Using Euler s Theorem

Size: px
Start display at page:

Download "Using Euler s Theorem"

Transcription

1 Using Euler s Theorem Suppose that a connected, planar graph has 249 vertices and 57 faces. How many edges does it have? A: 106 B: 194 C: 304 D: 306 E: We don t have enough information

2 Using Euler s Theorem Suppose that a connected, planar graph has 249 vertices and 57 faces. How many edges does it have? A: 106 B: 194 C: 304 D: 306 E: We don t have enough information We have 2 = v e + f = 249 e + 57 = 306 e e = 304

3 Using Euler s Theorem Suppose that a connected, planar graph has 249 vertices and 57 faces. What is the sum of the degrees of the faces? A: 57 B: 114 C: 498 D: 608 E: We don t have enough information

4 Using Euler s Theorem Suppose that a connected, planar graph has 249 vertices and 57 faces. What is the sum of the degrees of the faces? A: 57 B: 114 C: 498 D: 608 E: We don t have enough information The sum of the degrees of the faces is twice the number of edges: sum of degrees of faces = = 608

5 Kuratowski s Theorem If G is a non-planar graph, then we can simplify the graph by deleting edges deleting vertices (and all adjacent edges) replace with

6 Kuratowski s Theorem If G is a non-planar graph, then we can simplify the graph by deleting edges deleting vertices (and all adjacent edges) replace with and end up with either: or K 5 K 3,3

7 Kuratowski s Theorem In other words, K 5 and K 3,3 are the simplest non-planar graphs K 5 K3,3

8 Kuratowski s Theorem In other words, K 5 and K 3,3 are the simplest non-planar graphs K 5 K3,3 We still need to see that K 5 and K 3,3 aren t planar

9 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? A: 5 B: 7 C: 12 D: None of the above

10 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? A: 5 B: 7 C: 12 D: None of the above v = 5 and e = 10

11 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? A: 5 B: 7 C: 12 D: None of the above v = 5 and e = 10 2 = v e + f = f f = 7

12 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? 7 What is the sum of the degrees of the faces? A: 10 B: 14 C: 20 D: None of the above

13 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? 7 What is the sum of the degrees of the faces? A: 10 B: 14 C: 20 D: None of the above The sum of the degrees of the faces is 2e = 20

14 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? 7 What is the sum of the degrees of the faces? 20 The average degree of a face is 20 7 < 3

15 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? 7 What is the sum of the degrees of the faces? 20 The average degree of a face is 20 7 < 3 So at least one face has to have degree 2

16 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? 7 What is the sum of the degrees of the faces? 20 The average degree of a face is 20 7 < 3 So at least one face has to have degree 2 Except for the graph every face of every graph has to have degree 3

17 K 5 is not Planar Consider K 5 : Suppose that K 5 is planar. How many faces will it have? 7 What is the sum of the degrees of the faces? 20 The average degree of a face is 20 7 < 3 So at least one face has to have degree 2 Except for the graph every face of every graph has to have degree 3 This is a contradiction, so K 5 is not planar.

18 Three Related Questions The following questions are related:

19 Three Related Questions The following questions are related: 1. Students are taking various classes with final exams. How many time slots do we need so that no student has a conflict?

20 Three Related Questions The following questions are related: 1. Students are taking various classes with final exams. How many time slots do we need so that no student has a conflict? 2. We have a map. What is the fewest colours we can use to colour it, so that adjacent countries are different colours?

21 Three Related Questions The following questions are related: 1. Students are taking various classes with final exams. How many time slots do we need so that no student has a conflict? 2. We have a map. What is the fewest colours we can use to colour it, so that adjacent countries are different colours? 3. Does a potential sudoku problem have a unique solution?

