MIPS Processor Overview

Size: px
Start display at page:

Download "MIPS Processor Overview"

Transcription

1 MIPS Processor Cptr280 Dr Curtis Nelson MIPS Processor Overview Hardware Design philosophy Architecture Software Assembly language program structure QTSpim simulator Example programs 1

2 MIPS Processor Power PC

3 Data Path Diagram Program Counter (PC) Program Memory Instruction Register ALU Address Control Logic Rs Data In Rdest Rt 4 Data Memory (Register File) The MIPS Instruction Set Used as an example throughout the text book. Stanford MIPS commercialized by MIPS Technologies A discussion of MIPS can be found on Wikipedia Decent share of embedded core market Applications in consumer electronics, network/storage equipment, cameras, printers, Typical of many modern ISAs 3

4 Two Key Principles of Processor Design Instructions are represented as numbers and, as such, are indistinguishable from data. Programs are stored in alterable memory (that can be read or written to) just like data. Stored-program concept - Programs can be shipped as files of binary numbers binary compatibility. - Computers can inherit ready-made software provided they are compatible with an existing Instruction Set Architecture (ISA) leads industry to align around a small number of ISAs. Memory Accounting prg (machine code) C compiler (machine code) Payroll data Source code in C for Acct prg MIPS (RISC) Design Principles Simplicity favors regularity: Fixed size instructions. Small number of instruction formats. Operation code always the first 6 bits in an instruction. Smaller is faster: Limited instruction set. Limited number of registers in register file. Limited number of addressing modes. Make the common case fast: Arithmetic operands taken only from the register file. Allow instructions to contain immediate operands. 4

5 MIPS Architecture The MIPS architecture is considered to be a typical RISC architecture Simplified instruction set => easier to study Most new machines use a Reduced Instruction Set (RISC) Programmable storage 32 x 32-bit General Purpose Registers (r0 = 0) special purpose registers - HI, LO, PC 32 x 32-bit Floating Point registers 2^32 bytes of addressable main memory Memory is byte addressable Words are 32 bits = 4 bytes Words start at multiple of 4 address MIPS-32 ISA Instruction Categories Computational Load/Store Jump and Branch Floating Point Coprocessor Memory Management Special Registers R0 - R31 PC HI LO 3 Instruction Formats: all 32 bits wide op op op rs rt rd sa funct rs rt immediate jump target R format I format J format 5

6 MIPS Register File Holds thirty-two 32-bit registers Two read ports and One write port src1 addr src2 addr Register 32 bits File Registers dst addr 32 Are faster than main write memory data - But register files with more locations are slower (e.g., a 64 word file could write control be as much as 50% slower than a 32 word file) Are easier for a compiler to use - e.g., (A*B) (C*D) (E*F) can do multiplies in any order vs. using data on a stack Can hold variables so that - Code density improves (since registers are named with fewer bits than a memory location) locations src1 data src2 data Registers 32 general-purpose registers Register preceded by $ in assembly language instruction Two formats for addressing: using register number: example $0 through $31 using mnemonic names: example $t1, $sp Register use conventions $t0 - $t9 ( = $8 - $15, $24, $25) are general use registers; need not be preserved across procedure calls $s0 - $s7 ( = $16 - $23) are general use registers; should be preserved across procedure calls $sp ( = $29) is stack pointer $fp ( = $30) is frame pointer $ra ( = $31) is return address storage for subroutine call $a0 - $a3 ( = $4 - $7) are used to pass arguments to subroutines $v0, $v1 ( = $2, $3) are used to hold return values from subroutine 6

7 Registers - continued Special registers Lo and Hi used to store result of multiplication and division Not directly addressable; contents accessed with special instruction mfhi ("move from Hi") and mflo ("move from Lo") Stack grows from high memory to low memory MIPS Register Convention Name Register Number Usage Preserve on call? $zero 0 constant 0 (hardware) n.a. $at 1 reserved for assembler n.a. $v0 - $v1 2-3 returned values no $a0 - $a3 4-7 arguments yes $t0 - $t temporaries no $s0 - $s saved values yes $t8 - $t temporaries no $gp 28 global pointer yes $sp 29 stack pointer yes $fp 30 frame pointer yes $ra 31 return addr (hardware) yes 7

8 Register Names in MIPS Assembly Language With MIPS, there is a convention for mapping register names into general purpose register numbers. name register number usage $zero 0 constant 0 $v0-$v1 2-3 results $a0-$a3 4-7 arguments $t0-$t temporaries $s0-$s saved $t8-$t more temps $gp 28 global pointer $sp 29 stack pointer $fp 30 frame pointer $ra 31 return address MIPS Data Types and Literals Data types: byte, halfword (2 bytes), word (4 bytes) a character requires 1 byte of storage an integer requires 1 word (4 bytes) of storage Literals: numbers entered as is: example 4 characters enclosed in single quotes: example 'b' strings enclosed in double quotes: example "A string" 8

