CSC 101: Lab Manual#9 Machine Language and the CPU (largely based on the work of Prof. William Turkett) Lab due date: 5:00pm, day after lab session

Size: px
Start display at page:

Download "CSC 101: Lab Manual#9 Machine Language and the CPU (largely based on the work of Prof. William Turkett) Lab due date: 5:00pm, day after lab session"

Transcription

1 CSC 101: Lab Manual#9 Machine Language and the CPU (largely based on the work of Prof. William Turkett) Lab due date: 5:00pm, day after lab session Purpose: The purpose of this lab is to gain additional hands-on experience in working with different number systems, to gain insight into how a CPU executes low-level (machine and assembly) language instructions, and to gain insight into how CPU instructions are represented on the CPU. Lab Instructions If you had trouble with the software in the pre-lab (no window popped up), please let one of the instructors know early in the lab session. Hexadecimal Representations: As was discussed in the pre-lab, ultimately everything in a computer is represented in binary notation (strings of 0s and 1s). However, for humans this notation can sometimes get unwieldy for example, reading 32 binary digits (a common size used for representing information in a computer) can make your eyes go googly: 32 bits (binary digits): Accordingly, it is often easier to read and work with numbers in hexadecimal, the number system that is based on powers of 16 (instead of powers of 10 like we are used to or powers of 2 like binary). Continuing with some of the examples from the pre-lab, here is the setup for a 3-digit hexadecimal number. 256s place 16s place 1s place Powers: Remember that we are able to write into each position any numbers from 0 up to our (number system base-1): In binary (base 2) we can write 0s and 1s (base of 2-1) in the positions. In decimal (base 10), we can write the values 0 through 9 (base of 10-1) in the positions. In hexadecimal (base 16), we can write the values 0 through 15 (base of 16-1). However, we will write the numbers 10, 11, 12, 13, 14, and 15 as A, B, C, D, E, and F respectively so that they only take up one physical position. Given that we have a 3-digit hexadecimal number, the smallest number we can then represent is using a 0 in each position, leading to 0* *16 + 0* , while the largest number we can represent is using a F (equivalent to 15) in each position, leading to F*256 + F*16 + F*1 15* * * Why do we want to use hexadecimal in place of long binary numbers? Remember that there is a nice relationship between hexadecimal and binary. You should remember from previous math classes and the prelab that 2 4 is the number 16 - that means one hexadecimal digit is the same as four binary digits. So, our long binary number from above: 32 bits (binary digits): can be broken apart into eight different 4-bit chunks: which in hexadecimal is the value: 5 0 C 5 D 2 D 8

2 which is a lot more compact and easier on the eyes. A table with these 4-binary digit to 1-hexadecimal digit translations was shown in lecture and is included at the back of this lab. Answer Questions 1 and 2 on the Lab Report document. Low-level (Assembly and Machine) Language Instructions: As discussed in lecture, low level computer instructions are very simple instructions which are understood and executed by a computer. An example of such an operation is addition. A computer might be instructed to perform the addition operation on two values; let s say the numbers 8 and 16. If we were to write this process down, we would commonly write: However, for a computer it would more likely be written as ADD 8 16 That is, the operator (ADD for addition) is written first, followed by the two operands (the values to be added). As another example, computing 5-2 would be written for the computer as: SUB 5 2 The operators that are available to be used provide the functionality for the computer, and thus make up the set of potential instructions. The above two examples suggest ADD (addition) and SUB (subtraction) as potential low level instructions, but there are others as well. Remember that the internals of a computer break down similar to the picture shown at right. If there is information stored in RAM (the memory of your computer), sometimes it may need to be brought to the CPU over the BUS to be worked on, and other times the CPU may need to write information back out to the RAM memory. This suggests it could be useful to have instructions such as LOAD (get information from RAM onto the CPU) and STORE (save information from the CPU to RAM). In addition to addition and subtraction, we could expect our low-level language to support math operations such as multiplication (MUL); division (DIV); the AND, OR, NOT, and XOR Boolean operations we saw in lab #3; and comparison operations (LESS THAN, GREATER THAN, EQUAL TO). While there are more operations that modern low-level languages support than just these, the list above should give you an idea of the basics. All of these instructions would be written in the operator operand operand format, as shown in the examples below: ADD 8 16 equivalent to 8+16, answer is 24 SUB 4 2 equivalent to 4-2, answer is 2 GREATERTHAN equivalent to 12 > 10, answer is true AND true false answer is false (remember the AND truth table from Lab #5?) LOAD load information from memory location 1024 onto the CPU at a location 12

