Introduction to Lab. 3

Size: px
Start display at page:

Download "Introduction to Lab. 3"

Transcription

1 Solving a Lab 1 Issue Introduction to Lab. 3 Also includes Solving a Lab. 1 issues Using the graphics LCD with your assignment 1 Rediscuss the Watchdog timer for Assignment 2 Many people have said My Enable / Disable PF input does not work How can the code not work? They (without doing AND and OR) are 1 line long void Enable(void) { *pfio_inen = 0x0F00;} void Disable(void) { *pfio_inen = 0x0000;} 2/25 Item 1 -- Higher priority read than writes on Blackfin Processor Architecture Blackfin Architecture is designed for DSP algorithms Write operations occur 1000 times less often than read operations in many DSP programs So the architecture handles read operations from memory at a higher priority than write void Enable(void) { *pfio_inen = 0x0F00; ssync( ); } // Force write 3/25 Item 2 Need to have a new mental model of what Disable Input does Enable PF_INEN Read FIO_FLAG_D expect to read 4 Disable PF_INEN Read FIO_FLAG_D Read 4 therefore Disable did not work 4/25

2 Problem Misunderstanding of what *pfio_inen does Assignment 2 will use watchdog timer and PF interrupts at the C++ level *pfio_inen = 0, disconnects the device input from the FIO_FLAG_D register It does not change the existing value in the FIO_FLAG_D register so correct test is Enable PF_INEN Read FIO_FLAG_D expect to read 4 Disable PF_INEN Set switches to 6 Read FIO_FLAG_D Read the old value of 4 therefore Disable did work 5/25 General format for writing an interrupt service routine in CCES is volatile int debuginfo_numberinterrupts = 0; #pragma interrupt void ThisIsISR_Not_Subroutine(void) { // Acknowledge Interrupts for this device // Do ISR task debuginfo_numberinterrupts ++; } 6/25 Friday s lecture gave details of code you can use in Assignment 3 Stop and Start WatchDog Interrupts Cause a software interrupt -- SWI for testing your ISR Tell the Event Vector Table (EVT) where your ISR has been placed in your cod

3 Initialize WDOG interrupts and cause SWI (SoftWareInterrupt) to occur in C++ The neat stuff writing an ISR using C++ NOTE use of PRAGMAs C++ extensions `Very interesting bug The correct code avoiding the hardware race This code works if WATCHDOG_COUNT is 0xFFFF (16 bit value) But not when WATCHDOG_COUNT is 0x10000 a (32 bit value) This probably associated with a hardware `race`condition

4 MUCH faster ISR and also NMI (looks like possible midterm material to me) Using the LCD graphics screen to display your Assignment 1 output 1. Download two new libraries to your Workspace directory NewLibraries CoffeepotLibraryUsing SPI.dlb LCDgraphicsLibrary.dlb 2. In Assignment 1 -- Settings Linker remove the link to the CoffeepotLIbraryNotUsingSPI.dlb Add links to the new libraries 3. Change your Assignment 1 main to USE_TEXT_GUI USE_SPI_GUI Rebuild your code 4. Hook up the LCD graphics screen according to the very first ENCM511 lab 5. Run Assignment 1 again 14 /25 Lab 3 Part 1 Timing SW3 switch movements Use uttcos to set up a task that will allow you to read switch SW3 to change the speed at which LEDs flash Long SW3 switch presses slow the LED flash down, short switch presses speed LED flash up SW1 switch up causes the length of time SW3 was held pressed (in ¼ seconds) to be displayed Sw1 down normal LED flash operation Lab 3 Part 2 Find the the Analog Devices TMP03 (thermal sensor) in your lab kit. Find the TMP03 reference data sheet on the web. Read how to use to calculate temperature Hook up to Vcc and Ground and then examine TMP03 output on the scope. Expect to see a 30 Hz pulse width modulated signal Do not expect to see changes in this PWM power shape with your finger temperature You will need more accuracy than that 15 /25 16 /25

5 Part 3 Timing SW4 switch movements Make a version of your SW3 code from Lab 3 part 1 to work when you change the position of SW4 Make SW1 and SW2 control the display of SW4 movement on LEDs SW1 low SW2 low flash control SW1 high SW2 low show time SW4 low SW1 high SW2 high show time SW4 high This will probably work well with SW4 uttcos tasks activated every 1 / 10 sec 17 /25 Part 4: Measure temperature using TMP03 Hook up TMP03 to SW4 and now make the switches have the following functions SW1 low SW2 low flash control SW1 high SW2 low show time SW4 low SW1 high SW2 high show time SW4 high SW1 low SW2 high display temperature Try this with SW4 uttcos tasks activated every 1 / 10 sec and as fast as possible (every tick) 18 /25 Part 5 More accurate temperature measurement You will find that uttcos can t respond fast enough to get accurate temperature measurements We will have to launch a uttcos hardware task that activates the Blackfin Timer 2 in capture mode (to capture hi and low times) Use uttcos to poll the Blackfin Timer 2 ready flag to see when the timer has captured the signals Use the Blackfin Timer 2 information to calculate temperature and control the LED flash rate We now have developed a bio-feedback device 19 /25 So now we need to switch to a chalk board discussion of Waiting for switch signals or timer signals Will completely kill any operating system Polling for switch signals or timer signals The approach needed for a co-operative scheduler Interrupts from switch signals or timer signals When sensible in a co-operative scheduler (not often) 20 /25 When sensible in a pre-emptive scheduler.

