Procedure: Determine the polarity of the LED. Use the following image to help:

Size: px
Start display at page:

Download "Procedure: Determine the polarity of the LED. Use the following image to help:"

Transcription

1 Section 2: Lab Activity Section 2.1 Getting started: LED Blink Purpose: To understand how to upload a program to the Arduino and to understand the function of each line of code in a simple program. This is a standard simple first step into using the Arduino IDE. For a quick refresh on the Arduino environment refer to the Arduino help page on the IDE. Terms: Digital output: a zero or a one (high or low voltage) on a specified pin of a microcontroller. LED (Light Emitting Diode): a semiconductor light source. When biased with the correct voltage the LED emits light. NOTE: LEDs are polarized. Polarized: for electrical components polarization refers the assignment of a sign to a given terminal of a device (it matter what side is connected to power). If the polarity of a component is reversed (connecting terminals backwards) it may break. Sketch: the name that Arduino uses for a code file. Note that Arduino code sketches are stored as.ino files in the Arduino file under Documents. Materials: Arduino Board LED (color of your choice) 220 ohm resistor (red red brown) USB A-B cable Procedure: Determine the polarity of the LED. Use the following image to help: Figure source:

2 On an LED, the anode is the positive terminal (long leg) and the cathode is the negative terminal (short leg). Make the circuit. In the figure below, D13 is digital pin 13 of the Arduino. Use your knowledge of the Arduino board established in the pre-lab to find this pin and your knowledge from electronics section of BME 201 to create the circuit below: Figure source: An LED should ALWAYS be used with a resistor in series. See lab lecture 1 for information as to why this is needed. Check with an SA to assure your circuit is correct. Open Arduino IDE The application is found under the list of programs in the start menu or else should be found on your desktop.

3 Figure Icon of Arduino Application The Arduino application will open as seen in figure below: Figure Arduino Application Click on the open button in the toolbar Figure Open Button Hover over 01.Basics -> Blink and click on Blink to open the example.

4 Figure Path to open Blink example The following code will be loaded into the IDE: Listing 2.1 A /* Blink Turns on an LED on for one second, then off for one second, repeatedly. This example code is in the public domain. */ // Pin 13 ha s an LED connected on most Arduino boards. // give it a name: int led = 13; // the setup routine runs once when you press reset: void setup() { // initialize the digital pin as an output. pinmode(led, OUTPUT); } // the loop routine runs over and over again forever: void loop() { digitalwrite(led, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalwrite(led, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second } Listing 2.1 A

5 Understanding the code Note the comment section at the beginning of the code that describes what the program does, what each variable means, and a general delineation of the algorithm. Refer to section 1.4 on programming practices. The Arduino IDE automatically color coordinates code based on its purpose or type. Note the different colors and when they are used to gain insight into the function of a statement. Lets start with the first statement that is not a comment: int led = 13; This line initializes a new variable named led. The variable is of the data type int (an integer) and has the value of the number 13. This is a variable declarations as described in the variable section above. Note that this statement is not within any of the following methods. Can you guess why this is the case? Explain. Check out this link to a reference page on the Arduino website on variable scope. Next is a function declaration: void setup() { This function has a return type of void meaning that when it finishes running, there is no value that is returned to the calling function. Review the reference information in the Section of syntax for more information about return types but for now this is not totally essential to understand. The setup function called first every time a sketch runs. This function runs only once and is used to initialize variables, set pin modes and several other single iteration tasks. Note that at the end of the setup function declaration there is an open bracket {. This indicates that the function is open and all the information up until the second and opposite closing bracket } is inside the setup function. Remember that a function can be identified by the parentheses () after its name. Within the setup function the pin used for the led is initialized as an output pin (so that signals can be sent from the microcontroller to the pin): // initialize the digital pin as an output. pinmode(led, OUTPUT); Note that pinmode is a function that takes two parameters, namely an int that corresponds to a pin and a keyword (OUTPUT in this

6 case) to specify the function of a given pin. Read more about this function on the Arduino Reference page for pinmode. Note the closing of the setup function with the } under the pinmode function call. Next is another function declaration: // the loop routine runs over and over again forever: void loop() { This function also has a void return type. The loop function, predictably, loops consecutively. This means that the code starts execution at the top of the file, runs through the setup function, then gets to the loop function. The code in the loop function will run once, then immediately start the loop function again and continue to do so FOREVER. Recall the discussion of infinite loops in the prelab. Explain why it is an important that the loop runs infinitely and predict some problems this may cause. Then the LED state is changed using the digitalwrite function // turn the LED on (HIGH is the voltage level) digitalwrite(led, HIGH); The digitalwrite function has a void return and is used to change the digital logic state of a pin. In this case the led pin (called led ) is changed to the value of HIGH. This will cause the LED to turn on. When the led pin ( led variable) is set to a HIGH state by the digital write function, the voltage of the pin on the microcontroller associated with led (pin 13) is pushed to a high voltage. This powers the led in the circuit and light will turn on. A delay is used to set how long the led will stay on. // wait for a second delay(1000); The delay function will pause most operations on the processor for the specified number of milliseconds (1000 milliseconds = 1 second). Delay effectively stops execution of the program. It is good practice to avoid the usage of the delay function as completely pausing the execution of the program is inefficient and can cause issues in more complex programs. Finally the led is turned off and there is another delay so that the led is off for one second: // turn the LED off by making the voltage LOW digitalwrite(led, LOW);

7 // wait for a second delay(1000); These two function calls complete the blink method by turning the led off again. This time the digitalwrite function sets the value of the led to low. Effectively turning off the led. Finally a delay is used to keep the led off for one second. Note the closing of the loop function with the } under the delay function call. This signifies the end of the loop method. NOTE that after the loop function has closed, it will immediately begin execution again at the top of the loop function again. This loop will continue to execute until a new program is uploaded or power is removed from the system. Congratulations! You have just read a computer program. Now it is time to test. Uploading code to Arduino Board: Verification: Before uploading the code to the microcontroller, verify that all the syntax is correct. To do this press the verify button on the toolbar the top of the Arduino window: Figure Note that any syntax errors will be highlighted and an error message will be displayed in the console and the bottom of the Arduino window: Figure The verify button is only used if you do not have an Arduino connected to the computer because the upload button (see next step) also conducts a code verification. Connect the Arduino Board Plug the Arduino board into the computer using the USB A to B cable (shown in figure below).