3 Answer Question 3 on the Lab Report document. All information understood by the computer, including the instructions, has to eventually be encoded in binary. That means we have to be able to encode the operator and both operands listed above all as binary numbers. So, taking one example from above: SUB 4 2 might be encoded as OPERATOR OPERAND1 OPERAND in binary (which in decimal is the 4 and 2 should make sense as they are the operands; the first 1 is an arbitrary number I decided to associate with the SUB subtraction operator). Let s assume that all of our instructions are to be encoded in a total of 12 binary digits (like the one above). We could divide up the bits to describe the instruction in a number of ways: 4 bits for the operator 4 bits for operand1 4 bits for operand2 6 bits for the operator 3 bits for operand1 3 bits for operand2 2 bits for the operator 5 bits for operand1 5 bits for operand2 any other combination that adds up to 12 total bits. The number of binary digits we allow for the operator constrains the number of different instructions we can encode, as each different available binary number would be associated with an operator (ie ADD would be assigned the binary version of the number 0, SUB would be assigned the binary version of the number 1, MUL would be assigned the binary version of the number 2, and so on). Answer Question 4 on the Lab Report document. Question 5: Let s assume that a STORE instruction (one of our example instructions on the previous page) has the following format: STORE VALUE LOCATION operator operand1 operand2 Answer the question 5 on the Lab Report document. Compilation As you discussed in lecture, computer software is initially written in high level languages languages whose instructions are similar to English and are human-readable. A tool (either a compiler or an interpreter) converts the English-like instructions to machine language instructions to be executed by the CPU. Answer Question 6 on the Lab Report document.

4 CPU Simulator: Navigate to the following page in your web-browser: This should open a web-page that contains a CPU simulator, similar to what is shown below: This simulator was demonstrated in the video you were requested to watch before lab. Using the New Prgm button will open a text entry window similar to the one at right. In that window, enter the following program: lod-c 0 sto 12 lod 12 inc inc sto 12 jmp 2 and hit the Translate button on that window. If you typed everything correctly, it should close and your program will show up in the positions labeled 0-6 in the right of the large window. If you made an error, then it should recognize that as well.

5 Question 7 (7 points): When the program was translated successfully (we can think of this as compilation of the program), what are the 7 encoded instructions shown in memory positions 0-6? Make sure the drop-down box above the memory box says Integers. RECORD YOUR ANSWERS ON THE LAB9 REPORT. This program works as shown below: lod-c 0 // load the number 0 onto the CPU sto 12 // store that number (0) out to position 12 in memory lod 12 // load the value in memory position 12 onto the CPU inc // increment (add 1 to) that value(ie 0 has one added to become 1) inc // increment (add 1 to) that value (ie 1 has one added to become 2) sto 12 // store the resulting value in memory at location 12 jmp 2 // go back to instruction 2 (lod 12) and start over We now want to execute this program. Read the rest of this paragraph, and then repeatedly click the Step button, which will start the fetch-execute cycle. Watch the PC (Program Counter) field, the field which says what the next instruction to execute is. Every time it changes (which may be after multiple hits of the Step button), record the following information as your answer to Question 8. After recording the values above, you should have seen the memory in position 12 change values from 0 to 2. Now, press the Set PC=0 button, which will prepare to restart our program from the beginning. The questions on the next page should be answered based on what you are about to see, so you may want to go ahead and read the questions and then come back to this page to read the final instruction of what to press in the simulator. If you have read the questions on the next page and are back here, now instead of pressing Step, press Run (which automates execution of the program) and watch Memory position 12 (the values counting up from 0). Answer Question 9 on the Lab Report document. CPU Speed: As you saw in the pre-lab, CPUs maintain an internal clock that ticks many times a second. For my laptop, the CPU ticked at a frequency of 2.4 GHz, or 2.4 billion (2,400,000,000) ticks in a second. We will assume that the computer can execute 1 machine language instruction per tick, so that s 2.4 billion machine language instructions a second! Answer Question 10 on the Lab Report document. Note: Nothing needs to be uploaded into Sakai for this lab.

