 Local functions reclassify [0,2]=0 ]2,6]=1 ]6,9]=

28 Focal functions take the value from a cell s neighborhood

29 Focal functions Focal (normal) Block Nas operações focais existe Focal operations use a mobile uma janela móvel, i.e., as window, i.e., neighbourhoods vizinhanças sobrepõem-se. overlap Nas operações de Bloco as vizinhanças Block operations use non-overlapping são justapostas. neighbourhoods. The output is the same O valor de output é igual em todas as for all cells in a given block células de um dado bloco. 29

30 Focal functions possible neighborhoods 30

31 Focal functions Removing noise Errors/outliers Paul Bolstad, GIS Fundamentals 31

32 Focal functions Roughness index R cel ( X ij X cel i, j ) 2 32

33 Zonal functions Zonal functions are very similar to focal functions, except the neighbourhood has not a fixed shape, and can be defined by another grid Taking a raster, they calculate for each cell some function or statistic, using its value and that of all cells belonging to the same zone. Some zonal functions (type I) for which zones are defined by an isolated value, allow statistics or the quantification of geometric characteristics of input zones. Other zonal functions (type II) for which zones are defined through a second grid, allow the statistics or the filling of specific zones with values from the input grid. 33

34 Zonal functions similar to focal functions, but the neighborhood has no fixed shape, being defined by the distribution of values (type I) or by a second grid (type II) type I example: distance to the sea 34

35 zone layer Zonal functions A A Null X X G G A A X G G A A X A G G A X A A X X A Null result type II example: zonal sum

36 Global functions Position - Buffer - Triangulation - Voronoi diagram Position and value - Visibility maps - Interpolation 36

37 Global functions: Interpolation Set of methods to estimate unknown values of a function based on measured/known values Point data, but Phenomena extending to areas Transformations Point to area Polinomial Based on distance (IDW, Kriging, etc) Stochastic functions x a f(x) f(a) b? c d f(c) f(d) 37

38 Global functions : Interpolation Linear f^(b) = f(a)(b-a)/(c-a) + f(c)(c-b)/(c-a) Simple polynomials f(x,y) = S S a ik x i y k a ik are the coefficients Polynomial fitted by minimum mean square error method f(x,y) = S S a ik x i y k + e 38

39 Global functions: interpolation Point-to-area Calculation based on proximity only ex: Voronoi diagrams 39

40 Global functions: interpolation Distance-based Splines: Based on the nearest points Smooth surfaces Not exact in input points Triangulations: J f(x,y) = z = ax + by + c A OIJ A OJK z 1 = ax 1 + by 1 + c z 2 = ax 2 + by 2 + c z 3 = ax 3 + by 3 + c I O K A OIK All things are related, but nearby things are more related than distant things 40

41 41 Global functions:interpolation n i d n i i d i i v v n i d n i i d p i p i v v Distance-based IDW

42 Global functions: interpolation IDW x y f(x,y)=zi Dist. à obs. 8 = di weights wi= 1/ di Normalised weights (1/di) / (S1/di) ? S1/di = f ^(65,137) =

43 Global functions : Interpolation x y z ? (x,y) = z = a0 + a1x + a2y Sz = a 0 n + a 1 S x + a 2 S y Sz x = a 0 S x + a 1 S x 2 + a 2 S x y S z y = a 0 S y + a 1 S x y + a 2 S y = a 0 (6) + a 1 (15) + a 2 (15) 420 = a 0 (15) + a 1 (47)+ a 2 (36) 451 = a 0 (15) + a 1 (36)+ a 2 (47) f^(2,3) = 29.9 f(x,y) = x -0.3y 43

44 Global functions : Interpolation IDW weights normalized weights x y f(x,y)=zi Distance to observation 8 = di wi= 1/ di (1/di) / (S1/di) ? S1/di = f ^(65,137) =

45 Global functions: interpolation IDW: The larger the power, the larger the difference between neighbouring cells Exact interpolator (estimate on sample points gives the point value) As one moves away from the sample points, values will tend to the mean value Needs a good sample distribution 45

46 Global functions : Interpolation Triangulation f(x,y) = z = ax + by + c J z 1 = ax 1 + by 1 + c z 2 = ax 2 + by 2 + c z 3 = ax 3 + by 3 + c A OIJ O A OJK I K A OIK 46