22 Scheduling Exams We first need to associate a graph to the problem

23 Scheduling Exams We first need to associate a graph to the problem The vertices are the classes

24 Scheduling Exams We first need to associate a graph to the problem The vertices are the classes We ll draw an edge between two classes if a student is taking both of them

25 Scheduling Exams We first need to associate a graph to the problem The vertices are the classes We ll draw an edge between two classes if a student is taking both of them We need to assign a time/ colour for each exam

26 Scheduling Exams We first need to associate a graph to the problem The vertices are the classes We ll draw an edge between two classes if a student is taking both of them We need to assign a time/ colour for each exam If there is an edge between two classes, they need a different colour

27 Scheduling Exams We first need to associate a graph to the problem The vertices are the classes We ll draw an edge between two classes if a student is taking both of them We need to assign a time/ colour for each exam If there is an edge between two classes, they need a different colour The question is asking for the minimal number of colours

28 Scheduling Suppose that the associated graph is: COM101 BIO103 MA109 PHI120 MA111 MA123 MA137

29 Scheduling Suppose that the associated graph is: COM101 BIO103 MA109 PHI120 MA111 MA123 MA137 What s the fewest number of required time slots? A: 1 B: 2 C: 3 D: 4

30 Scheduling COM101 BIO103 MA109 PHI120 MA111 MA123 MA137 We can t run all exams at the same time

31 Scheduling COM101 BIO103 MA109 PHI120 MA111 MA123 MA137 We can t run all exams at the same time Can we have just two exam times?

32 Scheduling COM101 BIO103 MA109 PHI120 MA111 MA123 MA137 Com 101, Ma 111, and Phi 120 have to be at different times Can we schedule all exams in three time slots?

33 Scheduling COM101 BIO103 MA109 PHI120 MA111 MA123 MA137 Com 101, Ma 111, and Phi 120 have to be at different times Can we schedule all exams in three time slots?

34 Scheduling COM101 BIO103 MA109 PHI120 MA111 MA123 MA137 Com 101, Ma 111, and Phi 120 have to be at different times Can we schedule all exams in three time slots? Yes

35 Cartography We have a map

36 Cartography We have a map

37 Cartography We have a map We want to colour the countries (and the ocean) so that adjacent regions do not have the same colour

38 Cartography We have a map We want to colour the countries (and the ocean) so that adjacent regions do not have the same colour What is the fewest number of colours that you need? A: 2 B: 3 C: 4 D: 5 E: None of the above

39 Cartography We have a map Here is a colouring with 4 colours

40 Cartography We have a map Here is a colouring with 4 colours We can t colour the map using just 3 colours (consider the three countries in the bottom-right, and the ocean)

41 Cartography We have a map Here is a colouring with 4 colours We can t colour the map using just 3 colours (consider the three countries in the bottom-right, and the ocean) We want to know this number for any map

42 Cartography We have a map Here is a colouring with 4 colours We can t colour the map using just 3 colours (consider the three countries in the bottom-right, and the ocean) We want to know this number for any map We can phrase this question using graphs:

43 Cartography We have a map Here is a colouring with 4 colours We can t colour the map using just 3 colours (consider the three countries in the bottom-right, and the ocean) We want to know this number for any map We can phrase this question using graphs: Countries are vertices If countries are adjacent, we ll draw an edge

44 Cartography We have a map

45 Cartography We have a map Again, we want to colour the vertices so that adjacent vertices have different colour

46 Cartography We have a map A vertex colouring assigns a colour to each vertex so that adjacent vertices have different colours

47 Sudoku Another example of vertex colouring: Sudoku

48 Sudoku Another example of vertex colouring: Sudoku Given a grid such as: we want to enter 1,..., 9 in each cell so that each row, column, and 3 3 square has exactly one of each possible entry

49 Sudoku What should the vertices be?

50 Sudoku What should the vertices be? the small squares

51 Sudoku What should the vertices be? the small squares When should we have an edge between two vertices?

52 Sudoku What should the vertices be? the small squares When should we have an edge between two vertices? when the vertices are in the same column, the same row, or the same 3 3 square

53 Sudoku What should the vertices be? the small squares When should we have an edge between two vertices? when the vertices are in the same column, the same row, or the same 3 3 square A solution is a colouring using 1,..., 9