Functional Units of a Modern Computer

Functional Units of a Modern Computer Functional Units of a Modern Computer We begin this lecture by repeating a figure from a previous lecture. Logically speaking a computer has four components. Connecting the Components Early schemes for

More information

CSC 101: Lab #5 Boolean Logic Practice Due Date: 5:00pm, day after lab session

CSC 101: Lab #5 Boolean Logic Practice Due Date: 5:00pm, day after lab session Name: Email Username: Lab Date and Time: CSC 101: Lab #5 Boolean Logic Practice Due Date: 5:00pm, day after lab session Lab Report: Answer the questions within this document as you encounter them. Also,

More information

User. Application program. Interfaces. Operating system. Hardware

User. Application program. Interfaces. Operating system. Hardware Operating Systems Introduction to Operating Systems and Computer Hardware Introduction and Overview The operating system is a set of system software routines that interface between an application program

More information

CSC 220: Computer Organization Unit 12 CPU programming

CSC 220: Computer Organization Unit 12 CPU programming College of Computer and Information Sciences Department of Computer Science CSC 220: Computer Organization Unit 12 CPU programming 1 Instruction set architectures Last time we built a simple, but complete,

More information

COMPUTER ORGANIZATION & ARCHITECTURE

COMPUTER ORGANIZATION & ARCHITECTURE COMPUTER ORGANIZATION & ARCHITECTURE Instructions Sets Architecture Lesson 5a 1 What are Instruction Sets The complete collection of instructions that are understood by a CPU Can be considered as a functional

More information

Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur

Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur Lecture - 09 8085 Microprocessors (Contd.) (Refer Slide Time:

More information

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Website is up

More information

Laboratory. Low-Level. Languages. Objective. References. Study simple machine language and assembly language programs.

Laboratory. Low-Level. Languages. Objective. References. Study simple machine language and assembly language programs. Laboratory Low-Level 7 Languages Objective Study simple machine language and assembly language programs. References Software needed: 1) A web browser (Internet Explorer or Netscape) 2) Applet from the

More information

CSC 101: Lab #5 Prelab Boolean Logic Practice Due Date: 5:00pm, day after lab session

CSC 101: Lab #5 Prelab Boolean Logic Practice Due Date: 5:00pm, day after lab session Name: Email Username: Lab Date and Time: CSC 101: Lab #5 Prelab Boolean Logic Practice Due Date: 5:00pm, day after lab session Purpose: The purpose of this pre-lab is to provide you with hands-on experience

More information

(Refer Slide Time: 1:40)

(Refer Slide Time: 1:40) Computer Architecture Prof. Anshul Kumar Department of Computer Science and Engineering, Indian Institute of Technology, Delhi Lecture - 3 Instruction Set Architecture - 1 Today I will start discussion

More information

Lecture 1: What is a computer?

Lecture 1: What is a computer? 02-201, Fall 2015, Carl Kingsford Lecture 1: What is a computer? 0. Today's Topics Basic computer architecture How the computer represents data 1. What is a computer? A modern computer is a collection

More information

Computer Architecture and Assembly Language 11/30/2017

Computer Architecture and Assembly Language 11/30/2017 Computer Architecture and Assembly Language 11/30/2017 1 Announcements PS 7 is ready Today: Computer Architecture and Assembly Language Reading: Chapter 9 of Conery Acknowledgement: Some of this lecture

More information

Computer Architecture and Assembly Language

Computer Architecture and Assembly Language Announcements Computer Architecture and Assembly Language 11/30/2017 PS 7 is ready Today: Computer Architecture and Assembly Language Reading: Chapter 9 of Conery Acknowledgement: Some of this lecture

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

Laboratory. Computer Cycling. Objective. References. Learn about the fetch-execute cycle of computers.

Laboratory. Computer Cycling. Objective. References. Learn about the fetch-execute cycle of computers. Laboratory Computer Cycling 5 Objective Learn about the fetch-execute cycle of computers. References Software needed: 1) A web browser (Internet Explorer or Netscape) 2) Applet from the CD-ROM: a) Super

More information

Unit 2: Data Storage CS 101, Fall 2018

Unit 2: Data Storage CS 101, Fall 2018 Unit 2: Data Storage CS 101, Fall 2018 Learning Objectives After completing this unit, you should be able to: Evaluate digital circuits that use AND, OR, XOR, and NOT. Convert binary integers to/from decimal,

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements Today: PS 7 Lab 8: Sound Lab tonight bring machines and headphones! PA 7 Tomorrow: Lab 9 Friday: PS8 Today (Short) Floating point review Boolean

More information

Memory Addressing, Binary, and Hexadecimal Review

Memory Addressing, Binary, and Hexadecimal Review C++ By A EXAMPLE Memory Addressing, Binary, and Hexadecimal Review You do not have to understand the concepts in this appendix to become well-versed in C++. You can master C++, however, only if you spend

More information

Programming with Python

Programming with Python Programming with Python Dr Ben Dudson Department of Physics, University of York 21st January 2011 http://www-users.york.ac.uk/ bd512/teaching.shtml Dr Ben Dudson Introduction to Programming - Lecture 2

More information

Von Neumann Architecture

Von Neumann Architecture Von Neumann Architecture Assist lecturer Donya A. Khalid Lecture 2 2/29/27 Computer Organization Introduction In 945, just after the World War, Jon Von Neumann proposed to build a more flexible computer.