47 Global functions : Interpolation Quantification of error margins e = f^(x,y) - f(x,y) e = 1/n S f^(x,y) - f(x,y) for n points estimation error mean error MAE = e = 1/n S f^(x,y) - f(x,y) mean abs. error MSE = 1/n S [ f^(x,y) - f(x,y) ] 2 mean squared error 47

48 Converting vector raster 48

49 Raster advantages Simple data structure Easy analysis Low-tech platforms Remote sensing data Modeling is simple 49

50 Spatial inaccuracy Generalization Implicit data. Raster disadvantages Each cell must be classified. Large data sets 50

51 Vector advantages Closest to maps mental model Higher resolution Accuracy in positioning Node-vertex storage Understandable Topology 51

52 Raster disadvantages Complex data structure Demands geometric processing More complex editing 52

Raster model. Raster model. Resolution. Value and data types. Structure and storage. Cell. Values. Data

Raster model. Raster model. Resolution. Value and data types. Structure and storage. Cell. Values. Data Raster model. Resolution. Values and data types 3. Storage. Fitting rasters 5. Map algebra 6. Interpolation 7. Conversion vectorraster 8. Vector vs. raster Raster model Divides the space into a regular

More information

Georeferencing & Spatial Adjustment

Georeferencing & Spatial Adjustment Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to the Real World Rotation Differential Scaling Distortion Skew Translation 1 The Problem How are geographically unregistered data, either

More information

Georeferencing & Spatial Adjustment 2/13/2018

Georeferencing & Spatial Adjustment 2/13/2018 Georeferencing & Spatial Adjustment The Problem Aligning Raster and Vector Data to the Real World How are geographically unregistered data, either raster or vector, made to align with data that exist in

More information

The Problem. Georeferencing & Spatial Adjustment. Nature Of The Problem: For Example: Georeferencing & Spatial Adjustment 9/20/2016

The Problem. Georeferencing & Spatial Adjustment. Nature Of The Problem: For Example: Georeferencing & Spatial Adjustment 9/20/2016 Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to the Real World The Problem How are geographically unregistered data, either raster or vector, made to align with data that exist in

More information

The Problem. Georeferencing & Spatial Adjustment. Nature of the problem: For Example: Georeferencing & Spatial Adjustment 2/4/2014

The Problem. Georeferencing & Spatial Adjustment. Nature of the problem: For Example: Georeferencing & Spatial Adjustment 2/4/2014 Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to a GIS The Problem How are geographically unregistered data, either raster or vector, made to align with data that exist in geographical

More information

RASTER ANALYSIS GIS Analysis Fall 2013

RASTER ANALYSIS GIS Analysis Fall 2013 RASTER ANALYSIS GIS Analysis Fall 2013 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information. What

More information

Raster Data. James Frew ESM 263 Winter

Raster Data. James Frew ESM 263 Winter Raster Data 1 Vector Data Review discrete objects geometry = points by themselves connected lines closed polygons attributes linked to feature ID explicit location every point has coordinates 2 Fields

More information

Blacksburg, VA July 24 th 30 th, 2010 Georeferencing images and scanned maps Page 1. Georeference

Blacksburg, VA July 24 th 30 th, 2010 Georeferencing images and scanned maps Page 1. Georeference George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) Georeference The process of defining how

More information

Chapter 18. Geometric Operations

Chapter 18. Geometric Operations Chapter 18 Geometric Operations To this point, the image processing operations have computed the gray value (digital count) of the output image pixel based on the gray values of one or more input pixels;

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 Tobler s Law All places are related, but nearby places are related more than distant places Corollary:

More information

Geol 588. GIS for Geoscientists II. Zonal functions. Feb 22, Zonal statistics. Interpolation. Zonal statistics Sp. Analyst Tools - Zonal.

Geol 588. GIS for Geoscientists II. Zonal functions. Feb 22, Zonal statistics. Interpolation. Zonal statistics Sp. Analyst Tools - Zonal. Zonal functions Geol 588 GIS for Geoscientists II Feb 22, 2011 Zonal statistics Interpolation Zonal statistics Sp. Analyst Tools - Zonal Choose correct attribute for zones (usually: must be unique ID for

More information

Spatial Interpolation - Geostatistics 4/3/2018

Spatial Interpolation - Geostatistics 4/3/2018 Spatial Interpolation - Geostatistics 4/3/201 (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Distance between pairs of points Lag Mean Tobler s Law All places are related, but nearby places

More information

RASTER ANALYSIS GIS Analysis Winter 2016

RASTER ANALYSIS GIS Analysis Winter 2016 RASTER ANALYSIS GIS Analysis Winter 2016 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information.