54 Sudoku What should the vertices be? the small squares When should we have an edge between two vertices? when the vertices are in the same column, the same row, or the same 3 3 square A solution is a colouring using 1,..., 9 We want to know if there is a unique such colouring

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017 (1/26) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/~niall/ma284/ 1st and 3rd of November, 2017 1 Recall... planar graphs and Euler s formula 2 Non-planar

More information

Scheduling, Map Coloring, and Graph Coloring

Scheduling, Map Coloring, and Graph Coloring Scheduling, Map Coloring, and Graph Coloring Scheduling via Graph Coloring: Final Exam Example Suppose want to schedule some ;inal exams for CS courses with following course numbers: 1007, 3137, 3157,

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory Evelyne Smith-Roberge University of Waterloo March 22, 2017 What is a graph? Definition A graph G is: a set V (G) of objects called vertices together with: a set E(G), of

More information

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grades 7 & 8, Math Circles 31 October/1/2 November, 2017 Graph Theory Introduction Graph Theory is the

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

Graph Coloring. Margaret M. Fleck. 3 May This lecture discusses the graph coloring problem (section 9.8 of Rosen).

Graph Coloring. Margaret M. Fleck. 3 May This lecture discusses the graph coloring problem (section 9.8 of Rosen). Graph Coloring Margaret M. Fleck 3 May 2010 This lecture discusses the graph coloring problem (section 9.8 of Rosen). 1 Announcements Makeup quiz last day of classes (at the start of class). Your room

More information

MAS341 Graph Theory 2015 exam solutions

MAS341 Graph Theory 2015 exam solutions MAS4 Graph Theory 0 exam solutions Question (i)(a) Draw a graph with a vertex for each row and column of the framework; connect a row vertex to a column vertex if there is a brace where the row and column

More information

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018 (1/27) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/ niall/ma284/ 7 and 9 November, 2018 1 Planar graphs and Euler s formula 2 Non-planar graphs K 5 K

More information

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 12: Planar Graphs Math 184A / Fall 2017 1 / 45 12.1 12.2. Planar graphs Definition

More information

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15.

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15. ICS 161 Algorithms Winter 1998 Final Exam Name: ID: 1: out of 15 2: out of 15 3: out of 20 4: out of 15 5: out of 20 6: out of 15 total: out of 100 1. Solve the following recurrences. (Just give the solutions;

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grades 7 & 8, Math Circles 31 October/1/2 November, 2017 Graph Theory Solutions Example 1 1. To represent

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Graph theory G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/37 Outline 1 Graph theory Undirected and directed graphs

More information

Lecture outline. Graph coloring Examples Applications Algorithms

Lecture outline. Graph coloring Examples Applications Algorithms Lecture outline Graph coloring Examples Applications Algorithms Graph coloring Adjacent nodes must have different colors. How many colors do we need? Graph coloring Neighbors must have different colors

More information

Worksheet for the Final Exam - Part I. Graphs

Worksheet for the Final Exam - Part I. Graphs Worksheet for the Final Exam - Part I. Graphs Date and Time: May 10 2012 Thursday 11:50AM~1:50PM Location: Eng 120 Start with the Self-Test Exercises (pp.816) in Prichard. 1. Give the adjacency matrix

More information

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring Math 443/543 Graph Theory Notes 5: Planar graphs and coloring David Glickenstein October 10, 2014 1 Planar graphs The Three Houses and Three Utilities Problem: Given three houses and three utilities, can

More information

Lecture 6: Graph Properties

Lecture 6: Graph Properties Lecture 6: Graph Properties Rajat Mittal IIT Kanpur In this section, we will look at some of the combinatorial properties of graphs. Initially we will discuss independent sets. The bulk of the content

More information

MA 111 Review for Exam 3

MA 111 Review for Exam 3 MA 111 Review for Exam 3 Exam 3 (given in class on Tuesday, March 27, 2012) will cover Chapter 5. You should: know what a graph is and how to use graphs to model geographic relationships. know how to describe