8 Figure : USB A to USB B cable. The USB B side will plug into the Arduino Board and the USB A side will plug into your computer. Use the tools dropdown menu from the toolbar and select board and the select Arduino Uno. (tools -> board -> Arduino Uno) Figure Use the same menu path to access the serial port configuration and select the COM port the Arduino is on. The Arduino should be on the only other port other than COM1. Ask an SA for help if you do not see your board. (Tools -> Serial Port -> COMX) Upload: Now that we have confirmed the code is free of syntax errors we will upload the sketch to the microcontroller. To upload simply press the upload button:

9 Figure Note the console above will display feedback showing that the sketch has been properly uploaded to the Arduino. Verify that the led connected to pin 13 is now turning on and off. If this is not working, check with a student assistant. How long does one blink cycle take (what is the period)? What is the frequency of this signal (Hz)? Utilize the oscilloscope to verify your reading. Have an SA verify this is correct. Section 2.2: Digital Input/Output As stated earlier, microcontrollers such as the Arduino are used to electronically interact with the environment. So far we have controlled an LED and implemented simple communication with a computer, but now we want to take input from the external environment and use it to perform some activity. Input is used to implement external control over a program. Output is used to show the progress or result of a program s execution. There are two types of input and output: digital and analog. This section will focus on digital. What does it mean to be a digital input? For a computer, it means an input that can be interpreted as a 1 or 0 (true or false, respectively). A 1 in software, or true, corresponds to a high voltage. Alternatively, a 0 in software, or false, corresponds to a low voltage in hardware. The high and low voltages are based on a given reference voltage that depends on the microcontroller being used but is most commonly 3.3V or 5V. Example: An Arduino has a reference voltage of 5V. Match the following input voltages with either a 1 (high voltage) or 0 (low voltage). 4.6 V == 1 (true) 0.9 V == 0 (false) *5.1 V == 1 (true) 1.1 V == 0 (false) *NOTE: A voltage higher than the reference voltage will still be read as a one; however, to avoid damaging the hardware try to avoid this situation. The example above clearly demonstrates the difference between high and low voltages with respect to a reference voltage. There exists a range of voltages in which

10 one cannot be sure if the hardware will read the voltage as a 1 or 0. This range is usually between about 1.5V and 3.5V, so when designing hardware that utilizes a digital signal be sure to keep low voltages as close to 0V as possible, and high voltages as close to 5V. Also, keep in mind that every microcontroller is different, so a range that works for one may not work for another one. Terms: Digital Input: A single input value that can be read as either a 1 or 0, corresponding to HIGH and LOW voltage. Digital Output: An output value written as either a 1 or 0, corresponding to HIGH and LOW voltage. Getting Started: For this portion of the lab we are going to turn an LED on and off when a button is pressed. The Arduino will be used to read the state of the button and control the led accordingly. What you ll need: One tactile switch (button) One 10kΩ resistor One 220Ω resistor One LED For this example, we will connect an LED to digital pin 13 on the Arduino. This pin will be used as our digital output to control the LED. The button will be connected to pin 12 on the Arduino. Pin 12 will be used as our digital input so we can read if the button has been pressed. A button should not be connected directly to the digital pin of the microcontroller. Instead, we are going to use a pull-down resistor to keep the input low (a logic 0 ) when the button is not pressed, and bring it high (a logic 1 ) when it is pressed. The resistor is used to limit current in the circuit and protect the microcontroller from being damaged. Also, pay attention to how you connect the button in the circuit and use Figure below to help.

11 Figure Once you have the circuit set up, have an SA come over and check your connections. Next, copy the code in Listing 2.2 A, compile it, and load it onto the Arduino. Listing 2.2 A ////////////////////////////////////////////////////////////////////// // Button Controlled LED - Digital I/O // Author: R Scott Carson // BME 201 // Spring 2014 ////////////////////////////////////////////////////////////////////// int button = 12; // Used to make p12 a digital input int LED = 13; // Used to amke p13 a digital output void setup() { // Initialize digital I/O pins pinmode(button, INPUT); // p12 is now an input pinmode(led, OUTPUT); // p13 is now an output } void loop() { // Here we check if the button is pressed using the // digitalread() function. if(digitalread(button) == 1){ digitalwrite(led, HIGH); // If it is pressed, turn on the LED } else{ digitalwrite(led, LOW); // Otherwise, turn off the LED } } Listing 2.2 A

12 The code in Listing X.x is not very complicated and only introduces a few new concepts. In the setup() function we need to initialize both an input pin and an output pin. This is extremely easy to do using Arduino s pinmode() function which has been explained before. Using this function, we set pin 12 to a digital input to read the button and pin 13 to a digital output to control the LED. In the loop() function we control whether the LED is on or off using an if/else statement. To read the state of the button we use the digitalread() function. All we have to do is give the function the pin we want to read and it will return a 0 if the pin has a low voltage or a 1 if the pin has a high voltage. If the button is pressed, the pin will have a high voltage, therefor digitalread() will return a 1. This would make the condition in the if statement true and the LED would be turned on using the digitalwrite() function. If the button is not pressed, the pin will have a low voltage and the digitalread() function will return a 0. In this case, the condition in the if statement would be false, and the LED would be turned off. Exercise: Now it is your turn to write some code. The goal of this exercise will be to use two push-buttons to control two different LEDs. All of the code you need for this has already been given to you in the example above, but it is up to you to piece it together correctly. Keep in mind that pins 3 13 can all be used for digital I/O. Do not be afraid to ask questions while building the circuit or writing the code. When you are finished, demo the working system for an SA.