WATCHDOG TIMER ISR DEVELOPMENT TDD APPROACH

WATCHDOG TIMER ISR DEVELOPMENT TDD APPROACH WATCHDOG TIMER ISR DEVELOPMENT TDD APPROACH Through the use of user stories You can use a very similar approach when testing your CORE_TIMER ISR during Assignment 2 When developing the coffeepot Water

More information

Lab. 2 Overview. Echo Switches to LED to test LEDs and Switches. How would you handle a more complex set of embedded tests

Lab. 2 Overview. Echo Switches to LED to test LEDs and Switches. How would you handle a more complex set of embedded tests Lab. 2 Overview Echo Switches to LED to test LEDs and Switches volatile unsigned char GPIOvalue; // In embedded systems ALL Global variable must be // made volatile (change-able) to reflect they are //

More information

A look at interrupts Dispatch_Tasks ( )

A look at interrupts Dispatch_Tasks ( ) SHOWS WHERE S FIT IN A look at interrupts Dispatch_Tasks ( ) What are interrupts and why are they needed in an embedded system? Equally as important how are these ideas handled on the Blackfin Assignment

More information

If we can just send 1 signal correctly over the SPI MOSI line, then Lab 4 will work!!!

If we can just send 1 signal correctly over the SPI MOSI line, then Lab 4 will work!!! If we can just send 1 signal correctly over the SPI MOSI line, then Lab 4 will work!!! Design and implementation details on the way to a valid SPI-LCD interface driver Slides 3 to 13 are old versions of

More information

Table of Contents. ENCM511 Assignment 1 Marking Scheme Want to drive the real car on the A301 track later in the term. It can be arranged, but

Table of Contents. ENCM511 Assignment 1 Marking Scheme Want to drive the real car on the A301 track later in the term. It can be arranged, but Assignment 1 V3 Final 1 st October 2013 P age 1 Assignment 1 V3 Final 1 st October 2013 P age 2 YOUR NAME LAB. Section Table of Contents ENCM511 Assignment 1 V2 We shall drive a virtual car during this

More information

Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto

Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto Discussion of the capabilities of the Analog Devices ADSP-5333 Evaluation Board used in this course M. Smith, ECE

More information

Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto

Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto Discussion of the capabilities of the Analog Devices ADSP-5333 Evaluation Board used in this course M. Smith, ECE

More information

Laboratory 1 Manual V1.2 1 st September 2007 Developing a Blackfin GPIO interface using an automated embedded testing environment

Laboratory 1 Manual V1.2 1 st September 2007 Developing a Blackfin GPIO interface using an automated embedded testing environment Laboratory 1 Manual V1.2 1 st September 2007 Developing a Blackfin GPIO interface using an automated embedded testing environment These pages are cut-and-paste from the Lab. 1 web-pages. I have not spent

More information

Department of Electronics and Instrumentation Engineering Question Bank

Department of Electronics and Instrumentation Engineering Question Bank www.examquestionpaper.in Department of Electronics and Instrumentation Engineering Question Bank SUBJECT CODE / NAME: ET7102 / MICROCONTROLLER BASED SYSTEM DESIGN BRANCH : M.E. (C&I) YEAR / SEM : I / I

More information

USB PC Watchdog Hardware User s Manual

USB PC Watchdog Hardware User s Manual USB PC Watchdog Hardware User s Manual Berkshire Products, Inc. Phone: 770-271-0088 http://www.berkprod.com/ Rev: 2.01 Copyright 2001-2009 PC Watchdog is a registered trademark of Berkshire Products Table

More information

GLOSSARY. VisualDSP++ Kernel (VDK) User s Guide B-1

GLOSSARY. VisualDSP++ Kernel (VDK) User s Guide B-1 B GLOSSARY Application Programming Interface (API) A library of C/C++ functions and assembly macros that define VDK services. These services are essential for kernel-based application programs. The services

More information

Grundlagen Microcontroller Interrupts. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Interrupts. Günther Gridling Bettina Weiss Grundlagen Microcontroller Interrupts Günther Gridling Bettina Weiss 1 Interrupts Lecture Overview Definition Sources ISR Priorities & Nesting 2 Definition Interrupt: reaction to (asynchronous) external