More information

Introduction to Geographic Information Science. Some Updates. Last Lecture 4/6/2017. Geography 4103 / Raster Data and Tesselations.

Introduction to Geographic Information Science. Some Updates. Last Lecture 4/6/2017. Geography 4103 / Raster Data and Tesselations. Geography 43 / 3 Introduction to Geographic Information Science Raster Data and Tesselations Schedule Some Updates Last Lecture We finished DBMS and learned about storage of data in complex databases Relational

More information

Geoprocessing and georeferencing raster data

Geoprocessing and georeferencing raster data Geoprocessing and georeferencing raster data Raster conversion tools Geoprocessing tools ArcCatalog tools ESRI Grid GDB Raster Raster Dataset Raster Catalog Erdas IMAGINE TIFF ArcMap - raster projection

More information

Interpolation is a basic tool used extensively in tasks such as zooming, shrinking, rotating, and geometric corrections.

Interpolation is a basic tool used extensively in tasks such as zooming, shrinking, rotating, and geometric corrections. Image Interpolation 48 Interpolation is a basic tool used extensively in tasks such as zooming, shrinking, rotating, and geometric corrections. Fundamentally, interpolation is the process of using known

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS CONTOURS! Self-Paced Lab Due Friday! WEEK SIX Lecture RASTER ANALYSES Joe Wheaton YOUR EXCERCISE Integer Elevations Rounded up

More information

Geometric Rectification of Remote Sensing Images

Geometric Rectification of Remote Sensing Images Geometric Rectification of Remote Sensing Images Airborne TerrestriaL Applications Sensor (ATLAS) Nine flight paths were recorded over the city of Providence. 1 True color ATLAS image (bands 4, 2, 1 in

More information

PART 1. Answers module 6: 'Transformations'

PART 1. Answers module 6: 'Transformations' Answers module 6: 'Transformations' PART 1 1 a A nominal measure scale refers to data that are in named categories. There is no order among these categories. That is, no category is better or more than

More information

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lecture 9 Raster Data Analysis Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Raster Data Model The GIS raster data model represents datasets in which square

More information

Dijkstra's Algorithm

Dijkstra's Algorithm Shortest Path Algorithm Dijkstra's Algorithm To find the shortest path from the origin node to the destination node No matrix calculation Floyd s Algorithm To find all the shortest paths from the nodes

More information

Raster GIS applications

Raster GIS applications Raster GIS applications Columns Rows Image: cell value = amount of reflection from surface DEM: cell value = elevation (also slope/aspect/hillshade/curvature) Thematic layer: cell value = category or measured

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS Quizzes Lab 8? WEEK EIGHT Lecture INTERPOLATION & SPATIAL ESTIMATION Joe Wheaton READING FOR TODAY WHAT CAN WE COLLECT AT POINTS?

More information

Raster Data. James Frew ESM 263 Winter

Raster Data. James Frew ESM 263 Winter Raster Data 1 Vector Data Review discrete objects geometry = points by themselves connected lines closed polygons agributes linked to feature ID explicit localon every point has coordinates 2 Fields in

More information

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham Getting Started with Spatial Analyst Steve Kopp Elizabeth Graham Workshop Overview Fundamentals of using Spatial Analyst What analysis capabilities exist and where to find them How to build a simple site

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 4

GEOG 4110/5100 Advanced Remote Sensing Lecture 4 GEOG 4110/5100 Advanced Remote Sensing Lecture 4 Geometric Distortion Relevant Reading: Richards, Sections 2.11-2.17 Geometric Distortion Geometric Distortion: Errors in image geometry, (location, dimensions,

More information

Computer Assisted Image Analysis TF 3p and MN1 5p Lecture 1, (GW 1, )

Computer Assisted Image Analysis TF 3p and MN1 5p Lecture 1, (GW 1, ) Centre for Image Analysis Computer Assisted Image Analysis TF p and MN 5p Lecture, 422 (GW, 2.-2.4) 2.4) 2 Why put the image into a computer? A digital image of a rat. A magnification of the rat s nose.