More information

Dec Hex Bin ORG ; ZERO. Introduction To Computing

Dec Hex Bin ORG ; ZERO. Introduction To Computing Dec Hex Bin 0 0 00000000 ORG ; ZERO Introduction To Computing OBJECTIVES this chapter enables the student to: Convert any number from base 2, base 10, or base 16 to any of the other two bases. Add and

More information

Problem Solving through Programming In C Prof. Anupam Basu Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Problem Solving through Programming In C Prof. Anupam Basu Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Problem Solving through Programming In C Prof. Anupam Basu Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Introduction to Programming Language Concepts

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text About the course : In this digital world, embedded systems are more

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Chapter Overview. Welcome to Assembly Language

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Chapter Overview. Welcome to Assembly Language Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 1: Basic Concepts Slides prepared by Kip R. Irvine Revision date: 09/15/2002 Chapter corrections (Web) Printing a slide show

More information

COSC 122 Computer Fluency. Computer Organization. Dr. Ramon Lawrence University of British Columbia Okanagan

COSC 122 Computer Fluency. Computer Organization. Dr. Ramon Lawrence University of British Columbia Okanagan COSC 122 Computer Fluency Computer Organization Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Key Points 1) The standard computer (von Neumann) architecture consists

More information

538 Lecture Notes Week 1

538 Lecture Notes Week 1 538 Clowes Lecture Notes Week 1 (Sept. 6, 2017) 1/10 538 Lecture Notes Week 1 Announcements No labs this week. Labs begin the week of September 11, 2017. My email: kclowes@ryerson.ca Counselling hours:

More information

Monday, January 27, 2014

Monday, January 27, 2014 Monday, January 27, 2014 Topics for today History of Computing (brief) Encoding data in binary Unsigned integers Signed integers Arithmetic operations and status bits Number conversion: binary to/from

More information

Fundamentals of Programming Session 2

Fundamentals of Programming Session 2 Fundamentals of Programming Session 2 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2013 Sharif University of Technology Outlines Programming Language Binary numbers Addition Subtraction

More information

ECOM 2325 Computer Organization and Assembly Language. Instructor: Ruba A.Salamah INTRODUCTION

ECOM 2325 Computer Organization and Assembly Language. Instructor: Ruba A.Salamah INTRODUCTION ECOM 2325 Computer Organization and Assembly Language Instructor: Ruba A.Salamah INTRODUCTION Overview Welcome to ECOM 2325 Assembly-, Machine-, and High-Level Languages Assembly Language Programming Tools

More information

Topics. Hardware and Software. Introduction. Main Memory. The CPU 9/21/2014. Introduction to Computers and Programming

Topics. Hardware and Software. Introduction. Main Memory. The CPU 9/21/2014. Introduction to Computers and Programming Topics C H A P T E R 1 Introduction to Computers and Programming Introduction Hardware and Software How Computers Store Data Using Python Introduction Computers can be programmed Designed to do any job

More information

Computer Organization and Assembly Language. Lab Session 01

Computer Organization and Assembly Language. Lab Session 01 Objective: Lab Session 01 Introduction to Assembly Language Tools and Familiarization with Emu8086 environment To be able to understand Data Representation and perform conversions from one system to another

More information

COMP 102: Computers and Computing

COMP 102: Computers and Computing COMP 102: Computers and Computing Lecture 2: Bits&bytes, Switches, and Boolean Logic Instructor: Kaleem Siddiqi (siddiqi@cim.mcgill.ca) Class web page: www.cim.mcgill.ca/~siddiqi/102.html The Lowly Bit

More information

Course Schedule. CS 221 Computer Architecture. Week 3: Plan. I. Hexadecimals and Character Representations. Hexadecimal Representation

Course Schedule. CS 221 Computer Architecture. Week 3: Plan. I. Hexadecimals and Character Representations. Hexadecimal Representation Course Schedule CS 221 Computer Architecture Week 3: Information Representation (2) Fall 2001 W1 Sep 11- Sep 14 Introduction W2 Sep 18- Sep 21 Information Representation (1) (Chapter 3) W3 Sep 25- Sep