More information

14 More Graphs: Euler Tours and Hamilton Cycles

14 More Graphs: Euler Tours and Hamilton Cycles 14 More Graphs: Euler Tours and Hamilton Cycles 14.1 Degrees The degree of a vertex is the number of edges coming out of it. The following is sometimes called the First Theorem of Graph Theory : Lemma

More information

Week 11: Eulerian and Hamiltonian graphs; Trees. 15 and 17 November, 2017

Week 11: Eulerian and Hamiltonian graphs; Trees. 15 and 17 November, 2017 (1/22) MA284 : Discrete Mathematics Week 11: Eulerian and Hamiltonian graphs; Trees http://www.maths.nuigalway.ie/~niall/ma284/ 15 and 17 November, 2017 Hamilton s Icosian Game (Library or the Royal Irish

More information

Planar graphs. Chapter 8

Planar graphs. Chapter 8 Chapter 8 Planar graphs Definition 8.1. A graph is called planar if it can be drawn in the plane so that edges intersect only at vertices to which they are incident. Example 8.2. Different representations

More information

Discrete Wiskunde II. Lecture 6: Planar Graphs

Discrete Wiskunde II. Lecture 6: Planar Graphs , 2009 Lecture 6: Planar Graphs University of Twente m.uetz@utwente.nl wwwhome.math.utwente.nl/~uetzm/dw/ Planar Graphs Given an undirected graph (or multigraph) G = (V, E). A planar embedding of G is

More information

Week 10: Colouring graphs, and Euler s paths. 14 and 16 November, 2018

Week 10: Colouring graphs, and Euler s paths. 14 and 16 November, 2018 MA284 : Discrete Mathematics Week 10: Colouring graphs, and Euler s paths http://www.maths.nuigalway.ie/ niall/ma284/ 14 and 16 November, 2018 1 Colouring The Four Colour Theorem 2 Graph colouring Chromatic

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Examples of Tasks from Course 1, Unit 4

Examples of Tasks from Course 1, Unit 4 Examples of Tasks from Course 1, Unit 4 What Solutions are Available? Lesson 1: page 258, Modeling Task 1; page 260, Modeling Task 4; page 261, Organizing Task 1; page 271, Modeling Task 2; page 272, Modeling

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 The Seven Bridges of Königsberg In

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

The Six Color Theorem

The Six Color Theorem The Six Color Theorem The Six Color Theorem Theorem. Let G be a planar graph. There exists a proper -coloring of G. Proof. Let G be a the smallest planar graph (by number of vertices) that has no proper

More information

INTRODUCTION TO GRAPH THEORY. 1. Definitions

INTRODUCTION TO GRAPH THEORY. 1. Definitions INTRODUCTION TO GRAPH THEORY D. JAKOBSON 1. Definitions A graph G consists of vertices {v 1, v 2,..., v n } and edges {e 1, e 2,..., e m } connecting pairs of vertices. An edge e = (uv) is incident with

More information

Majority and Friendship Paradoxes

Majority and Friendship Paradoxes Majority and Friendship Paradoxes Majority Paradox Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against. Consider a poll asking the

More information

Degree of nonsimple graphs. Chemistry questions. Degree Sequences. Pigeon party.

Degree of nonsimple graphs. Chemistry questions. Degree Sequences. Pigeon party. 1. WEEK 1 PROBLEMS 1.1. Degree of nonsimple graphs. In the lecture notes we defined the degree d(v) of a vertex v to be the number of vertices adjacent to v. To see why Euler s theorem doesn t hold for

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

Multi-edges, loops, and two or more pieces are all allowed. Example 4 (Not Graphs). None of the following are graphs.