Adapted from a lab originally written by Simon Hastings and Bill Ashmanskas

Adapted from a lab originally written by Simon Hastings and Bill Ashmanskas Physics 364 Arduino Lab 1 Adapted from a lab originally written by Simon Hastings and Bill Ashmanskas Vithayathil/Kroll Introduction Last revised: 2014-11-12 This lab introduces you to an electronic development

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Arduino

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Arduino University of Portland EE 271 Electrical Circuits Laboratory Experiment: Arduino I. Objective The objective of this experiment is to learn how to use the Arduino microcontroller to monitor switches and

More information

Note. The above image and many others are courtesy of - this is a wonderful resource for designing circuits.

Note. The above image and many others are courtesy of   - this is a wonderful resource for designing circuits. Robotics and Electronics Unit 2. Arduino Objectives. Students will understand the basic characteristics of an Arduino Uno microcontroller. understand the basic structure of an Arduino program. know how

More information

Counter & LED (LED Blink)

Counter & LED (LED Blink) 1 T.R.E. Meeting #1 Counter & LED (LED Blink) September 17, 2017 Contact Info for Today s Lesson: President Ryan Muller mullerr@vt.edu 610-573-1890 Learning Objectives: Learn how to use the basics of Arduino

More information

IME-100 Interdisciplinary Design and Manufacturing

IME-100 Interdisciplinary Design and Manufacturing IME-100 Interdisciplinary Design and Manufacturing Introduction Arduino and Programming Topics: 1. Introduction to Microprocessors/Microcontrollers 2. Introduction to Arduino 3. Arduino Programming Basics

More information

Specification. 1.Power Supply direct from Microcontroller Board. 2.The circuit can be used with Microcontroller Board such as Arduino UNO R3.

Specification. 1.Power Supply direct from Microcontroller Board. 2.The circuit can be used with Microcontroller Board such as Arduino UNO R3. Part Number : Product Name : FK-FA1410 12-LED AND 3-BOTTON SHIELD This is the experimental board for receiving and transmitting data from the port of microcontroller. The function of FK-FA1401 is fundamental

More information

StenBOT Robot Kit. Stensat Group LLC, Copyright 2018

StenBOT Robot Kit. Stensat Group LLC, Copyright 2018 StenBOT Robot Kit 1 Stensat Group LLC, Copyright 2018 Legal Stuff Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and documentation. There is a 90 day warranty for the

More information

Arduino Programming and Interfacing

Arduino Programming and Interfacing Arduino Programming and Interfacing Stensat Group LLC, Copyright 2017 1 Robotic Arm Experimenters Kit 2 Legal Stuff Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and

More information

Blinking an LED 1 PARTS: Circuit 2 LED. Wire. 330Ω Resistor

Blinking an LED 1 PARTS: Circuit 2 LED. Wire. 330Ω Resistor Circuit PIN 3 RedBoard Blinking an LED LED (Light-Emitting Diode) Resistor (33 ohm) (Orange-Orange-Brown) LEDs (light-emitting diodes) are small, powerful lights that are used in many different applications.

More information

Introduction to Internet of Things Prof. Sudip Misra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Introduction to Internet of Things Prof. Sudip Misra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Introduction to Internet of Things Prof. Sudip Misra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 23 Introduction to Arduino- II Hi. Now, we will continue

More information

Smart Objects. SAPIENZA Università di Roma, M.Sc. in Product Design Fabio Patrizi

Smart Objects. SAPIENZA Università di Roma, M.Sc. in Product Design Fabio Patrizi Smart Objects SAPIENZA Università di Roma, M.Sc. in Product Design Fabio Patrizi 1 What is a Smart Object? Essentially, an object that: Senses Thinks Acts 2 Example 1 https://www.youtube.com/watch?v=6bncjd8eke0

More information

Robotics and Electronics Unit 5

Robotics and Electronics Unit 5 Robotics and Electronics Unit 5 Objectives. Students will work with mechanical push buttons understand the shortcomings of the delay function and how to use the millis function. In this unit we will use

More information

Digital Pins and Constants

Digital Pins and Constants Lesson Lesson : Digital Pins and Constants Digital Pins and Constants The Big Idea: This lesson is the first step toward learning to connect the Arduino to its surrounding world. You will connect lights

More information

Arduino 101 AN INTRODUCTION TO ARDUINO BY WOMEN IN ENGINEERING FT T I NA A ND AW E S O ME ME NTO R S

Arduino 101 AN INTRODUCTION TO ARDUINO BY WOMEN IN ENGINEERING FT T I NA A ND AW E S O ME ME NTO R S Arduino 101 AN INTRODUCTION TO ARDUINO BY WOMEN IN ENGINEERING FT T I NA A ND AW E S O ME ME NTO R S Overview Motivation Circuit Design and Arduino Architecture Projects Blink the LED Switch Night Lamp

More information

Lesson 8: Digital Input, If Else

Lesson 8: Digital Input, If Else Lesson 8 Lesson 8: Digital Input, If Else Digital Input, If Else The Big Idea: This lesson adds the ability of an Arduino sketch to respond to its environment, taking different actions for different situations.