More information

Interrupts and Using Them in C

Interrupts and Using Them in C Interrupts and Using Them in C Lecture 10 Embedded Systems 10-1 In These Notes... Interrupts How they work Creating and debugging C interrupt routines Sources M16C Hardware Manual P&P 8.1 and 8.5 Readings

More information

Lab 3a: Scheduling Tasks with uvision and RTX

Lab 3a: Scheduling Tasks with uvision and RTX COE718: Embedded Systems Design Lab 3a: Scheduling Tasks with uvision and RTX 1. Objectives The purpose of this lab is to lab is to introduce students to uvision and ARM Cortex-M3's various RTX based Real-Time

More information

HC12 Built-In Hardware

HC12 Built-In Hardware HC12 Built-In Hardware The HC12 has a number of useful pieces of hardware built into the chip. Different versions of the HC12 have slightly different pieces of hardware. We are using the MC68HC912B32 chip

More information

Real Time Embedded Systems. Lecture 10 January 31, 2012 Interrupts

Real Time Embedded Systems.  Lecture 10 January 31, 2012 Interrupts Interrupts Real Time Embedded Systems www.atomicrhubarb.com/embedded Lecture 10 January 31, 2012 Interrupts Section Topic Where in the books Catsoulis chapter 1 (pg 10-12) Simon chapter4 Zilog UM197 (ZNEO

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

IMASK FIO_FLAG_S FIO_DIR SIC_IMASK FIO_EDGE FIO_POLAR ILAT FIO_BOTH TCOUNT FIO_FLAG_D FIO_ENEN PF_STATUS_D

IMASK FIO_FLAG_S FIO_DIR SIC_IMASK FIO_EDGE FIO_POLAR ILAT FIO_BOTH TCOUNT FIO_FLAG_D FIO_ENEN PF_STATUS_D SECTION B -- ATTEMPT NO MORE THAN 2 QUESTIONS These are open-ended questions and you may be required to make some educated, engineering relevant, design decisions. Only the first two answers to questions

More information

CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones 1 Announcements HW 4, Due Wed 6/13 Quiz 5 (15 min): Wed 6/13, Textbook reading: Section 9.1, 9.2 (your one-side

More information

Microcontroller Not just a case of you say tomarto and I say tomayto

Microcontroller Not just a case of you say tomarto and I say tomayto Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto M. Smith, ECE University of Calgary, Canada Information taken from Analog Devices On-line Manuals with permission

More information

538 Lecture Notes Week 5

538 Lecture Notes Week 5 538 Lecture Notes Week 5 (Sept. 30, 2013) 1/15 538 Lecture Notes Week 5 Answers to last week's questions 1. With the diagram shown for a port (single bit), what happens if the Direction Register is read?

More information

538 Lecture Notes Week 5

538 Lecture Notes Week 5 538 Lecture Notes Week 5 (October 4, 2017) 1/18 538 Lecture Notes Week 5 Announements Midterm: Tuesday, October 25 Answers to last week's questions 1. With the diagram shown for a port (single bit), what

More information

USB Debug Adapter. Power USB DEBUG ADAPTER. Silicon Laboratories. Stop. Run. Figure 1. Hardware Setup using a USB Debug Adapter

USB Debug Adapter. Power USB DEBUG ADAPTER. Silicon Laboratories. Stop. Run. Figure 1. Hardware Setup using a USB Debug Adapter C8051F2XX DEVELOPMENT KIT USER S GUIDE 1. Kit Contents The C8051F2xx Development Kits contain the following items: C8051F206 or C8051F226 Target Board C8051Fxxx Development Kit Quick-Start Guide Silicon

More information

ECE2049: Embedded Computing in Engineering Design C Term Spring Lecture #11: More Clocks and Timers

ECE2049: Embedded Computing in Engineering Design C Term Spring Lecture #11: More Clocks and Timers ECE2049: Embedded Computing in Engineering Design C Term Spring 2018 Lecture #11: More Clocks and Timers Reading for Today: Davie's Ch 8.3-8.4, 8.9-8.10, User's Guide Ch. 17 Reading for Next Class: User's

More information

SYSTEM DESIGN SPECIFICATIONS ZIGBEE BASIC SYSTEM

SYSTEM DESIGN SPECIFICATIONS ZIGBEE BASIC SYSTEM SYSTEM DESCRIPTION This specification describes and defines the basic requirements of the CE3200 ZigBee temperature sensor mote. The ZigBee temperature sensor mote awakens from powerdown idle every two

More information

Introduction to the MC9S12 Hardware Subsystems

Introduction to the MC9S12 Hardware Subsystems Setting and clearing bits in C Using pointers in C o Program to count the number of negative numbers in an area of memory Introduction to the MC9S12 Hardware Subsystems o The MC9S12 timer subsystem Operators

More information

EE4390 Microprocessors

EE4390 Microprocessors EE4390 Microprocessors Lessons 23, 24 - Exceptions - Resets and Interrupts Revised: Aug 1, 2003 1 - Exceptions - Resets and Interrupts Polling vs. Interrupts Exceptions: Resets and Interrupts 68HC12 Exceptions