Multi-edges, loops, and two or more pieces are all allowed. Example 4 (Not Graphs). None of the following are graphs. MA 111, Topic 4: Graph Theory Our last topic in this course is called Graph Theory. This is the mathematics of connections, associations, and relationships. Definition 1. A Graph is a set of points called

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

Discrete Mathematics I So Practice Sheet Solutions 1

Discrete Mathematics I So Practice Sheet Solutions 1 Discrete Mathematics I So 2016 Tibor Szabó Shagnik Das Practice Sheet Solutions 1 Provided below are possible solutions to the questions from the practice sheet issued towards the end of the course. Exercise

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions Basic Combinatorics Math 40210, Section 01 Fall 2012 Homework 4 Solutions 1.4.2 2: One possible implementation: Start with abcgfjiea From edge cd build, using previously unmarked edges: cdhlponminjkghc

More information

Ma/CS 6b Class 11: Kuratowski and Coloring

Ma/CS 6b Class 11: Kuratowski and Coloring Ma/CS 6b Class 11: Kuratowski and Coloring By Adam Sheffer Kuratowski's Theorem Theorem. A graph is planar if and only if it does not have K 5 and K 3,3 as topological minors. We know that if a graph contains

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

Junior Circle Meeting 3 Circuits and Paths. April 18, 2010

Junior Circle Meeting 3 Circuits and Paths. April 18, 2010 Junior Circle Meeting 3 Circuits and Paths April 18, 2010 We have talked about insect worlds which consist of cities connected by tunnels. Here is an example of an insect world (Antland) which we saw last

More information

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings.

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings. 1: Draw K 7 on a torus with no edge crossings. A quick calculation reveals that an embedding of K 7 on the torus is a -cell embedding. At that point, it is hard to go wrong if you start drawing C 3 faces,

More information

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 (1/25) MA284 : Discrete Mathematics Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 1 Definitions 1. A graph 2. Paths and connected graphs 3. Complete graphs 4. Vertex degree

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Assignment 1 Introduction to Graph Theory CO342

Assignment 1 Introduction to Graph Theory CO342 Assignment 1 Introduction to Graph Theory CO342 This assignment will be marked out of a total of thirty points, and is due on Thursday 18th May at 10am in class. Throughout the assignment, the graphs are

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits What You Will Learn Graphs Paths Circuits Bridges 14.1-2 Definitions A graph is a finite set of points called vertices (singular form is vertex) connected by line

More information

Euler s formula n e + f = 2 and Platonic solids

Euler s formula n e + f = 2 and Platonic solids Euler s formula n e + f = and Platonic solids Euler s formula n e + f = and Platonic solids spherical projection makes these planar graphs Euler s formula n e + f = and Platonic solids spherical projection

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits INB Table of Contents Date Topic Page # January 27, 2014 Test #1 14 January 27, 2014 Test # 1 Corrections 15 January 27, 2014 Section 14.1 Examples 16 January 27,

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

(x 2)(3x + 1) = 3x + 1

(x 2)(3x + 1) = 3x + 1 Chapter 10 2-way Bounding In high school and early college mathematics, we are often proving equalities and we often prove them by manipulating a sequence of equalities. For example 3x 2 5x 2 x 2 = (x

More information

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so:

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: Math 15 - Spring 2017 - Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: dm = {0: [1,15], 1: [2,16,31], 2: [3,17,32], 3: [4,18,33], 4: [5,19,34],

More information

Module 2: NETWORKS AND DECISION MATHEMATICS

Module 2: NETWORKS AND DECISION MATHEMATICS Further Mathematics 2017 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Discrete mathematics II. - Graphs

Discrete mathematics II. - Graphs Emil Vatai April 25, 2018 Basic definitions Definition of an undirected graph Definition (Undirected graph) An undirected graph or (just) a graph is a triplet G = (ϕ, E, V ), where V is the set of vertices,

More information

Graph Theory and its Applications

Graph Theory and its Applications Department of Mathematics and Statistics deeringj@goldmail.etsu.edu October 17, 2012 What is a Graph? Introduction Graphs Graph Theory Simply a modeling tool or set of relationships Graphs Graph Theory

More information

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS MS 41: PH THEOY 2016 EXM SOLUTIONS 1. Question 1 1.1. Explain why any alkane C n H 2n+2 is a tree. How many isomers does C 6 H 14 have? Draw the structure of the carbon atoms in each isomer. marks; marks

More information

Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm. Good Luck!!

Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm. Good Luck!! Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm NAME: Instructions: You can use the textbook (Doug West s Introduction to Graph Theory, without solutions), your notes from

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

The Konigsberg Bridge Problem

The Konigsberg Bridge Problem The Konigsberg Bridge Problem This is a classic mathematical problem. There were seven bridges across the river Pregel at Königsberg. Is it possible to take a walk in which each bridge is crossed exactly

More information

LAMC Advanced Circle October 9, Oleg Gleizer. Warm-up

LAMC Advanced Circle October 9, Oleg Gleizer. Warm-up LAMC Advanced Circle October 9, 2016 Oleg Gleizer prof1140g@math.ucla.edu Warm-up Problem 1 Prove that a straight line tangent to a circle is perpendicular to the radius connecting the tangency point to

More information

WUCT121. Discrete Mathematics. Graphs

WUCT121. Discrete Mathematics. Graphs WUCT121 Discrete Mathematics Graphs WUCT121 Graphs 1 Section 1. Graphs 1.1. Introduction Graphs are used in many fields that require analysis of routes between locations. These areas include communications,

More information

Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!!

Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!! Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!! Konigsberg bridges problem. Can you make a tour visiting each bridge exactly once? Konigsberg bridges

More information

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes.

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Answers to specimen paper questions Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Question 1. (a) The degree of a vertex x is the number

More information

Chapter 6 GRAPH COLORING

Chapter 6 GRAPH COLORING Chapter 6 GRAPH COLORING A k-coloring of (the vertex set of) a graph G is a function c : V (G) {1, 2,..., k} such that c (u) 6= c (v) whenever u is adjacent to v. Ifak-coloring of G exists, then G is called

More information

November 14, Planar Graphs. William T. Trotter.

November 14, Planar Graphs. William T. Trotter. November 14, 2017 8 Planar Graphs William T. Trotter trotter@math.gatech.edu Planar Graphs Definition A graph G is planar if it can be drawn in the plane with no edge crossings. Exercise The two graphs

More information

Some major graph problems

Some major graph problems CS : Graphs and Blobs! Prof. Graeme Bailey http://cs.cs.cornell.edu (notes modified from Noah Snavely, Spring 009) Some major graph problems! Graph colouring Ensuring that radio stations don t clash! Graph

More information

Kuratowski Notes , Fall 2005, Prof. Peter Shor Revised Fall 2007

Kuratowski Notes , Fall 2005, Prof. Peter Shor Revised Fall 2007 Kuratowski Notes 8.30, Fall 005, Prof. Peter Shor Revised Fall 007 Unfortunately, the OCW notes on Kuratowski s theorem seem to have several things substantially wrong with the proof, and the notes from

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Graphs and networks Mixed exercise

Graphs and networks Mixed exercise Graphs and networks Mixed exercise E.g. 2 a, e and h are isomorphic. b and i are isomorphic. c and g are isomorphic. d and f are isomorphic. 3 a b i ii iii Pearson Education Ltd 208. Copying permitted

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Number Theory Open, Round 1 Test #101

Number Theory Open, Round 1 Test #101 Number Theory Open, Round 1 Test #101 1. Write your 6-digit ID# in the I.D. NUMBER grid, left-justified, and bubble. Check that each column has only one number darkened. 2. In the EXAM NO. grid, write

More information

LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS

LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS TIMOTHY L. VIS Abstract. A significant problem in finite optimization is the assignment problem. In essence, the assignment

More information

Planarity: dual graphs

Planarity: dual graphs : dual graphs Math 104, Graph Theory March 28, 2013 : dual graphs Duality Definition Given a plane graph G, the dual graph G is the plane graph whose vtcs are the faces of G. The correspondence between