More information

Digital Design through. Arduino

Digital Design through. Arduino Digital Design through 1 Arduino G V V Sharma Contents 1 Display Control through Hardware 2 1.1 Powering the Display.................................. 2 1.2 Controlling the Display.................................

More information

Lab 01 Arduino 程式設計實驗. Essential Arduino Programming and Digital Signal Process

Lab 01 Arduino 程式設計實驗. Essential Arduino Programming and Digital Signal Process Lab 01 Arduino 程式設計實驗 Essential Arduino Programming and Digital Signal Process Arduino Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's

More information

IME-100 ECE. Lab 3. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE,

IME-100 ECE. Lab 3. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE, IME-100 ECE Lab 3 Electrical and Computer Engineering Department Kettering University 3-1 1. Laboratory Computers Getting Started i. Log-in with User Name: Kettering Student (no password required) ii.

More information

Touch Board User Guide. Introduction

Touch Board User Guide. Introduction Touch Board User Guide Introduction The Crazy Circuits Touch Board is a fun way to create interactive projects. The Touch Board has 11 built in Touch Points for use with projects and also features built

More information

University of Hull Department of Computer Science C4DI Interfacing with Arduinos

University of Hull Department of Computer Science C4DI Interfacing with Arduinos Introduction Welcome to our Arduino hardware sessions. University of Hull Department of Computer Science C4DI Interfacing with Arduinos Vsn. 1.0 Rob Miles 2014 Please follow the instructions carefully.

More information

Introduction to Arduino Diagrams & Code Brown County Library

Introduction to Arduino Diagrams & Code Brown County Library Introduction to Arduino Diagrams & Code Project 01: Blinking LED Components needed: Arduino Uno board LED Put long lead into pin 13 // Project 01: Blinking LED int LED = 13; // LED connected to digital

More information

Lab 2 - Powering the Fubarino. Fubarino,, Intro to Serial, Functions and Variables

Lab 2 - Powering the Fubarino. Fubarino,, Intro to Serial, Functions and Variables Lab 2 - Powering the Fubarino Fubarino,, Intro to Serial, Functions and Variables Part 1 - Powering the Fubarino SD The Fubarino SD is a 56 pin device. Each pin on a chipkit device falls broadly into one

More information

Introduction to Arduino Diagrams & Code Brown County Library

Introduction to Arduino Diagrams & Code Brown County Library Introduction to Arduino Diagrams & Code Project 01: Blinking LED Components needed: Arduino Uno board LED Put long lead into pin 13 // Project 01: Blinking LED int LED = 13; // LED connected to digital

More information

Halloween Pumpkinusing. Wednesday, October 17, 12

Halloween Pumpkinusing. Wednesday, October 17, 12 Halloween Pumpkinusing Blink LED 1 What you will need: 1 MSP-EXP430G2 1 3 x 2 Breadboard 3 560 Ohm Resistors 3 LED s (in Red Color Range) 3 Male to female jumper wires 1 Double AA BatteryPack 2 AA Batteries

More information

Introduction To Arduino

Introduction To Arduino Introduction To Arduino What is Arduino? Hardware Boards / microcontrollers Shields Software Arduino IDE Simplified C Community Tutorials Forums Sample projects Arduino Uno Power: 5v (7-12v input) Digital

More information

1 Overview. 2 Basic Program Structure. 2.1 Required and Optional Parts of Sketch

1 Overview. 2 Basic Program Structure. 2.1 Required and Optional Parts of Sketch Living with the Lab Winter 2015 What s this void loop thing? Gerald Recktenwald v: February 7, 2015 gerry@me.pdx.edu 1 Overview This document aims to explain two kinds of loops: the loop function that

More information

Review of the syntax and use of Arduino functions, with special attention to the setup and loop functions.

Review of the syntax and use of Arduino functions, with special attention to the setup and loop functions. Living with the Lab Fall 2011 What s this void loop thing? Gerald Recktenwald v: October 31, 2011 gerry@me.pdx.edu 1 Overview This document aims to explain two kinds of loops: the loop function that is

More information

Arduino Programming Part 4: Flow Control

Arduino Programming Part 4: Flow Control Arduino Programming Part 4: Flow Control EAS 199B, Winter 2010 Gerald Recktenwald Portland State University gerry@me.pdx.edu Goal Make choices based on conditions in the environment Logical expressions:

More information

analogwrite(); The analogwrite function writes an analog value (PWM wave) to a PWM-enabled pin.

analogwrite(); The analogwrite function writes an analog value (PWM wave) to a PWM-enabled pin. analogwrite(); The analogwrite function writes an analog value (PWM wave) to a PWM-enabled pin. Syntax analogwrite(pin, value); For example: analogwrite(2, 255); or analogwrite(13, 0); Note: Capitalization

More information

Arduino Prof. Dr. Magdy M. Abdelhameed

Arduino Prof. Dr. Magdy M. Abdelhameed Course Code: MDP 454, Course Name:, Second Semester 2014 Arduino What is Arduino? Microcontroller Platform Okay but what s a Microcontroller? Tiny, self-contained computers in an IC Often contain peripherals

More information

PDF of this portion of workshop notes:

PDF of this portion of workshop notes: PDF of this portion of workshop notes: http://goo.gl/jfpeym Teaching Engineering Design with Student-Owned Digital and Analog Lab Equipment John B. Schneider Washington State University June 15, 2015 Overview

More information

Arduino Uno Microcontroller Overview

Arduino Uno Microcontroller Overview Innovation Fellows Program Arduino Uno Microcontroller Overview, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Arduino Uno Power & Interface Reset Button USB

More information

Arduino 07 ARDUINO WORKSHOP 2007

Arduino 07 ARDUINO WORKSHOP 2007 ARDUINO WORKSHOP 2007 PRESENTATION WHO ARE WE? Markus Appelbäck Interaction Design program at Malmö University Mobile networks and services Mecatronics lab at K3, Malmö University Developer, Arduino community