9 MIPS Addressing Modes Addressing modes specify where the data used by an instruction is located. mode example action register direct add $s1, $s2, $s3 $s1 = $s2 + $s3 immediate addi $s1, $s2, 200 $s1 = $s base+index lw $s1, 200($s2) $s1 = mem[200*4 + $s2] PC-relative beq $s1, $s2, 200 if ($s1 == $s2) PC = PC+4+200*4 Pseudo-direct j 4000 PC = (PC[31:28], 4000*4) Often, the type of addressing mode depends on the type of operation being performed (e.g., branches all use PC relative) MIPS Arithmetic Instructions MIPS assembly language arithmetic instructions: add $t0, $s1, $s2 sub $t0, $s1, $s2 Each arithmetic instruction performs one operation. Each specifies exactly three operands that are all contained in the datapath's register file ($t0,$s1,$s2) destination source1 op source2 Instruction Format (R format) x22 9

10 MIPS Instruction Fields MIPS fields are given names to make them easier to refer to: op rs rt rd shamt funct op 6-bits opcode that specifies the operation rs 5-bits register file address of the first source operand rt 5-bits register file address of the second source operand rd 5-bits register file address of the result s destination shamt 5-bits shift amount (for shift instructions) funct 6-bits function code augmenting the opcode Memory Operands Values must be fetched from memory before instructions can operate on them. Load word lw $t0, memory-address Register Memory Store word sw $t0, memory-address Register Memory 10

11 MIPS Instruction Set MIPS Instruction Set 11

12 MIPS Instruction Set MIPS Instruction Set 12

13 MIPS Instruction Set MIPS Floating Point Instruction Set 13

14 MIPS Assembly Language Program Structure Just plain text file with data declarations, program code (name of file should end in suffix.s to be used with SPIM simulator) Data declaration section followed by program code section Data Declarations Placed in section of program identified with assembler directive.data Declares variable names used in program; storage allocated in main memory (RAM) 14

15 Code Placed in section of text identified with assembler directive.text Contains program code (instructions) Starting point for code execution given label main: Ending point of main code should use exit system call (covered later under System Calls) Comments Anything following # on a line # This stuff would be considered a comment 15

16 Template for a MIPS assembly language program # Comment giving name of program and description of function # Template.s # Bare-bones outline of MIPS assembly language program.data # variable declarations here #....text main: # indicates start of code (first instruction to execute) # remainder of program code here #... #... Example Program: add2numbersprog1.asm ## Program adds 10 and 11.text.globl main # text section # call main by SPIM main: ori $8,$0,0xA # load 10" into register 8 ori $9,$0,0xB # load 11" into register 9 add $10,$8,$9 # add registers 8 and 9, put result # in register 10 16

17 Summary MIPS processors have been around since the 1980 s Commercially available and used extensively MIPS uses 32 registers for local storage Data types are standard Each processor defines an instruction set This set is a compromise between programmer convenience and hardware cost; Some instruction sets are the same length, some not. Most processors contains a bank of registers for high-speed storage; Processors are classified as either RISC or CISC. QTSPIM Introduction What is SPIM? a simulator that runs assembly programs for MIPS R2000/R3000 RISC computers What does SPIM do? reads MIPS assembly language files and translates to machine language executes the machine language instructions shows contents of registers and memory works as a debugger (supports break-points and single-stepping) provides basic Operating System (OS)-like services, like simple I/O 17

18 Learning MIPS & SPIM MIPS assembly is a low-level programming language. The best way to learn any programming language is from live code. We will start by going through a few example programs and explaining the key concepts. Further, an examples directory has been created in /wwu/class/cptr280 of several simple, well-documented assembly programs for you to experiment with. Line-by-line syntax can best be learned by picking up what you need from the textbook and on-line tutorials. Start by copying existing programs and modifying them incrementally making sure you understand the behavior at each step. Tip: The best way to understand and remember a construct or keyword is to experiment with it in code, not by reading about it. PCSpim Windows Interface Registers window shows the values of all registers in the MIPS CPU and FPU Messages window shows PCSpim messages Data segment window shows the data loaded into the program s memory and the data of the program s stack Text segment window shows assembly instructions & corresponding machine code Separate console window appears for I/O 18