More information

Practical Malware Analysis

Practical Malware Analysis Practical Malware Analysis Ch 4: A Crash Course in x86 Disassembly Revised 1-16-7 Basic Techniques Basic static analysis Looks at malware from the outside Basic dynamic analysis Only shows you how the

More information

Microcontroller Systems

Microcontroller Systems µcontroller systems 1 / 43 Microcontroller Systems Engineering Science 2nd year A2 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2co Michaelmas 2014 µcontroller

More information

CSCI 1100L: Topics in Computing Lab Lab 11: Programming with Scratch

CSCI 1100L: Topics in Computing Lab Lab 11: Programming with Scratch CSCI 1100L: Topics in Computing Lab Lab 11: Programming with Scratch Purpose: We will take a look at programming this week using a language called Scratch. Scratch is a programming language that was developed

More information

Outline. elements and behavior executing programs. developing programs use as a calculator converting strings to numbers

Outline. elements and behavior executing programs. developing programs use as a calculator converting strings to numbers Outline 1 The von Neumann Machine elements and behavior executing programs 2 Python Programming developing programs use as a calculator converting strings to numbers 3 Summary + Assignments MCS 260 Lecture

More information

Bits, Words, and Integers

Bits, Words, and Integers Computer Science 52 Bits, Words, and Integers Spring Semester, 2017 In this document, we look at how bits are organized into meaningful data. In particular, we will see the details of how integers are

More information

SKILL AREA 304: Review Programming Language Concept. Computer Programming (YPG)

SKILL AREA 304: Review Programming Language Concept. Computer Programming (YPG) SKILL AREA 304: Review Programming Language Concept Computer Programming (YPG) 304.1 Demonstrate an Understanding of Basic of Programming Language 304.1.1 Explain the purpose of computer program 304.1.2

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 TOPICS TODAY Course overview Levels of machines Machine models: von Neumann & System Bus Fetch-Execute Cycle Base

More information

Representation of Information

Representation of Information Representation of Information CS61, Lecture 2 Prof. Stephen Chong September 6, 2011 Announcements Assignment 1 released Posted on http://cs61.seas.harvard.edu/ Due one week from today, Tuesday 13 Sept

More information

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation Data Representation II CMSC 313 Sections 01, 02 The conversions we have so far presented have involved only unsigned numbers. To represent signed integers, computer systems allocate the high-order bit

More information

CPU. Fall 2003 CSE 207 Digital Design Project #4 R0 R1 R2 R3 R4 R5 R6 R7 PC STATUS IR. Control Logic RAM MAR MDR. Internal Processor Bus

CPU. Fall 2003 CSE 207 Digital Design Project #4 R0 R1 R2 R3 R4 R5 R6 R7 PC STATUS IR. Control Logic RAM MAR MDR. Internal Processor Bus http://www.engr.uconn.edu/~barry/cse207/fa03/project4.pdf Page 1 of 16 Fall 2003 CSE 207 Digital Design Project #4 Background Microprocessors are increasingly common in every day devices. Desktop computers

More information

Introduction to MiniSim A Simple von Neumann Machine

Introduction to MiniSim A Simple von Neumann Machine Math 121: Introduction to Computing Handout #19 Introduction to MiniSim A Simple von Neumann Machine Programming languages like C, C++, Java, or even Karel are called high-level languages because they

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Use number { base 2, base 10, or base 16 }. Add and subtract binary/hex numbers. Represent any binary number in 2

More information

Arithmetic and Bitwise Operations on Binary Data

Arithmetic and Bitwise Operations on Binary Data Arithmetic and Bitwise Operations on Binary Data CSCI 2400: Computer Architecture ECE 3217: Computer Architecture and Organization Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides

More information

Module 5 - CPU Design

Module 5 - CPU Design Module 5 - CPU Design Lecture 1 - Introduction to CPU The operation or task that must perform by CPU is: Fetch Instruction: The CPU reads an instruction from memory. Interpret Instruction: The instruction

More information

Expectations. Why learn Assembly Language? Administrative Issues. Assignments. CSC 3210 Computer Organization and Programming

Expectations. Why learn Assembly Language? Administrative Issues. Assignments. CSC 3210 Computer Organization and Programming CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Michael Weeks) Expectations Writing code with loops Base conversions Especially involving decimal

More information

Hardware Revision. AQA Computing AS-Level COMP2. 63 minutes. 60 marks. Page 1 of 24