More information

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text In this lecture embedded C program for interrupt handling

More information

Chapter 2. Overview of Architecture and Microcontroller-Resources

Chapter 2. Overview of Architecture and Microcontroller-Resources Chapter 2 Overview of Architecture and Microcontroller-Resources Lesson 4 Timers, Real Time Clock Interrupts and Watchdog Timer 2 Microcontroller-resources Port P1 Port P0 Port P2 PWM Timers Internal Program

More information

EEL 4744C: Microprocessor Applications. Lecture 7. Part 1. Interrupt. Dr. Tao Li 1

EEL 4744C: Microprocessor Applications. Lecture 7. Part 1. Interrupt. Dr. Tao Li 1 EEL 4744C: Microprocessor Applications Lecture 7 Part 1 Interrupt Dr. Tao Li 1 M&M: Chapter 8 Or Reading Assignment Software and Hardware Engineering (new version): Chapter 12 Dr. Tao Li 2 Interrupt An

More information

Reading Assignment. Interrupt. Interrupt. Interrupt. EEL 4744C: Microprocessor Applications. Lecture 7. Part 1

Reading Assignment. Interrupt. Interrupt. Interrupt. EEL 4744C: Microprocessor Applications. Lecture 7. Part 1 Reading Assignment EEL 4744C: Microprocessor Applications Lecture 7 M&M: Chapter 8 Or Software and Hardware Engineering (new version): Chapter 12 Part 1 Interrupt Dr. Tao Li 1 Dr. Tao Li 2 Interrupt An

More information

ECE2049: Embedded Computing in Engineering Design A Term Fall 2017 Lecture #16: Interrupts and Event Driven Code

ECE2049: Embedded Computing in Engineering Design A Term Fall 2017 Lecture #16: Interrupts and Event Driven Code ECE2049: Embedded Computing in Engineering Design A Term Fall 2017 Lecture #16: Interrupts and Event Driven Code Reading for Today: Example code Reading for Next Class: Review all since exam 1 HW #4 (on

More information

Marten van Dijk, Syed Kamran Haider

Marten van Dijk, Syed Kamran Haider ECE3411 Fall 2015 Lecture 3b. Timers 0, 1 & 2 Marten van Dijk, Syed Kamran Haider Department of Electrical & Computer Engineering University of Connecticut Email: vandijk, syed.haider@engr.uconn.edu Based

More information

EEPROM Watchdog Timer

EEPROM Watchdog Timer ECE3411 Fall 2015 Lecture 5c. EEPROM Watchdog Timer Marten van Dijk, Syed Kamran Haider Department of Electrical & Computer Engineering University of Connecticut Email: {vandijk, syed.haider}@engr.uconn.edu

More information

EEL 4744C: Microprocessor Applications. Lecture 7. Part 2. M68HC12 Interrupt. Dr. Tao Li 1

EEL 4744C: Microprocessor Applications. Lecture 7. Part 2. M68HC12 Interrupt. Dr. Tao Li 1 EEL 4744C: Microprocessor Applications Lecture 7 Part 2 M68HC12 Interrupt Dr. Tao Li 1 Reading Assignment Software and Hardware Engineering (New version): Chapter 12 or SHE (old version) Chapter 8 And

More information

Section 10 Timers and Programmable Flags

Section 10 Timers and Programmable Flags Section 10 Timers and Programmable Flags 10-1 a ADSP-BF533 Block Diagram Core Timer 64 L1 Instruction Memory Performance Monitor JTAG/ Debug Core Processor LD0 32 LD1 32 L1 Data Memory SD32 DMA Mastered

More information

Table of Figures Figure 1. High resolution PWM based DAC...2 Figure 2. Connecting the high resolution buck converter...8

Table of Figures Figure 1. High resolution PWM based DAC...2 Figure 2. Connecting the high resolution buck converter...8 HR_PWM_DAC_DRV Texas Instruments C2000 DSP System Applications Group Table of contents 1 Overview...2 2 Module Properties...2 3 Module Input and Output Definitions...3 3.1 Module inputs...3 3.2 Module

More information

EE Embedded Systems Design. Lessons Exceptions - Resets and Interrupts

EE Embedded Systems Design. Lessons Exceptions - Resets and Interrupts EE4800-03 Embedded Systems Design Lessons 7-10 - Exceptions - Resets and Interrupts 1 - Exceptions - Resets and Interrupts Polling vs. Interrupts Exceptions: Resets and Interrupts 68HC12 Exceptions Resets

More information

Test driven development Example

Test driven development Example Test driven development Example Developing a moving average filter that can be tested using the EUNIT plug in REVIEW Using the E UNIT testing Framework Activate CCES and select your workspace (H:/ENCM511