19 Using SPIM Loading source file Use File -> Open menu Simulation Simulator -> Settings : In the Display section check only the first two items: Save window positions and General registers in hexadecimal In the Execution section check only Allow pseudo instructions Simulator -> Set Value : to load PC with address of first instruction enter Address or Register Name as PC and enter Value as 0x reason: the text area of memory, where programs are stored, starts here Simulator -> Go : run loaded program Click the OK button in the Run Parameters pop-up window if the StartingAddress: value is 0x Simulator -> Break : stop execution Simulator -> Clear Registers and Reinitialize : clean-up before new run Using SPIM Simulator -> Reload : load file again after editing Simulator -> Single Step or Multiple Step : stepping to debug Simulator -> Breakpoints : set breakpoints Notes: Text segment window of SPIM shows assembly and corresponding machine code pseudo-instructions each expand to more than one machine instruction If Load trap file is checked in Simulator -> Settings then text segment shows additional trap-handling code If Delayed Branches is checked in Simulator -> Settings then statementx will execute before control jumps to L1 in following code to avoid this, insert nop before statementx: jal L1 statementx L1: nop 19

20 SPIM Example Program: add2numbersprog1.asm ## Program adds 10 and 11.text.globl main # text section # call main by SPIM main: ori $8,$0,0xA # load 10" into register 8 ori $9,$0,0xB # load 11" into register 9 add $10,$8,$9 # add registers 8 and 9, put result # in register 10 MIPS Assembly Code Layout Typical Program Layout.data #data section # user program data.text.globl main #code section #starting point: must be global main: # user program code 20

21 MIPS Assembler Directives Top-level Directives:.text indicates that following items are stored in the user text segment, typically instructions.data indicates that following data items are stored in the data segment.globl sym declare that symbol sym is global and can be referenced from other files More MIPS Assembler Directives Common Data Definitions:.word w1,, wn store n 32-bit quantities in successive memory words.half h1,, hn store n 16-bit quantities in successive memory halfwords.byte b1,, bn store n 8-bit quantities in successive memory bytes.ascii str store the string in memory but do not null-terminate it characters are represented in single quotes a strings are represented in double-quotes str special characters, e.g.. \n, \t, follow C convention.asciiz str store the string in memory and null-terminate it 21

22 More MIPS Assembler Directives More Common Data Definitions:.float f1,, fn store n floating point single precision numbers in successive memory locations.double d1,, dn store n floating point double precision numbers in successive memory locations.space n reserves n successive bytes of space.align n align the next datum on a 2 n byte boundary. For example,.align 2 aligns next value on a word boundary..align 0 turns off automatic alignment of.half,.word, etc. till next.data directive SPIM System Calls System Calls (syscall) OS-like services Method load system call code into register $v0 (see following table for codes) load arguments into registers $a0,, $a3 call system with SPIM instruction syscall after call, return value is in register $v0, or $f0 for floating point results 22

23 SPIM System Call Codes Service Code (put in $v0) Arguments Result print_int 1 $a0=integer print_float 2 $f12=float print_double 3 $f12=double print_string 4 $a0=address of string read_int 5 int in $v0 read_float 6 float in $f0 read_double 7 double in $f0 read_string 8 $a0=buffer, $a1=length sbrk 9 $a0=amount addr in $v0 exit 10 SPIM Example Program: systemcalls.asm ## Enter two integers in ## console window ## Sum is displayed.text.globl main main: la $t0, value lw $t1, 0($t0) lw $t2, 4($t0) add $t3, $t1, $t2 sw $t3, 8($t0) li $v0, 4 la $a0, msg1 syscall system call code for print_string li $v0, 5 syscall sw $v0, 0($t0) li $v0, 5 syscall sw $v0, 4($t0) system call code for read_int result returned by call li $v0, 1 move $a0, $t3 syscall li $v0, 10 syscall.data value:.word 0, 0, 0 msg1:.asciiz Sum = " argument to print_string call system call code for print_int argument to print_int call system call code for exit 23

24 More SPIM Example Programs In the class examples directory you will find 18 simple well-documented MIPS assembly programs. Run the code in the order below of increasing complexity. 1. add2numbersprog1 2. add2numbersprog2 3. storewords 4. swap2memorywords 5. branchjump 6. systemcalls 7. overflow 8. averageofbytes 9. printloop 10. sumofsquaresprog1 11. sumofsquaresprog2 12. sumofsquaresprog3 13. proccallsprog1 14. proccallsprog1modified 15. proccallsprog2 16. addfirst factorialnonrecursive 18. factorialrecursive Conclusions The code presented so far should get you started in writing your own MIPS assembly. Remember the only way to master the MIPS assembly language in fact, any computer language is to write lots and lots of code. For anyone aspiring to understand modern computer architecture it is extremely important to master MIPS assembly as all modern computers (since the mid-80 s) have been inspired by, if not based fully or partly on the MIPS instruction set architecture. 24