More information

More Arduino Programming

More Arduino Programming Introductory Medical Device Prototyping Arduino Part 2, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota More Arduino Programming Digital I/O (Read/Write) Analog

More information

Arduino Part 2. Introductory Medical Device Prototyping

Arduino Part 2. Introductory Medical Device Prototyping Introductory Medical Device Prototyping Arduino Part 2, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota More Arduino Programming Digital I/O (Read/Write) Analog

More information

Lab 2.2 Ohm s Law and Introduction to Arduinos

Lab 2.2 Ohm s Law and Introduction to Arduinos Lab 2.2 Ohm s Law and Introduction to Arduinos Objectives: Get experience using an Arduino Learn to use a multimeter to measure Potential units of volts (V) Current units of amps (A) Resistance units of

More information

Arduino 05: Digital I/O. Jeffrey A. Meunier University of Connecticut

Arduino 05: Digital I/O. Jeffrey A. Meunier University of Connecticut Arduino 05: Digital I/O Jeffrey A. Meunier jeffm@engr.uconn.edu University of Connecticut About: How to use this document I designed this tutorial to be tall and narrow so that you can read it on one side

More information

EEG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EEG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EEG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 1: INTRODUCTION TO ARDUINO IDE AND PROGRAMMING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 1. FYS KIT COMPONENTS

More information

Physics 364, Fall 2012, Lab #9 (Introduction to microprocessor programming with the Arduino) Lab for Monday, November 5

Physics 364, Fall 2012, Lab #9 (Introduction to microprocessor programming with the Arduino) Lab for Monday, November 5 Physics 364, Fall 2012, Lab #9 (Introduction to microprocessor programming with the Arduino) Lab for Monday, November 5 Up until this point we have been working with discrete digital components. Every

More information

ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives:

ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives: ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives: This lab will introduce basic embedded systems programming concepts by familiarizing the user with an embedded programming

More information

Prototyping & Engineering Electronics Kits Basic Kit Guide

Prototyping & Engineering Electronics Kits Basic Kit Guide Prototyping & Engineering Electronics Kits Basic Kit Guide odysseyboard.com Please refer to www.odysseyboard.com for a PDF updated version of this guide. Guide version 1.0, February, 2018. Copyright Odyssey

More information

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools MAE106 Laboratory Exercises Lab # 1 - Laboratory tools University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To learn how to use the oscilloscope, function generator,

More information

ROBOTLINKING THE POWER SUPPLY LEARNING KIT TUTORIAL

ROBOTLINKING THE POWER SUPPLY LEARNING KIT TUTORIAL ROBOTLINKING THE POWER SUPPLY LEARNING KIT TUTORIAL 1 Preface About RobotLinking RobotLinking is a technology company focused on 3D Printer, Raspberry Pi and Arduino open source community development.

More information

WALT: definition and decomposition of complex problems in terms of functional and non-functional requirements

WALT: definition and decomposition of complex problems in terms of functional and non-functional requirements Item 1: The Clock is Ticking Monday, 15 October 2018 12:19 PM EXPLORE WALT: definition and decomposition of complex problems in terms of functional and non-functional requirements - Defined how each component

More information

Microcontrollers and Interfacing week 8 exercises

Microcontrollers and Interfacing week 8 exercises 2 HARDWARE DEBOUNCING Microcontrollers and Interfacing week 8 exercises 1 More digital input When using a switch for digital input we always need a pull-up resistor. For convenience, the microcontroller

More information

IME-100 ECE. Lab 4. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE,

IME-100 ECE. Lab 4. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE, IME-100 ECE Lab 4 Electrical and Computer Engineering Department Kettering University 4-1 1. Laboratory Computers Getting Started i. Log-in with User Name: Kettering Student (no password required) ii.

More information

Robotics/Electronics Review for the Final Exam

Robotics/Electronics Review for the Final Exam Robotics/Electronics Review for the Final Exam Unit 1 Review. 1. The battery is 12V, R1 is 400 ohms, and the current through R1 is 20 ma. How many ohms is R2? ohms What is the voltage drop across R1? V

More information

Advanced Activities - Information and Ideas

Advanced Activities - Information and Ideas Advanced Activities - Information and Ideas Congratulations! You successfully created and controlled the robotic chameleon using the program developed for the chameleon project. Here you'll learn how you

More information

EXPERIMENT 7 Please visit https://www.arduino.cc/en/reference/homepage to learn all features of arduino before you start the experiments

EXPERIMENT 7 Please visit https://www.arduino.cc/en/reference/homepage to learn all features of arduino before you start the experiments EXPERIMENT 7 Please visit https://www.arduino.cc/en/reference/homepage to learn all features of arduino before you start the experiments TEMPERATURE MEASUREMENT AND CONTROL USING LM35 Purpose: To measure

More information

EK307 Lab: Microcontrollers

EK307 Lab: Microcontrollers EK307 Lab: Microcontrollers Laboratory Goal: Program a microcontroller to perform a variety of digital tasks. Learning Objectives: Learn how to program and use the Atmega 323 microcontroller Suggested

More information

Arduino - DigitalReadSerial

Arduino - DigitalReadSerial arduino.cc Arduino - DigitalReadSerial 5-6 minutes Digital Read Serial This example shows you how to monitor the state of a switch by establishing serial communication between your Arduino or Genuino and

More information

3.The circuit board is composed of 4 sets which are 16x2 LCD Shield, 3 pieces of Switch, 2

3.The circuit board is composed of 4 sets which are 16x2 LCD Shield, 3 pieces of Switch, 2 Part Number : Product Name : FK-FA1416 MULTI-FUNCTION 16x2 LCD SHIELD This is the experimental board of Multi-Function 16x2 LCD Shield as the fundamental programming about the digits, alphabets and symbols.