More information

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line.

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line. Lecture 06 Raster and Vector Data Models Part (1) 1 Common Data Models Vector Raster Y Points Points ( x,y ) Line Area Line Area 2 X 1 3 Raster uses a grid cell structure Vector is more like a drawn map

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information

Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments

Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments Lecture 1 Core of GIS Thematic layers Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments Lecture 2 What is GIS? Info: value added data Data to solve

More information

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham Getting Started with Spatial Analyst Steve Kopp Elizabeth Graham Spatial Analyst Overview Over 100 geoprocessing tools plus raster functions Raster and vector analysis Construct workflows with ModelBuilder,

More information

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities Spatial Data Models Raster uses individual cells in a matrix, or grid, format to represent real world entities Vector uses coordinates to store the shape of spatial data objects David Tenenbaum GEOG 7

More information

Understanding Gridfit

Understanding Gridfit Understanding Gridfit John R. D Errico Email: woodchips@rochester.rr.com December 28, 2006 1 Introduction GRIDFIT is a surface modeling tool, fitting a surface of the form z(x, y) to scattered (or regular)

More information

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens Terrain correction and ortho-rectification Terrain correction Rüdiger Gens Why geometric terrain correction? Backward geocoding remove effects of side looking geometry of SAR images necessary step to allow

More information

Multidimensional Data and Modelling

Multidimensional Data and Modelling Multidimensional Data and Modelling 1 Problems of multidimensional data structures l multidimensional (md-data or spatial) data and their implementation of operations between objects (spatial data practically

More information

The Raster Data Model

The Raster Data Model The Raster Data Model 2 2 2 2 8 8 2 2 8 8 2 2 2 2 2 2 8 8 2 2 2 2 2 2 2 2 2 Llano River, Mason Co., TX 1 Rasters are: Regular square tessellations Matrices of values distributed among equal-sized, square

More information

CPSC 695. Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova

CPSC 695. Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova CPSC 695 Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova Overview Data sampling for continuous surfaces Interpolation methods Global interpolation Local interpolation

More information

Geometric Representations. Stelian Coros

Geometric Representations. Stelian Coros Geometric Representations Stelian Coros Geometric Representations Languages for describing shape Boundary representations Polygonal meshes Subdivision surfaces Implicit surfaces Volumetric models Parametric

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued

GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued Spatial Analyst - Spatial Analyst is an ArcGIS extension designed to work with raster data - in lecture I went through a series of demonstrations

More information

Lecture 8 JPEG Compression (Part 3)

Lecture 8 JPEG Compression (Part 3) CS 414 Multimedia Systems Design Lecture 8 JPEG Compression (Part 3) Klara Nahrstedt Spring 2012 Administrative MP1 is posted Today Covered Topics Hybrid Coding: JPEG Coding Reading: Section 7.5 out of

More information

Features. Sequential encoding. Progressive encoding. Hierarchical encoding. Lossless encoding using a different strategy

Features. Sequential encoding. Progressive encoding. Hierarchical encoding. Lossless encoding using a different strategy JPEG JPEG Joint Photographic Expert Group Voted as international standard in 1992 Works with color and grayscale images, e.g., satellite, medical,... Motivation: The compression ratio of lossless methods

More information

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O TOPICS COVERED Spatial Analyst basics Raster / Vector conversion Raster data

More information

Rasters are: The Raster Data Model. Cell location specified by: Why squares? Raster Data Models 9/25/2014. GEO327G/386G, UT Austin 1

Rasters are: The Raster Data Model. Cell location specified by: Why squares? Raster Data Models 9/25/2014. GEO327G/386G, UT Austin 1 5 5 5 5 5 5 5 5 5 5 5 5 2 2 5 5 2 2 2 2 2 2 8 8 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 2 2 2 5 5 5 5 The Raster Data Model Rasters are: Regular square tessellations Matrices of values distributed among equalsized,

More information

Raster Data Models 9/18/2018

Raster Data Models 9/18/2018 Raster Data Models The Raster Data Model Rasters are: Regular square tessellations Matrices of values distributed among equal-sized, square cells 5 5 5 5 5 5 5 5 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 2 2 2