MIPS and QTSPIM Recap. MIPS Architecture. Cptr280. Dr Curtis Nelson. Cptr280, Autumn

MIPS and QTSPIM Recap. MIPS Architecture. Cptr280. Dr Curtis Nelson. Cptr280, Autumn MIPS and QTSPIM Recap Cptr280 Dr Curtis Nelson MIPS Architecture The MIPS architecture is considered to be a typical RISC architecture Simplified instruction set Programmable storage 32 x 32-bit General

More information

QtSPIM and MARS : MIPS Simulators

QtSPIM and MARS : MIPS Simulators QtSPIM and MARS : MIPS Simulators Learning MIPS & SPIM MIPS assembly is a low-level programming language The best way to learn any programming language is to write code We will get you started by going

More information

Instructions: Language of the Computer

Instructions: Language of the Computer CS359: Computer Architecture Instructions: Language of the Computer Yanyan Shen Department of Computer Science and Engineering 1 The Language a Computer Understands Word a computer understands: instruction

More information

CENG3420 Lab 1-1: MIPS assembly language programing

CENG3420 Lab 1-1: MIPS assembly language programing CENG3420 Lab 1-1: MIPS assembly language programing Haoyu YANG Department of Computer Science and Engineering The Chinese University of Hong Kong hyyang@cse.cuhk.edu.hk 2017 Spring 1 / 18 Overview SPIM

More information

Instructions: Language of the Computer

Instructions: Language of the Computer CS359: Computer Architecture Instructions: Language of the Computer Yanyan Shen Department of Computer Science and Engineering 1 The Language a Computer Understands Word a computer understands: instruction

More information

Chapter 2A Instructions: Language of the Computer

Chapter 2A Instructions: Language of the Computer Chapter 2A Instructions: Language of the Computer Copyright 2009 Elsevier, Inc. All rights reserved. Instruction Set The repertoire of instructions of a computer Different computers have different instruction

More information

MIPS ProgramTemplate

MIPS ProgramTemplate MIPS Load and Store Instructions Cptr280 Dr Curtis Nelson MIPS ProgramTemplate # Comment giving name of program and description of function # Template.s # Bare-bones outline of MIPS assembly language program.data

More information

CPSC 330 Computer Organization

CPSC 330 Computer Organization CPSC 330 Computer Organization Chapter 2-II Instructions: Language of the computer MIPS Instructions - Review Instruction Meaning add $s1,$s2,$s3 $s1 = $s2 + $s3 sub $s1,$s2,$s3 $s1 = $s2 $s3 addi $s1,$s1,4

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization CISC 662 Graduate Computer Architecture Lecture 4 - ISA MIPS ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA CISC 662 Graduate Computer Architecture Lecture 4 - ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

Course Administration

Course Administration Fall 2017 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 3/4 Avinash Kodi Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

MIPS Architecture and Assembly Language Overview

MIPS Architecture and Assembly Language Overview MIPS Architecture and Assembly Language Overview Adapted from: http://edge.mcs.dre.g.el.edu/gicl/people/sevy/architecture/mipsref(spim).html [Register Description] [I/O Description] Data Types and Literals

More information

Computer Organization MIPS ISA

Computer Organization MIPS ISA CPE 335 Computer Organization MIPS ISA Dr. Iyad Jafar Adapted from Dr. Gheith Abandah Slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE 232 MIPS ISA 1 (vonneumann) Processor Organization

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,

More information

Chapter 1. Computer Abstractions and Technology. Lesson 3: Understanding Performance

Chapter 1. Computer Abstractions and Technology. Lesson 3: Understanding Performance Chapter 1 Computer Abstractions and Technology Lesson 3: Understanding Performance Manufacturing ICs 1.7 Real Stuff: The AMD Opteron X4 Yield: proportion of working dies per wafer Chapter 1 Computer Abstractions

More information

COMP2421 COMPUTER ORGANZATION. Lab 3

COMP2421 COMPUTER ORGANZATION. Lab 3 Lab 3 Objectives: This lab shows you some basic techniques and syntax to write a MIPS program. Syntax includes system calls, load address instruction, load integer instruction, and arithmetic instructions

More information

CS3350B Computer Architecture MIPS Introduction

CS3350B Computer Architecture MIPS Introduction CS3350B Computer Architecture MIPS Introduction Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada Thursday January

More information

Lecture 2. Instructions: Language of the Computer (Chapter 2 of the textbook)