More information

EE475 Lab #3 Fall Memory Placement and Interrupts

EE475 Lab #3 Fall Memory Placement and Interrupts EE475 Lab #3 Fall 2005 Memory Placement and Interrupts In this lab you will investigate the way in which the CodeWarrior compiler and linker interact to place your compiled code and data in the memory

More information

Unit 13 Timers and Counters

Unit 13 Timers and Counters Unit 13 Timers and Counters 1 2 Review of some key concepts from the first half of the semester A BRIEF SUMMARY 3 A Few Big Ideas 1 Setting and clearing bits in a register tells the hardware what do and

More information

Project Final Report Configurable Temperature Logger

Project Final Report Configurable Temperature Logger Project Final Report Configurable Temperature Logger 04/26/2012 Shilin Gan Project Abstract The project I did is called Configurable Temperature Logger. Instead of creating and purchasing new hardware,

More information

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY GUJARAT TECHNOLOGICAL UNIVERSITY BRANCH NAME: INSTRUMENTATION & CONTROL ENGINEERING (17) SUBJECT NAME: EMBEDDED SYSTEM DESIGN SUBJECT CODE: 2171711 B.E. 7 th SEMESTER Type of course: Core Engineering Prerequisite:

More information

CSE3215 Embedded Systems Laboratory

CSE3215 Embedded Systems Laboratory CSE3215 Embedded Systems Laboratory Lab3 Reaction Time Measurement Introduction Human reaction time is a parameter of interest in many psychological and physiological studies of the effects of drugs, stress,

More information

EE 308 Spring A software delay. To enter a software delay, put in a nested loop, just like in assembly.

EE 308 Spring A software delay. To enter a software delay, put in a nested loop, just like in assembly. More on Programming the 9S12 in C Huang Sections 5.2 through 5.4 Introduction to the MC9S12 Hardware Subsystems Huang Sections 8.2-8.6 ECT_16B8C Block User Guide A summary of MC9S12 hardware subsystems

More information

Getting the O in I/O to work on a typical microcontroller

Getting the O in I/O to work on a typical microcontroller Getting the O in I/O to work on a typical microcontroller Ideas of how to send output signals to the radio controlled car. The theory behind the LED controller used in the Familiarization Lab Agenda Processors

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 03 September 21, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

C Language Programming, Interrupts and Timer Hardware

C Language Programming, Interrupts and Timer Hardware C Language Programming, Interrupts and Timer Hardware In this sequence of three labs, you will learn how to write simple C language programs for the MC9S12 microcontroller, and how to use interrupts and

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 04 Timer Interrupts Goals: Learn about Timer Interrupts. Learn how to

More information

Making Embedded Systems

Making Embedded Systems Making Embedded Systems Elecia White O'REILLY. Beijing Cambridge Farnham Köln Sebastopol Tokyo Table of Contents Preface ix 1. Introduction 1 Compilers, Languages, and Object-Oriented Programming 1 Embedded

More information

Process Coordination and Shared Data

Process Coordination and Shared Data Process Coordination and Shared Data Lecture 19 In These Notes... Sharing data safely When multiple threads/processes interact in a system, new species of bugs arise 1. Compiler tries to save time by not

More information

Interrupt vectors for the 68HC912B32. The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80 to 0xFFFF.

Interrupt vectors for the 68HC912B32. The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80 to 0xFFFF. Interrupts The Real Time Interrupt Interrupt vectors for the 68HC912B32 The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80 to 0xFFFF. These vectors are programmed into Flash EEPROM

More information

TECHNICAL PRODUCT DATASHEET

TECHNICAL PRODUCT DATASHEET FORM-ENG-0018 REV A 06-02-03 ISO 9001 CERTIFIED Phone: (352) 629-5020 or 800-533-3569 Fax: (352)-629-2902 SUITABLE FOR EXTERNAL DISTRIBUTION TECHNICAL PRODUCT DATASHEET ES-Key Climate Control Module P/N

More information

2.996/6.971 Biomedical Devices Design Laboratory Lecture 6: Microprocessors II

2.996/6.971 Biomedical Devices Design Laboratory Lecture 6: Microprocessors II 2.996/6.971 Biomedical Devices Design Laboratory Lecture 6: Microprocessors II Instructor: Dr. Hong Ma Oct. 1, 2007 Structure of MSP430 Program 1. Declarations 2. main() 1. Watch-dog timer servicing 2.