More information

The Raster Data Model

The Raster Data Model The Raster Data Model 2 2 2 2 8 8 2 2 8 8 2 2 2 2 2 2 8 8 2 2 2 2 2 2 2 2 2 Llano River, Mason Co., TX 9/24/201 GEO327G/386G, UT Austin 1 Rasters are: Regular square tessellations Matrices of values distributed

More information

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University Lecture 6: GIS Spatial Analysis GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University 1 Spatial Data It can be most simply defined as information that describes the distribution

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

ArcCatalog or the ArcCatalog tab in ArcMap ArcCatalog or the ArcCatalog tab in ArcMap ArcCatalog or the ArcCatalog tab in ArcMap

ArcCatalog or the ArcCatalog tab in ArcMap ArcCatalog or the ArcCatalog tab in ArcMap ArcCatalog or the ArcCatalog tab in ArcMap ArcGIS Procedures NUMBER OPERATION APPLICATION: TOOLBAR 1 Import interchange file to coverage 2 Create a new 3 Create a new feature dataset 4 Import Rasters into a 5 Import tables into a PROCEDURE Coverage

More information

Training i Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Training i Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training i Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Geometric Operations Michiel Damen (September 2011) damen@itc.nl ITC FACULTY OF GEO-INFORMATION SCIENCE AND

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault Spatial Analysis of Raster Data 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 2 4 4 4 2 4 5 5 4 2 4 4 4 2 5 5 4 4 2 4 5 4 3 5 4 4 4 2 5 5 5 3 + = 0 = shale 1 = limestone 2 = fault 4 = no fault 2 =Fault in shale 3 =

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 12 RASTER DATA ANALYSIS 12.1 Data Analysis Environment Box 12.1 How to Make an Analysis Mask 12.2 Local Operations 12.2.1 Local Operations with a Single Raster 12.2.2 Reclassification 12.2.3 Local

More information

Chapter 8: How to Pick a GIS

Chapter 8: How to Pick a GIS Chapter 8: How to Pick a GIS 8. The Evolution of GIS Software 8.2 GIS and Operating Systems 8.3 GIS Software Capabilities 8.4 GIS Software and Data Structures 8.5 Choosing the Best GIS David Tenenbaum

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Videos that show how to copy/paste data

More information

Raster GIS applications Columns

Raster GIS applications Columns Raster GIS applications Columns Rows Image: cell value = amount of reflection from surface Thematic layer: cell value = category or measured value - In both cases, there is only one value per cell (in

More information

What can we represent as a Surface?

What can we represent as a Surface? Geography 38/42:376 GIS II Topic 7: Surface Representation and Analysis (Chang: Chapters 13 & 15) DeMers: Chapter 10 What can we represent as a Surface? Surfaces can be used to represent: Continuously

More information

POSITIONING A PIXEL IN A COORDINATE SYSTEM

POSITIONING A PIXEL IN A COORDINATE SYSTEM GEOREFERENCING AND GEOCODING EARTH OBSERVATION IMAGES GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF REMOTE SENSING AN INTRODUCTORY TEXTBOOK CHAPTER 6 POSITIONING A PIXEL IN A COORDINATE SYSTEM The essential

More information

Georeferencing in ArcGIS

Georeferencing in ArcGIS Georeferencing in ArcGIS Georeferencing In order to position images on the surface of the earth, they need to be georeferenced. Images are georeferenced by linking unreferenced features in the image with

More information

Cell based GIS. Introduction to rasters

Cell based GIS. Introduction to rasters Week 9 Cell based GIS Introduction to rasters topics of the week Spatial Problems Modeling Raster basics Application functions Analysis environment, the mask Application functions Spatial Analyst in ArcGIS

More information

Map Analysis of Raster Data I 3/8/2018

Map Analysis of Raster Data I 3/8/2018 Map Analysis of Raster Data I /8/8 Spatial Analysis of Raster Data What is Spatial Analysis? = shale = limestone 4 4 4 4 5 5 4 4 4 4 5 5 4 4 4 5 4 5 4 4 4 5 5 5 + = = fault =Fault in shale 4 = no fault

More information

Lecture 8 JPEG Compression (Part 3)

Lecture 8 JPEG Compression (Part 3) CS 414 Multimedia Systems Design Lecture 8 JPEG Compression (Part 3) Klara Nahrstedt Spring 2011 Administrative MP1 is posted Extended Deadline of MP1 is February 18 Friday midnight submit via compass