Lecture 2. Instructions: Language of the Computer (Chapter 2 of the textbook) Lecture 2 Instructions: Language of the Computer (Chapter 2 of the textbook) Instructions: tell computers what to do Chapter 2 Instructions: Language of the Computer 2 Introduction Chapter 2.1 Chapter

More information

Instructions: Language of the Computer

Instructions: Language of the Computer Instructions: Language of the Computer Tuesday 22 September 15 Many slides adapted from: and Design, Patterson & Hennessy 5th Edition, 2014, MK and from Prof. Mary Jane Irwin, PSU Summary Previous Class

More information

MIPS (SPIM) Assembler Syntax

MIPS (SPIM) Assembler Syntax MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring MIPS Intro

Math 230 Assembly Programming (AKA Computer Organization) Spring MIPS Intro Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L09.1 Smith Spring 2008 MIPS

More information

Orange Coast College. Business Division. Computer Science Department CS 116- Computer Architecture. The Instructions

Orange Coast College. Business Division. Computer Science Department CS 116- Computer Architecture. The Instructions Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Instructions 1 1 Topics: Assembly language, assemblers MIPS R2000 Assembly language Instruction set

More information

Programming in MIPS. Tutorial

Programming in MIPS. Tutorial Programming in MIPS Tutorial Data Types and Literals Data types: Instructions are all 32 bits byte(8 bits), halfword (2 bytes), word (4 bytes) a character requires 1 byte of storage an integer requires

More information

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2)

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) Victor P. Nelson, Professor & Asst. Chair Vishwani D. Agrawal, James J. Danaher Professor Department

More information

Chapter 2. Instructions: Language of the Computer. HW#1: 1.3 all, 1.4 all, 1.6.1, , , , , and Due date: one week.

Chapter 2. Instructions: Language of the Computer. HW#1: 1.3 all, 1.4 all, 1.6.1, , , , , and Due date: one week. Chapter 2 Instructions: Language of the Computer HW#1: 1.3 all, 1.4 all, 1.6.1, 1.14.4, 1.14.5, 1.14.6, 1.15.1, and 1.15.4 Due date: one week. Practice: 1.5 all, 1.6 all, 1.10 all, 1.11 all, 1.14 all,

More information

EECS 322 The SPIM simulator

EECS 322 The SPIM simulator EECS 322 The SPIM simulator Instructor: Francis G. Wolff wolff@eecs.cwru.edu Case Western Reserve University This presentation uses powerpoint animation: please CWRU EECS viewshow 322 February 12, 2001

More information

Introduction to the MIPS. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Introduction to the MIPS. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction to the MIPS Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction to the MIPS The Microprocessor without Interlocked Pipeline Stages

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept Instructions: Instructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch

More information

Recap from Last Time. CSE 2021: Computer Organization. Levels of Programming. The RISC Philosophy 5/19/2011

Recap from Last Time. CSE 2021: Computer Organization. Levels of Programming. The RISC Philosophy 5/19/2011 CSE 2021: Computer Organization Recap from Last Time load from disk High-Level Program Lecture-3 Code Translation-1 Registers, Arithmetic, logical, jump, and branch instructions MIPS to machine language

More information

EN164: Design of Computing Systems Lecture 09: Processor / ISA 2

EN164: Design of Computing Systems Lecture 09: Processor / ISA 2 EN164: Design of Computing Systems Lecture 09: Processor / ISA 2 Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

5/17/2012. Recap from Last Time. CSE 2021: Computer Organization. The RISC Philosophy. Levels of Programming. Stored Program Computers

5/17/2012. Recap from Last Time. CSE 2021: Computer Organization. The RISC Philosophy. Levels of Programming. Stored Program Computers CSE 2021: Computer Organization Recap from Last Time load from disk High-Level Program Lecture-2 Code Translation-1 Registers, Arithmetic, logical, jump, and branch instructions MIPS to machine language

More information

Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls

Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls Announcements HW1 is due on this Friday (Sept 12 th ) Appendix A is very helpful to HW1. Check out system calls on Page A-48. Ask TA (Liquan chen: liquan@ece.rutgers.edu) about homework related questions.