Hardware Revision. AQA Computing AS-Level COMP2. 63 minutes. 60 marks. Page 1 of 24 Hardware Revision AQA Computing AS-Level COMP2 204 63 minutes 60 marks Page of 24 Q. The diagram below shows some of the components of a computer system. (a) Suggest names for the components numbered to

More information

Software and Hardware

Software and Hardware Software and Hardware Numbers At the most fundamental level, a computer manipulates electricity according to specific rules To make those rules produce something useful, we need to associate the electrical

More information

ETGG1801 Game Programming Foundations I Andrew Holbrook Fall Lecture 0 - Introduction to Computers 1

ETGG1801 Game Programming Foundations I Andrew Holbrook Fall Lecture 0 - Introduction to Computers 1 ETGG1801 Game Programming Foundations I Andrew Holbrook Fall 2013 Lecture 0 - Introduction to Computers 1 Introduction to Computers Vacuum Tubes and Transistors Electrically-controlled switches Logic Gates

More information

Bits. Binary Digits. 0 or 1

Bits. Binary Digits. 0 or 1 Data Representation Bits Binary Digits 0 or 1 Everything stored in a computer is stored as bits. Bits can mean different things depending on how the software or hardware interpret the bits Bits are usually

More information

Programming Model 2 A. Introduction

Programming Model 2 A. Introduction Programming Model 2 A. Introduction Objectives At the end of this lab you should be able to: Use direct and indirect addressing modes of accessing data in memory Create an iterative loop of instructions

More information

8/16/12. Computer Organization. Architecture. Computer Organization. Computer Basics

8/16/12. Computer Organization. Architecture. Computer Organization. Computer Basics Computer Organization Computer Basics TOPICS Computer Organization Data Representation Program Execution Computer Languages 1 2 Architecture Computer Organization n central-processing unit n performs the

More information

Explanation of PIC 16F84A processor data sheet Part 2: More on the PIC

Explanation of PIC 16F84A processor data sheet Part 2: More on the PIC Explanation of PIC 16F84A processor data sheet Part 2: More on the PIC This is the second of the three part overview of the PIC processor. We will first discuss the timer module and prescalar. We will

More information

Computer Architecture and Assembly Language. Spring

Computer Architecture and Assembly Language. Spring Computer Architecture and Assembly Language Spring 2014-2015 What is a computer? A computer is a sophisticated electronic calculating machine that: Accepts input information, Processes the information

More information

It is possible to define a number using a character or multiple numbers (see instruction DB) by using a string.

It is possible to define a number using a character or multiple numbers (see instruction DB) by using a string. 1 od 5 17. 12. 2017 23:53 (https://github.com/schweigi/assembler-simulator) Introduction This simulator provides a simplified assembler syntax (based on NASM (http://www.nasm.us)) and is simulating a x86

More information

Agenda EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 1: Introduction. Go over the syllabus 3/31/2010

Agenda EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 1: Introduction. Go over the syllabus 3/31/2010 // EE : INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture : Introduction /9/ Avinash Kodi, kodi@ohio.edu Agenda Go over the syllabus Introduction ti to Digital it Systems // Why Digital Systems?

More information

Intro to Programming. Unit 7. What is Programming? What is Programming? Intro to Programming

Intro to Programming. Unit 7. What is Programming? What is Programming? Intro to Programming Intro to Programming Unit 7 Intro to Programming 1 What is Programming? 1. Programming Languages 2. Markup vs. Programming 1. Introduction 2. Print Statement 3. Strings 4. Types and Values 5. Math Externals

More information

Understand the factors involved in instruction set

Understand the factors involved in instruction set A Closer Look at Instruction Set Architectures Objectives Understand the factors involved in instruction set architecture design. Look at different instruction formats, operand types, and memory access

More information

CS101 Lecture 04: Binary Arithmetic

CS101 Lecture 04: Binary Arithmetic CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

Basic data types. Building blocks of computation

Basic data types. Building blocks of computation Basic data types Building blocks of computation Goals By the end of this lesson you will be able to: Understand the commonly used basic data types of C++ including Characters Integers Floating-point values

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements PS8 Due today PS9 Due July 22 Sound Lab tonight bring machines and headphones! Binary Search Today Review of binary floating point notation

More information

History of Computing. Ahmed Sallam 11/28/2014 1

History of Computing. Ahmed Sallam 11/28/2014 1 History of Computing Ahmed Sallam 11/28/2014 1 Outline Blast from the past Layered Perspective of Computing Why Assembly? Data Representation Base 2, 8, 10, 16 Number systems Boolean operations and algebra

More information

ECE 20B, Winter Purpose of Course. Introduction to Electrical Engineering, II. Administration