More information

Introduction to Arduino

Introduction to Arduino Introduction to Arduino Paco Abad May 20 th, 2011 WGM #21 Outline What is Arduino? Where to start Types Shields Alternatives Know your board Installing and using the IDE Digital output Serial communication

More information

3. The circuit is composed of 1 set of Relay circuit.

3. The circuit is composed of 1 set of Relay circuit. Part Number : Product Name : FK-FA1420 ONE CHANNEL 12V RELAY MODULE This is the experimental module for a relay controller as the fundamental controlling programming. It is adaptable or is able to upgrade

More information

Coding Workshop. Learning to Program with an Arduino. Lecture Notes. Programming Introduction Values Assignment Arithmetic.

Coding Workshop. Learning to Program with an Arduino. Lecture Notes. Programming Introduction Values Assignment Arithmetic. Coding Workshop Learning to Program with an Arduino Lecture Notes Table of Contents Programming ntroduction Values Assignment Arithmetic Control Tests f Blocks For Blocks Functions Arduino Main Functions

More information

Score. Test. Issued. Date. Name:

Score. Test. Issued. Date. Name: Name: Date Issued Test Score 1073 2 Workbook Summary To learn about Arduino electronics. To learn how to upload a code the Arduino UNO board. To learn the basic principles of electricity. To learn about

More information

To lead your students through this activity, you will need your computer, attached to a projector, for projecting your code for students to see.

To lead your students through this activity, you will need your computer, attached to a projector, for projecting your code for students to see. To lead your students through this activity, you will need your computer, attached to a projector, for projecting your code for students to see. STEP 1: PREPARE TO PROGRAM 1. Launch the IDE by clicking

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 04 September 28, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

Button Input: On/off state change

Button Input: On/off state change Button Input: On/off state change Living with the Lab Gerald Recktenwald Portland State University gerry@pdx.edu User input features of the fan Potentiometer for speed control Continually variable input

More information

Laboratory 1 Introduction to the Arduino boards

Laboratory 1 Introduction to the Arduino boards Laboratory 1 Introduction to the Arduino boards The set of Arduino development tools include µc (microcontroller) boards, accessories (peripheral modules, components etc.) and open source software tools

More information

EXPERIMENT2. V3 Robot Navigates Autonomously with Feelers and Infrared Sensors

EXPERIMENT2. V3 Robot Navigates Autonomously with Feelers and Infrared Sensors EXPERIMENT2 V3 Robot Navigates Autonomously with Feelers and Infrared Sensors Purpose: Install and program the feeler sensors (switches) plus the adjustable range infrared sensors to navigate autonomously

More information

Project 17 Shift Register 8-Bit Binary Counter

Project 17 Shift Register 8-Bit Binary Counter Project 17 Shift Register 8-Bit Binary Counter In this project, you re going to use additional ICs (Integrated Circuits) in the form of shift registers in order to drive LEDs to count in binary (I will

More information

Arduino Workshop. Overview. What is an Arduino? Why Arduino? Setting up your Arduino Environment. Get an Arduino based board and usb cable

Arduino Workshop. Overview. What is an Arduino? Why Arduino? Setting up your Arduino Environment. Get an Arduino based board and usb cable Arduino Workshop Overview Arduino, The open source Microcontroller for easy prototyping and development What is an Arduino? Arduino is a tool for making computers that can sense and control more of the

More information

Schedule. Sanford Bernhardt, Sangster, Kumfer, Michalaka. 3:10-5:00 Workshop: Build a speedometer 5:15-7:30 Dinner and Symposium: Group 2

Schedule. Sanford Bernhardt, Sangster, Kumfer, Michalaka. 3:10-5:00 Workshop: Build a speedometer 5:15-7:30 Dinner and Symposium: Group 2 Schedule 8:00-11:00 Workshop: Arduino Fundamentals 11:00-12:00 Workshop: Build a follower robot 1:30-3:00 Symposium: Group 1 Sanford Bernhardt, Sangster, Kumfer, Michalaka 3:10-5:00 Workshop: Build a speedometer

More information

SPDM Level 2 Smart Electronics Unit, Level 2

SPDM Level 2 Smart Electronics Unit, Level 2 SPDM Level 2 Smart Electronics Unit, Level 2 Evidence Folder John Johns Form 3b RSA Tipton 1.1 describe the purpose of circuit components and symbols. The candidate can describe the purpose of a range

More information

CARTOOINO Projects Book

CARTOOINO Projects Book 1 CARTOOINO Projects Book Acknowledgement Acknowledgement This Cartooino Projects Book is a cartoon based adaptation of the Arduino Projects Book. The Cartooino Project Book was developed by the GreenLab

More information

EE C Program Elements

EE C Program Elements EE 1910 C Program Elements Development process need Requirements Specification Program Flow Pseudo Code Code Development Tool Chain Test Executable Code Production 2 tj Requirements Specification Identify

More information

cs281: Introduction to Computer Systems Lab03 K-Map Simplification for an LED-based Circuit Decimal Input LED Result LED3 LED2 LED1 LED3 LED2 1, 2

cs281: Introduction to Computer Systems Lab03 K-Map Simplification for an LED-based Circuit Decimal Input LED Result LED3 LED2 LED1 LED3 LED2 1, 2 cs28: Introduction to Computer Systems Lab3 K-Map Simplification for an LED-based Circuit Overview In this lab, we will build a more complex combinational circuit than the mux or sum bit of a full adder