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki April 3, 2014 Lecture 11: Raster Analysis GIS Related? 4/3/2014 ENGRG 59910 Intro to GIS 2 1 Why we use Raster GIS In our previous discussion of data models,

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 11/3/2016 GEO327G/386G, UT Austin 1 Tobler s Law All places are related, but nearby places are related

More information

17/07/2013 RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES RASTER DATA MODEL& STRUCTURE TIN- TRIANGULAR IRREGULAR NETWORK

17/07/2013 RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES RASTER DATA MODEL& STRUCTURE TIN- TRIANGULAR IRREGULAR NETWORK RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES Space is subdivided into regular grids of square grid cells or other forms of polygonal meshes known as picture elements (pixels) the

More information

Geostatistics Predictions with Deterministic Procedures

Geostatistics Predictions with Deterministic Procedures Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Predictions with Deterministic Procedures Carlos Alberto

More information

Exercise #5b - Geometric Correction of Image Data

Exercise #5b - Geometric Correction of Image Data Exercise #5b - Geometric Correction of Image Data 5.6 Geocoding or Registration of geometrically uncorrected image data 5.7 Resampling 5.8 The Ukrainian coordinate system 5.9 Selecting Ground Control Points

More information

Module 7 Raster operations

Module 7 Raster operations Introduction Geo-Information Science Practical Manual Module 7 Raster operations 7. INTRODUCTION 7-1 LOCAL OPERATIONS 7-2 Mathematical functions and operators 7-5 Raster overlay 7-7 FOCAL OPERATIONS 7-8

More information

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013 Feature Descriptors CS 510 Lecture #21 April 29 th, 2013 Programming Assignment #4 Due two weeks from today Any questions? How is it going? Where are we? We have two umbrella schemes for object recognition

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are in the L12 subdirectory.

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Object-Based Classification & ecognition. Zutao Ouyang 11/17/2015

Object-Based Classification & ecognition. Zutao Ouyang 11/17/2015 Object-Based Classification & ecognition Zutao Ouyang 11/17/2015 What is Object-Based Classification The object based image analysis approach delineates segments of homogeneous image areas (i.e., objects)

More information

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al.

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. Solid Modeling Michael Kazhdan (601.457/657) HB 10.15 10.17, 10.22 FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. 1987 Announcement OpenGL review session: When: Today @ 9:00 PM Where: Malone

More information

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale CS 490: Computer Vision Image Segmentation: Thresholding Fall 205 Dr. Michael J. Reale FUNDAMENTALS Introduction Before we talked about edge-based segmentation Now, we will discuss a form of regionbased

More information

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification DIGITAL IMAGE ANALYSIS Image Classification: Object-based Classification Image classification Quantitative analysis used to automate the identification of features Spectral pattern recognition Unsupervised

More information

Raster Analysis and Functions. David Tenenbaum EEOS 465 / 627 UMass Boston

Raster Analysis and Functions. David Tenenbaum EEOS 465 / 627 UMass Boston Raster Analysis and Functions Local Functions By-cell operations Operated on by individual operators or by coregistered grid cells from other themes Begin with each target cell, manipulate through available

More information

Topological Mapping. Discrete Bayes Filter

Topological Mapping. Discrete Bayes Filter Topological Mapping Discrete Bayes Filter Vision Based Localization Given a image(s) acquired by moving camera determine the robot s location and pose? Towards localization without odometry What can be

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models Feature Types and Data Models How Does a GIS Work? - a GIS operates on the premise that all of the features in the real world can

More information

Intro to Modeling Modeling in 3D

Intro to Modeling Modeling in 3D Intro to Modeling Modeling in 3D Polygon sets can approximate more complex shapes as discretized surfaces 2 1 2 3 Curve surfaces in 3D Sphere, ellipsoids, etc Curved Surfaces Modeling in 3D ) ( 2 2 2 2

More information

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri 1 Preface POINTS, LINES, and POLYGONS are good at representing geographic objects with distinct shapes They are less good

More information

Algorithms for GIS. Spatial data: Models and representation (part I) Laura Toma. Bowdoin College