ECE 20B, Winter Purpose of Course. Introduction to Electrical Engineering, II. Administration ECE 20B, Winter 2003 Introduction to Electrical Engineering, II Instructor: Andrew B Kahng (lecture) Email: abk@eceucsdedu Telephone: 858-822-4884 office, 858-353-0550 cell Office: 3802 AP&M Lecture: TuThu

More information

Contents. Slide Set 1. About these slides. Outline of Slide Set 1. Typographical conventions: Italics. Typographical conventions. About these slides

Contents. Slide Set 1. About these slides. Outline of Slide Set 1. Typographical conventions: Italics. Typographical conventions. About these slides Slide Set 1 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014 ENCM 369 W14 Section

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 15

CO Computer Architecture and Programming Languages CAPL. Lecture 15 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 15 Dr. Kinga Lipskoch Fall 2017 How to Compute a Binary Float Decimal fraction: 8.703125 Integral part: 8 1000 Fraction part: 0.703125

More information

378: Machine Organization and Assembly Language

378: Machine Organization and Assembly Language 378: Machine Organization and Assembly Language Spring 2010 Luis Ceze Slides adapted from: UIUC, Luis Ceze, Larry Snyder, Hal Perkins 1 What is computer architecture about? Computer architecture is the

More information

Chapter 4. Operations on Data

Chapter 4. Operations on Data Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations

More information

Week - 04 Lecture - 01 Merge Sort. (Refer Slide Time: 00:02)

Week - 04 Lecture - 01 Merge Sort. (Refer Slide Time: 00:02) Programming, Data Structures and Algorithms in Python Prof. Madhavan Mukund Department of Computer Science and Engineering Indian Institute of Technology, Madras Week - 04 Lecture - 01 Merge Sort (Refer

More information

Computer Organization and Programming

Computer Organization and Programming Sep 2006 Prof. Antônio Augusto Fröhlich (http://www.lisha.ufsc.br) 8 Computer Organization and Programming Prof. Dr. Antônio Augusto Fröhlich guto@lisha.ufsc.br http://www.lisha.ufsc.br/~guto Sep 2006

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

More information

Final Labs and Tutors

Final Labs and Tutors ICT106 Fundamentals of Computer Systems - Topic 2 REPRESENTATION AND STORAGE OF INFORMATION Reading: Linux Assembly Programming Language, Ch 2.4-2.9 and 3.6-3.8 Final Labs and Tutors Venue and time South

More information

COMP3221: Microprocessors and. and Embedded Systems. Instruction Set Architecture (ISA) What makes an ISA? #1: Memory Models. What makes an ISA?

COMP3221: Microprocessors and. and Embedded Systems. Instruction Set Architecture (ISA) What makes an ISA? #1: Memory Models. What makes an ISA? COMP3221: Microprocessors and Embedded Systems Lecture 2: Instruction Set Architecture (ISA) http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session 2, 2005 Instruction Set Architecture (ISA) ISA is

More information

HARDWARE. There are a number of factors that effect the speed of the processor. Explain how these factors affect the speed of the computer s CPU.

HARDWARE. There are a number of factors that effect the speed of the processor. Explain how these factors affect the speed of the computer s CPU. HARDWARE hardware ˈhɑːdwɛː noun [ mass noun ] the machines, wiring, and other physical components of a computer or other electronic system. select a software package that suits your requirements and buy

More information

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems Computer Architecture Review ICS332 - Spring 2016 Operating Systems ENIAC (1946) Electronic Numerical Integrator and Calculator Stored-Program Computer (instead of Fixed-Program) Vacuum tubes, punch cards

More information

Slide Set 1 (corrected)

Slide Set 1 (corrected) Slide Set 1 (corrected) for ENCM 369 Winter 2018 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary January 2018 ENCM 369 Winter 2018

More information

address ALU the operation opcode ACC Acc memory address

address ALU the operation opcode ACC Acc memory address In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in which we will examine how a microprocessor actually works

More information

Review of Data Representation & Binary Operations Dhananjai M. Rao CSA Department Miami University

Review of Data Representation & Binary Operations Dhananjai M. Rao CSA Department Miami University Review of Data Representation & Binary Operations Dhananjai M. Rao () CSA Department Miami University 1. Introduction In digital computers all data including numbers, characters, and strings are ultimately

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

Outline. policies. with some potential answers... MCS 260 Lecture 19 Introduction to Computer Science Jan Verschelde, 24 February 2016