More information

Lab 2 - Powering the Fubarino, Intro to Serial, Functions and Variables

Lab 2 - Powering the Fubarino, Intro to Serial, Functions and Variables Lab 2 - Powering the Fubarino, Intro to Serial, Functions and Variables Part 1 - Powering the Fubarino SD The Fubarino SD is a 56 pin device. Each pin on a chipkit device falls broadly into one of 9 categories:

More information

Update: Ver 1.3 Dec Arduino Learning Guide For Beginner Using. Created by Cytron Technologies Sdn Bhd - All Rights Reserved

Update: Ver 1.3 Dec Arduino Learning Guide For Beginner Using. Created by Cytron Technologies Sdn Bhd - All Rights Reserved Update: Ver 1.3 Dec 2018 Arduino Learning Guide For Beginner Using Created by Cytron Technologies Sdn Bhd - All Rights Reserved LESSON 0 SETTING UP HARDWARE & SOFTWARE Part 1: Put Up Label Stickers for

More information

The Big Idea: Background:

The Big Idea: Background: Lesson 7 Lesson 7: For For Loops Loops The Big Idea: This lesson simplifies the control of digital pins by assigning the pin numbers to an integer variable and by calling the digitalwrite command multiple

More information

WEEK PRactice. Turning on LED with a Switch. Learning Objective. Materials to Prepare. Summary of Class. Project Goal. Hardware Expression

WEEK PRactice. Turning on LED with a Switch. Learning Objective. Materials to Prepare. Summary of Class. Project Goal. Hardware Expression WEEK 04 Have LED My Way PRactice Turning on LED with a Switch Do you remember the project we worked on in week 3? It was a program that had making board s LED blink every second through a simple program.

More information

Designed & Developed By: Ms. Jasleen Kaur, PhD Scholar, CSE. Computer Science & Engineering Department

Designed & Developed By: Ms. Jasleen Kaur, PhD Scholar, CSE. Computer Science & Engineering Department Design & Development of IOT application using Intel based Galileo Gen2 board A Practical Approach (Experimental Manual For B.Tech & M.Tech Students) For SoC and Embedded systems in association with Intel

More information

BASIC ARDUINO WORKSHOP. Mr. Aldwin and Mr. Bernardo

BASIC ARDUINO WORKSHOP. Mr. Aldwin and Mr. Bernardo BASIC ARDUINO WORKSHOP Mr. Aldwin and Mr. Bernardo 1 BASIC ARDUINO WORKSHOP Course Goals Introduce Arduino Hardware and Understand Input Software and Output Create simple project 2 Arduino Open-source

More information

Introduction to Arduino. Wilson Wingston Sharon

Introduction to Arduino. Wilson Wingston Sharon Introduction to Arduino Wilson Wingston Sharon cto@workshopindia.com Physical computing Developing solutions that implement a software to interact with elements in the physical universe. 1. Sensors convert

More information

Digispark DIY: the Smallest USB Arduino

Digispark DIY: the Smallest USB Arduino materiały pobrane ze strony: https://www.instructables.com/id/digispark-diy-the-smallest-usb-arduino/ 2017-06-21 Digispark DIY: the Smallest USB Arduino by smching in arduino Digispark is an ATtiny85 based

More information

Building your own special-purpose embedded system gadget.

Building your own special-purpose embedded system gadget. Bare-duino Building your own special-purpose embedded system gadget. Saves a little money. You can configure the hardware exactly the way that you want. Plus, it s fun! bare-duino 1 Arduino Uno reset I/O

More information

WALT: definition and decomposition of complex problems in terms of functional and non-functional requirements

WALT: definition and decomposition of complex problems in terms of functional and non-functional requirements Item 5: It's Totally Random Monday, 5 October 08 :5 PM IT'S TOTALLY RANDOM EXPLORE WALT: definition and decomposition of complex problems in terms of functional and non-functional requirements WILF - Defined

More information

Module 003: Introduction to the Arduino/RedBoard

Module 003: Introduction to the Arduino/RedBoard Name/NetID: Points: /5 Module 003: Introduction to the Arduino/RedBoard Module Outline In this module you will be introduced to the microcontroller board included in your kit. You bought either An Arduino

More information

keyestudio Keyestudio MEGA 2560 R3 Board

keyestudio Keyestudio MEGA 2560 R3 Board Keyestudio MEGA 2560 R3 Board Introduction: Keyestudio Mega 2560 R3 is a microcontroller board based on the ATMEGA2560-16AU, fully compatible with ARDUINO MEGA 2560 REV3. It has 54 digital input/output

More information

Connecting Arduino to Processing

Connecting Arduino to Processing Connecting Arduino to Processing Introduction to Processing So, you ve blinked some LEDs with Arduino, and maybe you ve even drawn some pretty pictures with Processing - what s next? At this point you

More information

Arduino Uno. Power & Interface. Arduino Part 1. Introductory Medical Device Prototyping. Digital I/O Pins. Reset Button. USB Interface.

Arduino Uno. Power & Interface. Arduino Part 1. Introductory Medical Device Prototyping. Digital I/O Pins. Reset Button. USB Interface. Introductory Medical Device Prototyping Arduino Part 1, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Arduino Uno Power & Interface Reset Button USB Interface

More information

CTEC 1802 Embedded Programming Labs

CTEC 1802 Embedded Programming Labs CTEC 1802 Embedded Programming Labs This document is intended to get you started using the Arduino and our I/O board in the laboratory - and at home! Many of the lab sessions this year will involve 'embedded

More information

Update: Ver 1.3 Dec Arduino Learning Guide For Beginner Using. Created by Cytron Technologies Sdn Bhd - All Rights Reserved