More information

The MC9S12 Input Capture Function

The MC9S12 Input Capture Function The MC9S12 Input Capture Function The MC9S12 allows you to capture the time an external event occurs on any of the eight Port T PTT pins An external event is either a rising edge or a falling edge To use

More information

CPE 325: Embedded Systems Laboratory Laboratory #7 Tutorial MSP430 Timers, Watchdog Timer, Timers A and B

CPE 325: Embedded Systems Laboratory Laboratory #7 Tutorial MSP430 Timers, Watchdog Timer, Timers A and B CPE 325: Embedded Systems Laboratory Laboratory #7 Tutorial MSP430 Timers, Watchdog Timer, Timers A and B Aleksandar Milenković Email: milenka@uah.edu Web: http://www.ece.uah.edu/~milenka Objective This

More information

Laboratory 4 Usage of timers

Laboratory 4 Usage of timers Laboratory 4 Usage of timers 1. Timer based interrupts Beside external interrupt, the MCU responds to internal ones which are triggered by external events (on the external pins). The source of the internal

More information

ECE251: Thursday September 27

ECE251: Thursday September 27 ECE251: Thursday September 27 Exceptions: Interrupts and Resets Chapter in text and Lab #6. READ ALL this material! This will NOT be on the mid-term exam. Lab Practical Exam #1 Homework # due today at

More information

Graduate Institute of Electronics Engineering, NTU FIR Filter Design, Implement, and Applicate on Audio Equalizing System ~System Architecture

Graduate Institute of Electronics Engineering, NTU FIR Filter Design, Implement, and Applicate on Audio Equalizing System ~System Architecture FIR Filter Design, Implement, and Applicate on Audio Equalizing System ~System Architecture Instructor: Prof. Andy Wu 2004/10/21 ACCESS IC LAB Review of DSP System P2 Basic Structure for Audio System Use

More information

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4 EE445M Midterm Study Guide (Spring 2017) (updated February 25, 2017): Instructions: Open book and open notes. No calculators or any electronic devices (turn cell phones off). Please be sure that your answers

More information

ECE 2036: Lab #3 mbed Hardware Starter Lab Category: Getting Started with MBED ~ 1 week to complete

ECE 2036: Lab #3 mbed Hardware Starter Lab Category: Getting Started with MBED ~ 1 week to complete ECE 2036: Lab #3 mbed Hardware Starter Lab Category: Getting Started with MBED ~ 1 week to complete ECE2036a - Due Date: Monday September 28 @ 11:59 PM ECE2036b Due Date: Tuesday September 29 @ 11:59 PM

More information

ECE 2036 Lab 4 Setup and Test mbed I/O Hardware Check-Off Deadline: Thursday, March 17, Name:

ECE 2036 Lab 4 Setup and Test mbed I/O Hardware Check-Off Deadline: Thursday, March 17, Name: ECE 2036 Lab 4 Setup and Test mbed I/O Hardware Check-Off Deadline: Thursday, March 17, 2016 Name: Item Part 1. (40%) Color LCD Hello World Part 2. (10%) Timer display on Color LCD Part 3. (25%) Temperature

More information

Lab 4: Interrupt. CS4101 Introduction to Embedded Systems. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan

Lab 4: Interrupt. CS4101 Introduction to Embedded Systems. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan CS4101 Introduction to Embedded Systems Lab 4: Interrupt Prof. Chung-Ta King Department of Computer Science, Taiwan Introduction In this lab, we will learn interrupts of MSP430 Handling interrupts in MSP430

More information

8051 I/O and 8051 Interrupts

8051 I/O and 8051 Interrupts 8051 I/O and 8051 Interrupts Class 7 EE4380 Fall 2002 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Agenda 8051 I/O Interfacing Scanned LED displays LCD displays

More information

COEN-4720 Embedded Systems Design Lecture 4 Interrupts (Part 1) Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University

COEN-4720 Embedded Systems Design Lecture 4 Interrupts (Part 1) Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University COEN-4720 Embedded Systems Design Lecture 4 Interrupts (Part 1) Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University Outline Introduction NVIC and Interrupt Control Interrupt

More information

Getting the O in I/O to work on a typical microcontroller

Getting the O in I/O to work on a typical microcontroller Getting the O in I/O to work on a typical microcontroller Ideas of how to send output signals to the radio controlled car. The theory behind the LED controller used in the Familiarization Lab Agenda Processors

More information

Embedded Systems. October 2, 2017

Embedded Systems. October 2, 2017 15-348 Embedded Systems October 2, 2017 Announcements Read pages 267 275 The Plan! Timers and Counter Interrupts A little review of timers How do we keep track of seconds using a timer? We have several

More information

NO CALCULATORS ARE ALLOWED IN THIS EXAM

NO CALCULATORS ARE ALLOWED IN THIS EXAM Department of Electrical and Computer Engineering, University of Calgary ENCM415 DECEMBER 18 th, 2001 3 HOURS NAME:- ID#:- PLEASE WRITE CLEARLY. USE AN HB GRADE OR SOFTER (DARKER) PENCIL! WHAT I CAN=T

More information

Reading: Davies , 8.3-4, , MSP430x55xx User's Guide Ch. 5,17, MSP430F5529 Launchpad User's Guide

Reading: Davies , 8.3-4, , MSP430x55xx User's Guide Ch. 5,17, MSP430F5529 Launchpad User's Guide ECE2049 Homework #3 Clocks & Timers (Due Thursday 2/8/18 At the BEGINNING of class) Your homework should be neat and professional looking. You will loose points if your HW is not properly submitted (by