More information

Networks and Graphs: Graph Coloring VII.C Student Activity Sheet 9: Map Coloring

Networks and Graphs: Graph Coloring VII.C Student Activity Sheet 9: Map Coloring VII.C Student Activity Sheet 9: Map Coloring Map Coloring Problem You are the publisher of a new edition of the world atlas. As you prepare the different maps for printing, you need to make sure that countries

More information

Discrete Mathematics 2 Exam File Spring 2012

Discrete Mathematics 2 Exam File Spring 2012 Discrete Mathematics 2 Exam File Spring 2012 Exam #1 1.) Suppose f : X Y and A X. a.) Prove or disprove: f -1 (f(a)) A. Prove or disprove: A f -1 (f(a)). 2.) A die is rolled four times. What is the probability

More information

Solutions to In-Class Problems Week 4, Fri

Solutions to In-Class Problems Week 4, Fri Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Solutions to In-Class Problems Week 4, Fri Definition: The

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information

5. Minimizing Circuits

5. Minimizing Circuits 5. MINIMIZING CIRCUITS 46 5. Minimizing Circuits 5.. Minimizing Circuits. A circuit is minimized if it is a sum-of-products that uses the least number of products of literals and each product contains

More information

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques.

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques. Graph theory Po-Shen Loh June 013 1 Basic results We begin by collecting some basic facts which can be proved via bare-hands techniques. 1. The sum of all of the degrees is equal to twice the number of

More information

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. Section 8.2 Graph Terminology Undirected Graphs Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. The edge e connects u and v. The vertices u and v are

More information

13. (a) G,G. A circuit of length 1 is a loop. 14. (a) E,E. (c) A,B,C,A. 16. (a) BF, FG

13. (a) G,G. A circuit of length 1 is a loop. 14. (a) E,E. (c) A,B,C,A. 16. (a) BF, FG 13. (a) G,G. A circuit of length 1 is a loop. There are none. Such a circuit would consist of two vertices and two (different) edges connecting the vertices. 10. (a) 11. (a) C, B, A, H, F Other answers

More information

Unit 7 Day 4 Notes: graph coloring, Graph theory review & Quiz

Unit 7 Day 4 Notes: graph coloring, Graph theory review & Quiz Unit 7 Day 4 Notes: graph coloring, Graph theory review & Quiz Warm-Up Phones OFF & in Blue Pockets! Get out paper for notes! Agenda Notes first, Then do practice and HW questions Quiz at the end Notes:

More information

Math 311. Trees Name: A Candel CSUN Math

Math 311. Trees Name: A Candel CSUN Math 1. A simple path in a graph is a path with no repeated edges. A simple circuit is a circuit without repeated edges. 2. Trees are special kinds of graphs. A tree is a connected graph with no simple circuits.

More information

REPORT A SEPARATOR THEOREM FOR PLANAR GRAPHS

REPORT A SEPARATOR THEOREM FOR PLANAR GRAPHS REPORT A SEPARATOR THEOREM FOR PLANAR GRAPHS Yun Luo Section: 95.573 Abstract: The vertices of any n-vertex planar graph can be partitioned into three sets A, B, C such that no edge joins a vertex in A

More information

Week 10: Colouring graphs, and Euler s paths. 14 and 16 November, 2018

Week 10: Colouring graphs, and Euler s paths. 14 and 16 November, 2018 Wednesday's slides (1/34) MA284 : Discrete Mathematics Week 10: Colouring graphs, and Euler s paths http://www.maths.nuigalway.ie/ niall/ma284/ 14 and 16 November, 2018 1 Colouring The Four Colour Theorem

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

2010 SMT Power Round

2010 SMT Power Round Definitions 2010 SMT Power Round A graph is a collection of points (vertices) connected by line segments (edges). In this test, all graphs will be simple any two vertices will be connected by at most one

More information

4-1. Classifying Triangles. Lesson 4-1. What You ll Learn. Active Vocabulary

4-1. Classifying Triangles. Lesson 4-1. What You ll Learn. Active Vocabulary 4-1 Classifying Triangles What You ll Learn Scan Lesson 4-1. Predict two things that you expect to learn based on the headings and the Key Concept box. 1. Active Vocabulary 2. New Vocabulary Label the