Update: Ver 1.3 Dec Arduino Learning Guide For Beginner Using. Created by Cytron Technologies Sdn Bhd - All Rights Reserved Update: Ver 1.3 Dec 2018 Arduino Learning Guide For Beginner Using Created by Cytron Technologies Sdn Bhd - All Rights Reserved LESSON 0 SETTING UP HARDWARE & SOFTWARE Part 1: Put Up Label Stickers for

More information

This is the Arduino Uno: This is the Arduino motor shield: Digital pins (0-13) Ground Rail

This is the Arduino Uno: This is the Arduino motor shield: Digital pins (0-13) Ground Rail Reacting to Sensors In this tutorial we will be going over how to program the Arduino to react to sensors. By the end of this workshop you will have an understanding of how to use sensors with the Arduino

More information

Serial.begin ( ); Serial.println( ); analogread ( ); map ( );

Serial.begin ( ); Serial.println( ); analogread ( ); map ( ); Control and Serial.begin ( ); Serial.println( ); analogread ( ); map ( ); A system output can be changed through the use of knobs, motion, or environmental conditions. Many electronic systems in our world

More information

Micro-Controllers. Module 2: Outputs Control and Inputs Monitoring. IAT Curriculum Unit PREPARED BY. August 2008

Micro-Controllers. Module 2: Outputs Control and Inputs Monitoring. IAT Curriculum Unit PREPARED BY. August 2008 Micro-Controllers Module 2: Outputs Control and Inputs Monitoring PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 2 Module 2: Outputs Control and Inputs Monitoring Module

More information

Programming. The Programmable Box! with. Programming made fun Ages 10+ V1.0 Copyright 2014, 2015 Your Inner Geek, LLC

Programming. The Programmable Box! with. Programming made fun Ages 10+ V1.0 Copyright 2014, 2015 Your Inner Geek, LLC C Programming with The Programmable Box! Programming made fun Ages 10+ 1 Copyright 2014, 2015 by Your Inner Geek, LLC. All rights reserved. Except as permitted under the United States Copyright Act of

More information

Arduino Micro Breadboard Laboratory Interface Processor (Micro BLIP) User Manual

Arduino Micro Breadboard Laboratory Interface Processor (Micro BLIP) User Manual Arduino Micro Breadboard Laboratory Interface Processor (Micro BLIP) MicroBLIP circuit board v2.0 Operating System v2.0.0 1/22/2019 User Manual 2 1 Setup and Operation 1.1 Introduction For the past ten

More information

Arduino and Matlab for prototyping and manufacturing

Arduino and Matlab for prototyping and manufacturing Arduino and Matlab for prototyping and manufacturing Enrique Chacón Tanarro 11th - 15th December 2017 UBORA First Design School - Nairobi Enrique Chacón Tanarro e.chacon@upm.es Index 1. Arduino 2. Arduino

More information

EE 210 Lab Assignment #2: Intro to PSPICE

EE 210 Lab Assignment #2: Intro to PSPICE EE 210 Lab Assignment #2: Intro to PSPICE ITEMS REQUIRED None Non-formal Report due at the ASSIGNMENT beginning of the next lab no conclusion required Answers and results from all of the numbered, bolded

More information

TABLE OF CONTENTS INTRODUCTION LESSONS PROJECTS

TABLE OF CONTENTS INTRODUCTION LESSONS PROJECTS TABLE OF CONTENTS INTRODUCTION Introduction to Components - Maker UNO 5 - Maker UNO Board 6 - Setting Up - Download Arduino IDE 7 - Install Maker UNO Drivers - Install Maker UNO Board Package 3 LESSONS.

More information

Thursday, September 15, electronic components

Thursday, September 15, electronic components electronic components a desktop computer relatively complex inside: screen (CRT) disk drive backup battery power supply connectors for: keyboard printer n more! Thursday, September 15, 2011 integrated

More information

USER MANUAL ARDUINO I/O EXPANSION SHIELD

USER MANUAL ARDUINO I/O EXPANSION SHIELD USER MANUAL ARDUINO I/O EXPANSION SHIELD Description: Sometimes Arduino Uno users run short of pins because there s a lot of projects that requires more than 20 signal pins. The only option they are left

More information

IAS0430 MICROPROCESSOR SYSTEMS

IAS0430 MICROPROCESSOR SYSTEMS IAS0430 MICROPROCESSOR SYSTEMS Fall 2018 Arduino and assembly language Martin Jaanus U02-308 martin.jaanus@ttu.ee 620 2110, 56 91 31 93 Learning environment : http://isc.ttu.ee Materials : http://isc.ttu.ee/martin

More information

Physical Programming with Arduino

Physical Programming with Arduino CTA - 2014 Physical Programming with Arduino Some sample projects Arduino Uno - Arduino Leonardo look-alike The Board Arduino Uno and its cheap cousin from Borderless Electronics Mini - Breadboard typical

More information

ArdOS The Arduino Operating System Quick Start Guide and Examples

ArdOS The Arduino Operating System Quick Start Guide and Examples ArdOS The Arduino Operating System Quick Start Guide and Examples Contents 1. Introduction... 1 2. Obtaining ArdOS... 2 3. Installing ArdOS... 2 a. Arduino IDE Versions 1.0.4 and Prior... 2 b. Arduino

More information

BASIC Arduino. Part I

BASIC Arduino. Part I BASIC Arduino Part I Objectives Introduction to Arduino Build a 1-60MHz DDS VFO prototype, breadboard and write Sketches, with Buffer amps to be designed, and PCB Using your own laptop Go on to build other

More information

Introduction to Microcontrollers Using Arduino. PhilRobotics

Introduction to Microcontrollers Using Arduino. PhilRobotics Introduction to Microcontrollers Using Arduino PhilRobotics Objectives Know what is a microcontroller Learn the capabilities of a microcontroller Understand how microcontroller execute instructions Objectives

More information