More information

12.1. Unit 12. Exceptions & Interrupts

12.1. Unit 12. Exceptions & Interrupts 12.1 Unit 12 Exceptions & Interrupts 12.2 Disclaimer 1 This is just an introduction to the topic of interrupts. You are not meant to master these right now but just start to use them We will cover more

More information

Distributed Real- Time Control Systems. Lecture 7 Real- Time Control

Distributed Real- Time Control Systems. Lecture 7 Real- Time Control Distributed Real- Time Control Systems Lecture 7 Real- Time Control 1 Real- Time Digital Control Hardware Digital Controllers are usually designed as periodic tasks with fixed period and synchronizeda/d-

More information

Microprocessors B (17.384) Spring Lecture Outline

Microprocessors B (17.384) Spring Lecture Outline Microprocessors B (17.384) Spring 2013 Lecture Outline Class # 04 February 12, 2013 Dohn Bowden 1 Today s Lecture Administrative Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

ToolStick-EK TOOLSTICK USER S GUIDE. 1. Kit Contents. 2. ToolStick Overview. Green and Red LEDs. C8051F321 provides USB debug interface.

ToolStick-EK TOOLSTICK USER S GUIDE. 1. Kit Contents. 2. ToolStick Overview. Green and Red LEDs. C8051F321 provides USB debug interface. TOOLSTICK USER S GUIDE 1. Kit Contents The ToolStick kit contains the following items: ToolStick Silicon Laboratories Evaluation Kit IDE and Product Information CD-ROM. CD content includes: Silicon Laboratories

More information

BASICS OF THE RENESAS SYNERGY TM

BASICS OF THE RENESAS SYNERGY TM BASICS OF THE RENESAS SYNERGY TM PLATFORM Richard Oed 2018.11 02 CHAPTER 9 INCLUDING A REAL-TIME OPERATING SYSTEM CONTENTS 9 INCLUDING A REAL-TIME OPERATING SYSTEM 03 9.1 Threads, Semaphores and Queues

More information

Changing How the Keyboard Works in Windows 7

Changing How the Keyboard Works in Windows 7 Changing How the Keyboard Works in Windows 7 Mada Assistive Technology Center Tel: 00 974 44594050 Fax: 00 974 44594051 Email: info@mada.org.qa Introduction The keyboard can be adjusted to suit you in

More information

Fall 2017 Project Assignment Speed Trap

Fall 2017 Project Assignment Speed Trap USCViterbi School of Engineering Ming Hsieh Department of Electrical Engineering EE 109L - Introduction to Embedded Systems Fall 2017 Project Assignment Speed Trap 1 Introduction This semester s class

More information

USB Virtual Reality HID. by Weston Taylor and Chris Budzynski Advisor: Dr. Malinowski

USB Virtual Reality HID. by Weston Taylor and Chris Budzynski Advisor: Dr. Malinowski USB Virtual Reality HID by Weston Taylor and Chris Budzynski Advisor: Dr. Malinowski Project Summary Analysis Block Diagram Hardware Inertial Sensors Position Calculation USB Results Questions === Agenda

More information

Using Input Capture on the 9S12

Using Input Capture on the 9S12 The 9S12 Input Capture Function Huang Sections 8.1-8.5 ECT_16B8C Block User Guide o Interrupts on the 9S12 o Capturing the time of an external event o The 9S12 Input Capture Function o Registers used to

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

Timer1 Capture Mode:

Timer1 Capture Mode: Timer1 Capture Mode: Interrupt Description Input Conditions Enable Flag Timer 1 Trigger after N events N = 1.. 2 19 100ns to 0.52 sec RC0 TMR1CS = 1 TMR1IF Timer 1 Capture Mode 1 Timer 1 Capture Mode 2

More information

EE 308 Spring A software delay

EE 308 Spring A software delay A software delay To enter a software delay, put in a nested loop, just like in assembly. Write a function delay(num) which will delay for num milliseconds void delay(unsigned int num) volatile unsigned

More information

ECE 598 Advanced Operating Systems Lecture 8

ECE 598 Advanced Operating Systems Lecture 8 ECE 598 Advanced Operating Systems Lecture 8 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 15 February 2018 Homework #3 Due. Announcements Homework #4 Posted Soon 1 (Review)

More information

Capture Mode of Pic18F252

Capture Mode of Pic18F252 Capture Mode of Pic18F252 PIC18F253 has two Capture/Compare/Pulse Width Modulation modules. Some devices such as ADCs, Sensors (position, velocity, accelearstion, temperature [MAX6577 converts the ambient

More information

Lecture 23. I/O, Interrupts, exceptions

Lecture 23. I/O, Interrupts, exceptions Lecture 23 I/O, Interrupts, exceptions 1 A Timely Question. Most modern operating systems pre-emptively schedule programs. If you are simultaneously running two programs A and B, the O/S will periodically