Algorithms for GIS. Spatial data: Models and representation (part I) Laura Toma. Bowdoin College Algorithms for GIS Spatial data: Models and representation (part I) Laura Toma Bowdoin College Outline Spatial data in GIS applications Point data Networks Terrains Planar maps and meshes Data structures

More information

EC-433 Digital Image Processing

EC-433 Digital Image Processing EC-433 Digital Image Processing Lecture 4 Digital Image Fundamentals Dr. Arslan Shaukat Acknowledgement: Lecture slides material from Dr. Rehan Hafiz, Gonzalez and Woods Interpolation Required in image

More information

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking Feature descriptors Alain Pagani Prof. Didier Stricker Computer Vision: Object and People Tracking 1 Overview Previous lectures: Feature extraction Today: Gradiant/edge Points (Kanade-Tomasi + Harris)

More information

CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN CHAPTER 3: IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN Principal objective: to process an image so that the result is more suitable than the original image

More information

Handout 4 - Interpolation Examples

Handout 4 - Interpolation Examples Handout 4 - Interpolation Examples Middle East Technical University Example 1: Obtaining the n th Degree Newton s Interpolating Polynomial Passing through (n+1) Data Points Obtain the 4 th degree Newton

More information

Computer Graphics. Rendering. by Brian Wyvill University of Calgary. cpsc/enel P 1

Computer Graphics. Rendering. by Brian Wyvill University of Calgary. cpsc/enel P 1 Computer Graphics Rendering by Brian Wyvill University of Calgary cpsc/enel P Rendering Techniques Wire Frame Z Buffer Ray Tracing A Buffer cpsc/enel P 2 Rendering Visible Surface Determination Many Algorithms,

More information

Catholic Central High School

Catholic Central High School Catholic Central High School Algebra II Practice Examination I Instructions: 1. Show all work on the test copy itself for every problem where work is required. Points may be deducted if insufficient or

More information

CHAPTER 4: CLUSTER ANALYSIS

CHAPTER 4: CLUSTER ANALYSIS CHAPTER 4: CLUSTER ANALYSIS WHAT IS CLUSTER ANALYSIS? A cluster is a collection of data-objects similar to one another within the same group & dissimilar to the objects in other groups. Cluster analysis

More information

Image Processing. BITS Pilani. Dr Jagadish Nayak. Dubai Campus

Image Processing. BITS Pilani. Dr Jagadish Nayak. Dubai Campus Image Processing BITS Pilani Dubai Campus Dr Jagadish Nayak Image Segmentation BITS Pilani Dubai Campus Fundamentals Let R be the entire spatial region occupied by an image Process that partitions R into

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Interpolation and Spatial Transformations 2 Image Interpolation

More information

Overview. Image Geometric Correction. LA502 Special Studies Remote Sensing. Why Geometric Correction?

Overview. Image Geometric Correction. LA502 Special Studies Remote Sensing. Why Geometric Correction? LA502 Special Studies Remote Sensing Image Geometric Correction Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview Image rectification Geometric

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 4 Digital Image Fundamentals - II ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

Multidimensional (spatial) Data and Modelling (3)

Multidimensional (spatial) Data and Modelling (3) Multidimensional (spatial) Data and Modelling (3) 1 GIS-centric approach l Focus on management of spatial data l Goal: Creation of a solely spatial data representation like maps (spatial partition, map

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A. 205-206 Pietro Guccione, PhD DEI - DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELL INFORMAZIONE POLITECNICO DI BARI

More information

Spatial Analysis (Vector) II

Spatial Analysis (Vector) II Spatial Analysis (Vector) II GEOG 300, Lecture 9 Dr. Anthony Jjumba 1 A Spatial Network is a set of geographic locations interconnected in a system by a number of routes is a system of linear features

More information

Chapter - 2: Geometry and Line Generations

Chapter - 2: Geometry and Line Generations Chapter - 2: Geometry and Line Generations In Computer graphics, various application ranges in different areas like entertainment to scientific image processing. In defining this all application mathematics

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Last Time? Sampling, Aliasing, & Mipmaps 2D Texture Mapping Perspective Correct Interpolation Common Texture Coordinate Projections Bump Mapping Displacement Mapping Environment Mapping Texture Maps for

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Image Analysis. 1. A First Look at Image Classification

Image Analysis. 1. A First Look at Image Classification Image Analysis Image Analysis 1. A First Look at Image Classification Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems &

More information