More information

Week 11: Eulerian and Hamiltonian graphs; Trees. 21 and 23 November, 2018

Week 11: Eulerian and Hamiltonian graphs; Trees. 21 and 23 November, 2018 (1/22) MA284 : Discrete Mathematics Week 11: Eulerian and amiltonian graphs; Trees http://www.maths.nuigalway.ie/ niall/ma284/ amilton s Icosian Game (Library or the Royal Irish Academy) 21 and 23 November,

More information

TEACHERS NOTES AND SOLUTIONS

TEACHERS NOTES AND SOLUTIONS TEACHERS NOTES AND SOLUTIONS Although all the activities in this set are linked in some way and complement each other, some tasks follow on from each other more strictly than others. If you plan to do

More information

Graphs - I CS 2110, Spring 2016

Graphs - I CS 2110, Spring 2016 Graphs - I CS 2110, Spring 2016 Announcements Reading: Chapter 28: Graphs Chapter 29: Graph Implementations These aren t the graphs we re interested in These aren t the graphs we re interested in This

More information

Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions

Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions Contents 1 Problems 2 2 Solution key 10 3 Solutions 11 1 1 Problems Question 1: A right triangle has hypothenuse of length 25 in and an

More information

Brief History. Graph Theory. What is a graph? Types of graphs Directed graph: a graph that has edges with specific directions

Brief History. Graph Theory. What is a graph? Types of graphs Directed graph: a graph that has edges with specific directions Brief History Graph Theory What is a graph? It all began in 1736 when Leonhard Euler gave a proof that not all seven bridges over the Pregolya River could all be walked over once and end up where you started.

More information

STUDENT NUMBER: MATH Final Exam. Lakehead University. April 13, Dr. Adam Van Tuyl

STUDENT NUMBER: MATH Final Exam. Lakehead University. April 13, Dr. Adam Van Tuyl Page 1 of 13 NAME: STUDENT NUMBER: MATH 1281 - Final Exam Lakehead University April 13, 2011 Dr. Adam Van Tuyl Instructions: Answer all questions in the space provided. If you need more room, answer on

More information

Graphs with no 7-wheel subdivision Rebecca Robinson 1

Graphs with no 7-wheel subdivision Rebecca Robinson 1 Graphs with no 7-wheel subdivision Rebecca Robinson Monash University (Clayton Campus) Rebecca.Robinson@infotech.monash.edu.au (joint work with Graham Farr) Graphs with no 7-wheel subdivision Rebecca Robinson

More information

EXAM Computer Science 1 Part 1

EXAM Computer Science 1 Part 1 Maastricht University Faculty of Humanities and Science Department of Knowledge Engineering EXAM Computer Science 1 Part 1 Block 1.1: Computer Science 1 Code: KEN1120 Examiner: Kurt Driessens Date: Januari

More information

Graphs (MTAT , 4 AP / 6 ECTS) Lectures: Fri 12-14, hall 405 Exercises: Mon 14-16, hall 315 või N 12-14, aud. 405

Graphs (MTAT , 4 AP / 6 ECTS) Lectures: Fri 12-14, hall 405 Exercises: Mon 14-16, hall 315 või N 12-14, aud. 405 Graphs (MTAT.05.080, 4 AP / 6 ECTS) Lectures: Fri 12-14, hall 405 Exercises: Mon 14-16, hall 315 või N 12-14, aud. 405 homepage: http://www.ut.ee/~peeter_l/teaching/graafid08s (contains slides) For grade:

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2017/2018 About this file This file is meant to be a guideline for the lecturer. Many

More information

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis 1 Warm-Up to Ponder

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis   1 Warm-Up to Ponder Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis http://www.geometer.org/mathcircles/pick.pdf 1 Warm-Up to Ponder 1. Is it possible to draw an equilateral triangle on graph paper so

More information