More information

Instruction Set Architecture. "Speaking with the computer"

Instruction Set Architecture. Speaking with the computer Instruction Set Architecture "Speaking with the computer" The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture Digital Design

More information

Five classic components

Five classic components CS/COE0447: Computer Organization and Assembly Language Chapter 2 modified by Bruce Childers original slides by Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower

More information

SPIM Instruction Set

SPIM Instruction Set SPIM Instruction Set This document gives an overview of the more common instructions used in the SPIM simulator. Overview The SPIM simulator implements the full MIPS instruction set, as well as a large

More information

CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE. Debdeep Mukhopadhyay, CSE, IIT Kharagpur. Instructions and Addressing

CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE. Debdeep Mukhopadhyay, CSE, IIT Kharagpur. Instructions and Addressing CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE Debdeep Mukhopadhyay, CSE, IIT Kharagpur Instructions and Addressing 1 ISA vs. Microarchitecture An ISA or Instruction Set Architecture describes the aspects

More information

Chapter 2. Instruction Set Architecture (ISA)

Chapter 2. Instruction Set Architecture (ISA) Chapter 2 Instruction Set Architecture (ISA) MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code:

More information

CS222: MIPS Instruction Set

CS222: MIPS Instruction Set CS222: MIPS Instruction Set Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Previous Introduction to MIPS Instruction Set MIPS Arithmetic's Register Vs Memory, Registers

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

Instructions: MIPS arithmetic. MIPS arithmetic. Chapter 3 : MIPS Downloaded from:

Instructions: MIPS arithmetic. MIPS arithmetic. Chapter 3 : MIPS Downloaded from: Instructions: Chapter 3 : MIPS Downloaded from: http://www.cs.umr.edu/~bsiever/cs234/ Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying

More information

Chapter 3 MIPS Assembly Language. Ó1998 Morgan Kaufmann Publishers 1

Chapter 3 MIPS Assembly Language. Ó1998 Morgan Kaufmann Publishers 1 Chapter 3 MIPS Assembly Language Ó1998 Morgan Kaufmann Publishers 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive

More information

Five classic components

Five classic components CS/COE0447: Computer Organization and Assembly Language Chapter 2 modified by Bruce Childers original slides by Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower

More information

USING A SIMULATOR. QUICK INTRODUCTION From various sources For cs470

USING A SIMULATOR. QUICK INTRODUCTION From various sources For cs470 USING A SIMULATOR QUICK INTRODUCTION From various sources For cs470 INTRODUCTION MARS INTERFACE SIMULATOR USAGE MIPS ASSEMBLER LANGUAGE PROGRAM EXAMPLE Introduction MARS IDE A simulator for the MIPS processor

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the machine. Reduced number of cycles needed per instruction.

More information

Review Session 1 Fri. Jan 19, 2:15 pm 3:05 pm Thornton 102

Review Session 1 Fri. Jan 19, 2:15 pm 3:05 pm Thornton 102 Review Session 1 Fri. Jan 19, 2:15 pm 3:05 pm Thornton 102 1. Agenda Announcements Homework hints MIPS instruction set Some PA1 thoughts MIPS procedure call convention and example 1 2. Announcements Homework

More information

SPIM S20: A MIPS R2000 Simulator

SPIM S20: A MIPS R2000 Simulator SPIM S20: A MIPS R2000 Simulator 1 th 25 the performance at none of the cost James R Larus larus@cswiscedu Computer Sciences Department University of Wisconsin Madison 1210 West Dayton Street Madison,

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Overview Last Lecture s Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a

More information

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA. Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

Assignment 1: Pipelining Implementation at SPIM Simulator

Assignment 1: Pipelining Implementation at SPIM Simulator Assignment 1: Pipelining Implementation at SPIM Simulator Due date: 11/26 23:59 Submission: icampus (Report, Source Code) SPIM is a MIPS processor simulator, designed to run assembly language code for

More information

Assembly labs start this week. Don t forget to submit your code at the end of your lab section. Download MARS4_5.jar to your lab PC or laptop.

Assembly labs start this week. Don t forget to submit your code at the end of your lab section. Download MARS4_5.jar to your lab PC or laptop. CSC258 Week 10 Logistics Assembly labs start this week. Don t forget to submit your code at the end of your lab section. Download MARS4_5.jar to your lab PC or laptop. Quiz review A word-addressable RAM

More information

Topic Notes: MIPS Instruction Set Architecture

Topic Notes: MIPS Instruction Set Architecture Computer Science 220 Assembly Language & Comp. Architecture Siena College Fall 2011 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture.