Outline. policies. with some potential answers... MCS 260 Lecture 19 Introduction to Computer Science Jan Verschelde, 24 February 2016 Outline 1 midterm exam on Friday 26 February 2016 policies 2 questions with some potential answers... MCS 260 Lecture 19 Introduction to Computer Science Jan Verschelde, 24 February 2016 Intro to Computer

More information

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning 4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

More information

17. Instruction Sets: Characteristics and Functions

17. Instruction Sets: Characteristics and Functions 17. Instruction Sets: Characteristics and Functions Chapter 12 Spring 2016 CS430 - Computer Architecture 1 Introduction Section 12.1, 12.2, and 12.3 pp. 406-418 Computer Designer: Machine instruction set

More information

Zheng-Liang Lu Java Programming 45 / 79

Zheng-Liang Lu Java Programming 45 / 79 1 class Lecture2 { 2 3 "Elementray Programming" 4 5 } 6 7 / References 8 [1] Ch. 2 in YDL 9 [2] Ch. 2 and 3 in Sharan 10 [3] Ch. 2 in HS 11 / Zheng-Liang Lu Java Programming 45 / 79 Example Given a radius

More information

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions CHAPTER 4 Operations On Data (Solutions to Odd-Numbered Problems) Review Questions 1. Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical values

More information

11. A Computing Machine

11. A Computing Machine COMPUTER SCIENCE S E D G E W I C K / W A Y N E Computer Science Including Programming in Java 11. A Computing Machine Section 5.1 http://introcs.cs.princeton.edu COMPUTER SCIENCE S E D G E W I C K / W

More information

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra Binary Representation Computer Systems Information is represented as a sequence of binary digits: Bits What the actual bits represent depends on the context: Seminar 3 Numerical value (integer, floating

More information

Dr. Scheme evaluates expressions so we will start by using the interactions window and asking Dr. Scheme to evaluate some expressions.

Dr. Scheme evaluates expressions so we will start by using the interactions window and asking Dr. Scheme to evaluate some expressions. 1.0 Expressions Dr. Scheme evaluates expressions so we will start by using the interactions window and asking Dr. Scheme to evaluate some expressions. Numbers are examples of primitive expressions, meaning

More information

Maciej Sobieraj. Lecture 1

Maciej Sobieraj. Lecture 1 Maciej Sobieraj Lecture 1 Outline 1. Introduction to computer programming 2. Advanced flow control and data aggregates Your first program First we need to define our expectations for the program. They

More information

Welcome to Computer Organization and Design Logic CS 64: Computer Organization and Design Logic Lecture #1 Winter 2018

Welcome to Computer Organization and Design Logic CS 64: Computer Organization and Design Logic Lecture #1 Winter 2018 Welcome to Computer Organization and Design Logic CS 64: Computer Organization and Design Logic Lecture #1 Winter 2018 Ziad Matni Dept. of Computer Science, UCSB A Word About Registration for CS64 FOR

More information

Wednesday, January 28, 2018

Wednesday, January 28, 2018 Wednesday, January 28, 2018 Topics for today History of Computing (brief) Encoding data in binary Unsigned integers Signed integers Arithmetic operations and status bits Number conversion: binary to/from

More information

Computer Organization and Assembly Language. Lab Session 3

Computer Organization and Assembly Language. Lab Session 3 Lab Session 3 Objective: To be familiar with Basic Elements of Assembly Language Understanding Constants, Identifiers, Directives and Instructions. Theory: Integer Constants An integer constant (or integer

More information

COUNTING AND CONVERTING

COUNTING AND CONVERTING COUNTING AND CONVERTING The base of each number system is also called the radix. The radix of a decimal number is ten, and the radix of binary is two. The radix determines how many different symbols are

More information

In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in

In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in In this lecture, we will look at how storage (or memory) works with processor in a computer system. This is in preparation for the next lecture, in which we will examine how a microprocessor actually works

More information

This is the basis for the programming concept called a loop statement

This is the basis for the programming concept called a loop statement Chapter 4 Think back to any very difficult quantitative problem that you had to solve in some science class How long did it take? How many times did you solve it? What if you had millions of data points

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER

More information

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning 4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

More information

UNIT-II. Part-2: CENTRAL PROCESSING UNIT

UNIT-II. Part-2: CENTRAL PROCESSING UNIT Page1 UNIT-II Part-2: CENTRAL PROCESSING UNIT Stack Organization Instruction Formats Addressing Modes Data Transfer And Manipulation Program Control Reduced Instruction Set Computer (RISC) Introduction:

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information