More information

Interrupts. Embedded Systems Interfacing. 08 September 2011

Interrupts. Embedded Systems Interfacing. 08 September 2011 08 September 2011 An iterrupt is an internal or external event that forces a hardware call to a specified function called an interrupt service routine Interrupt enable must be set (initialization) The

More information

Computer Software Requirements for Real-Time Applications

Computer Software Requirements for Real-Time Applications Lecture (5) Computer Software Requirements for Real-Time Applications Prof. Kasim M. Al-Aubidy Computer Engineering Department Philadelphia University Summer Semester, 2011 Real-Time Systems, Prof. Kasim

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (I) Lecturer : Dr. Annie Guo Introduction to Interrupts Interrupt system specifications Multiple sources of interrupts Interrupt priorities Interrupts

More information

Distributed Real-Time Control Systems. Chapter 10 Real-Time Digital Control

Distributed Real-Time Control Systems. Chapter 10 Real-Time Digital Control Distributed Real-Time Control Systems Chapter 10 Real-Time Digital Control 1 Real-Time Digital Control Hardware Digital Controllers are usually designed as periodic tasks with fixed period and synchronized

More information

Interrupts and Timers

Interrupts and Timers Indian Institute of Technology Bombay CS684/CS308 Embedded Systems Interrupts and Timers E.R.T.S. Lab 1 Lab Objective This lab will introduce you to the use of Timers and Interrupts on the TM4C123GH6PM.

More information

Microcontrollers. Program organization Interrupt driven I/O. EECE 218 Microcontrollers 1

Microcontrollers. Program organization Interrupt driven I/O. EECE 218 Microcontrollers 1 EECE 218 Microcontrollers Program organization Interrupt driven I/O EECE 218 Microcontrollers 1 Software Architecture How to organize the code for a microcontoller application? Typical microcontroller

More information

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1 Interrupts (I) Lecturer: Sri Notes by Annie Guo Week8 1 Lecture overview Introduction to Interrupts Interrupt system specifications Multiple Sources of Interrupts Interrupt Priorities Interrupts in AVR

More information

BASICS OF THE RENESAS SYNERGY PLATFORM

BASICS OF THE RENESAS SYNERGY PLATFORM BASICS OF THE RENESAS SYNERGY PLATFORM TM Richard Oed 2017.12 02 CHAPTER 9 INCLUDING A REAL-TIME OPERATING SYSTEM CONTENTS 9 INCLUDING A REAL-TIME OPERATING SYSTEM 03 9.1 Threads, Semaphores and Queues

More information

Analog Output with a Digital to Analog Converter

Analog Output with a Digital to Analog Converter Analog Output with a Digital to Analog Converter Matthew Beckler beck0778@umn.edu EE2361 Lab 007 April 5, 2006 Abstract Without help, microcontrollers can have great trouble creating analog signals. Approximations

More information

ECE 598 Advanced Operating Systems Lecture 8

ECE 598 Advanced Operating Systems Lecture 8 ECE 598 Advanced Operating Systems Lecture 8 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 11 February 2016 Homework #3 Due. Announcements Homework #4 Posted Soon 1 HW#3 Comments

More information

EECS 373 Midterm Winter 2013

EECS 373 Midterm Winter 2013 EECS 373 Midterm Winter 2013 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Page Points 2 /15 3 /20 4 /12 5 /13

More information

ECE 271 Microcomputer Architecture and Applications University of Maine

ECE 271 Microcomputer Architecture and Applications University of Maine Goals Lab 7: Timer Input Capture in C Instructor: Prof. Yifeng Zhu Spring 2015 1. Understand the basic concept of input capture function of a timer 2. Handle different events in the interrupt service routine

More information

Process Context & Interrupts. New process can mess up information in old process. (i.e. what if they both use the same register?)

Process Context & Interrupts. New process can mess up information in old process. (i.e. what if they both use the same register?) 1 Process Context 1.1 What is context? A process is sometimes called a task, subroutine or program. Process context is all the information that the process needs to keep track of its state. Registers Temporary

More information

What happens when an HC12 gets in unmasked interrupt:

What happens when an HC12 gets in unmasked interrupt: What happens when an HC12 gets in unmasked interrupt: 1. Completes current instruction 2. Clears instruction queue 3. Calculates return address 4. Stacks return address and contents of CPU registers 5.

More information

Application Note: JN-AN-1122

Application Note: JN-AN-1122 Application Note: JN-AN-1122 This Application Note describes the implementation of the ZigBee PRO Home Sensor Demonstration, providing an overview of the application s architecture and a description of

More information

Putting it All Together

Putting it All Together EE445M/EE360L.12 Embedded and Real-Time Systems/ Real-Time Operating Systems : Commercial RTOS, Final Exam, Review 1 Putting it All Together Micrium μcos-ii Reference: www.micrium.com Application Note

More information