More information

Lecture 4: MIPS Instruction Set

Lecture 4: MIPS Instruction Set Lecture 4: MIPS Instruction Set No class on Tuesday Today s topic: MIPS instructions Code examples 1 Instruction Set Understanding the language of the hardware is key to understanding the hardware/software

More information

COMPSCI 313 S Computer Organization. 7 MIPS Instruction Set

COMPSCI 313 S Computer Organization. 7 MIPS Instruction Set COMPSCI 313 S2 2018 Computer Organization 7 MIPS Instruction Set Agenda & Reading MIPS instruction set MIPS I-format instructions MIPS R-format instructions 2 7.1 MIPS Instruction Set MIPS Instruction

More information

MIPS Assembly Programming

MIPS Assembly Programming COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2

More information

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes Chapter 2 Instructions: Language of the Computer Adapted by Paulo Lopes Instruction Set The repertoire of instructions of a computer Different computers have different instruction sets But with many aspects

More information

Introduction to MIPS Processor

Introduction to MIPS Processor Introduction to MIPS Processor The processor we will be considering in this tutorial is the MIPS processor. The MIPS processor, designed in 1984 by researchers at Stanford University, is a RISC (Reduced

More information

Course Administration

Course Administration Fall 2018 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 4/4 Avinash Karanth Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

Graduate Institute of Electronics Engineering, NTU. SPIM and MIPS Asm. Presenter: 沈文中 (TA) Date: 2004/10/13

Graduate Institute of Electronics Engineering, NTU. SPIM and MIPS Asm. Presenter: 沈文中 (TA) Date: 2004/10/13 SPIM and MIPS Asm Presenter: 沈文中 (TA) Date: 2004/10/13 ACCESS IC LAB SPIM Introduction Installation Outline Graphic Interface Description Loading and Running a Program Simulator Setting MIPS ASM Assembler

More information

We will study the MIPS assembly language as an exemplar of the concept.

We will study the MIPS assembly language as an exemplar of the concept. MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and

More information

Computer Architecture

Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.2: MIPS ISA -- Instruction Representation Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design,

More information

Compiling Techniques

Compiling Techniques Lecture 10: An Introduction to MIPS assembly 18 October 2016 Table of contents 1 Overview 2 3 Assembly program template.data Data segment: constant and variable definitions go here (including statically

More information

Instruction Set Architectures Part I: From C to MIPS. Readings:

Instruction Set Architectures Part I: From C to MIPS. Readings: Instruction Set Architectures Part I: From C to MIPS Readings: 2.1-2.14 1 Goals for this Class Understand how CPUs run programs How do we express the computation the CPU? How does the CPU execute it? How

More information

Instructions: MIPS ISA. Chapter 2 Instructions: Language of the Computer 1

Instructions: MIPS ISA. Chapter 2 Instructions: Language of the Computer 1 Instructions: MIPS ISA Chapter 2 Instructions: Language of the Computer 1 PH Chapter 2 Pt A Instructions: MIPS ISA Based on Text: Patterson Henessey Publisher: Morgan Kaufmann Edited by Y.K. Malaiya for

More information

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2)

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2) Introduction to the MIPS ISA Overview Remember that the machine only understands very basic instructions (machine instructions) It is the compiler s job to translate your high-level (e.g. C program) into

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

Chapter 2: Instructions:

Chapter 2: Instructions: Chapter 2: Instructions: Language of the Computer Computer Architecture CS-3511-2 1 Instructions: To command a computer s hardware you must speak it s language The computer s language is called instruction

More information

MIPS%Assembly% E155%

MIPS%Assembly% E155% MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary

More information

MIPS Instruction Set

MIPS Instruction Set MIPS Instruction Set Prof. James L. Frankel Harvard University Version of 7:12 PM 3-Apr-2018 Copyright 2018, 2017, 2016, 201 James L. Frankel. All rights reserved. CPU Overview CPU is an acronym for Central

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

MIPS Assembly Language. Today s Lecture

MIPS Assembly Language. Today s Lecture MIPS Assembly Language Computer Science 104 Lecture 6 Homework #2 Midterm I Feb 22 (in class closed book) Outline Assembly Programming Reading Chapter 2, Appendix B Today s Lecture 2 Review: A Program

More information

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats Today s Lecture Homework #2 Midterm I Feb 22 (in class closed book) MIPS Assembly Language Computer Science 14 Lecture 6 Outline Assembly Programming Reading Chapter 2, Appendix B 2 Review: A Program Review:

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Instructions: Language of the Computer Operations and Operands of the Computer Hardware Signed and Unsigned Numbers Representing

More information

Computer Architecture. The Language of the Machine

Computer Architecture. The Language of the Machine Computer Architecture The Language of the Machine Instruction Sets Basic ISA Classes, Addressing, Format Administrative Matters Operations, Branching, Calling conventions Break Organization All computers

More information

101 Assembly. ENGR 3410 Computer Architecture Mark L. Chang Fall 2009

101 Assembly. ENGR 3410 Computer Architecture Mark L. Chang Fall 2009 101 Assembly ENGR 3410 Computer Architecture Mark L. Chang Fall 2009 What is assembly? 79 Why are we learning assembly now? 80 Assembly Language Readings: Chapter 2 (2.1-2.6, 2.8, 2.9, 2.13, 2.15), Appendix

More information

Chapter 3. Instructions:

Chapter 3. Instructions: Chapter 3 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#: Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 2 Instructions: Language of the Computer Fall 2005 Department of Computer Science Kent State University Assembly Language Encodes machine instructions using symbols and numbers

More information

MACHINE LANGUAGE. To work with the machine, we need a translator.

MACHINE LANGUAGE. To work with the machine, we need a translator. LECTURE 2 Assembly MACHINE LANGUAGE As humans, communicating with a machine is a tedious task. We can t, for example, just say add this number and that number and store the result here. Computers have

More information

CS222: Dr. A. Sahu. Indian Institute of Technology Guwahati

CS222: Dr. A. Sahu. Indian Institute of Technology Guwahati CS222: (a) Activation Record of Merge Sort (b) Architecture Space RISC/CISC Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Activation Record in Recursion: Merge

More information

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College Assembly Language Programming CPSC 252 Computer Organization Ellen Walker, Hiram College Instruction Set Design Complex and powerful enough to enable any computation Simplicity of equipment MIPS Microprocessor

More information

CENG3420 L03: Instruction Set Architecture

CENG3420 L03: Instruction Set Architecture CENG3420 L03: Instruction Set Architecture Bei Yu byu@cse.cuhk.edu.hk (Latest update: January 31, 2018) Spring 2018 1 / 49 Overview Introduction Arithmetic & Logical Instructions Data Transfer Instructions

More information

Field 6-Bit Op Code rs Field rt Field 16-bit Immediate field

Field 6-Bit Op Code rs Field rt Field 16-bit Immediate field Introduction to MIPS Instruction Set Architecture The MIPS used by SPIM is a 32-bit reduced instruction set architecture with 32 integer and 32 floating point registers. Other characteristics are as follows:

More information

Review (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C - Machine Structures

Review (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C - Machine Structures Review (1/2) CS61C - Machine Structures Lecture 11 - Starting a Program October 4, 2000 David Patterson http://www-inst.eecs.berkeley.edu/~cs61c/ IEEE 754 Floating Point Standard: Kahan pack as much in

More information

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

More information

Chapter 2. lw $s1,100($s2) $s1 = Memory[$s2+100] sw $s1,100($s2) Memory[$s2+100] = $s1

Chapter 2. lw $s1,100($s2) $s1 = Memory[$s2+100] sw $s1,100($s2) Memory[$s2+100] = $s1 Chapter 2 1 MIPS Instructions Instruction Meaning add $s1,$s2,$s3 $s1 = $s2 + $s3 sub $s1,$s2,$s3 $s1 = $s2 $s3 addi $s1,$s2,4 $s1 = $s2 + 4 ori $s1,$s2,4 $s2 = $s2 4 lw $s1,100($s2) $s1 = Memory[$s2+100]

More information

SPIM & MIPS Programming

SPIM & MIPS Programming Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 3010: Computer Architecture Discussion Lecture # 1 SPIM & MIPS Programming Eng. Eman R. Habib September, 2013 2 Computer

More information

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions Representing Instructions Instructions are encoded in binary Called machine code MIPS instructions Encoded as 32-bit instruction words Small number of formats encoding operation code (opcode), register

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Instructions: Language of the Computer Operations and Operands of the Computer Hardware Signed and Unsigned Numbers Representing

More information

A crash course in MIPS assembly programming

A crash course in MIPS assembly programming A crash course in MIPS assembly programming Computer Architecture 1DT016 distance Fall 2017 http://xyx.se/1dt016/index.php Per Foyer Mail: per.foyer@it.uu.se 1 MIPS Our processor Microprocessor without

More information

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont )

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont ) Chapter 2 Computer Abstractions and Technology Lesson 4: MIPS (cont ) Logical Operations Instructions for bitwise manipulation Operation C Java MIPS Shift left >>> srl Bitwise

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 15 April 1, 2009 martha@cs.columbia.edu and the rest of the semester Source code (e.g., *.java, *.c) (software) Compiler MIPS instruction set architecture

More information

EC-801 Advanced Computer Architecture

EC-801 Advanced Computer Architecture EC-801 Advanced Computer Architecture Lecture 5 Instruction Set Architecture I Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Instruction Set Architecture

More information

Control Instructions. Computer Organization Architectures for Embedded Computing. Thursday, 26 September Summary

Control Instructions. Computer Organization Architectures for Embedded Computing. Thursday, 26 September Summary Control Instructions Computer Organization Architectures for Embedded Computing Thursday, 26 September 2013 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition,

More information

Control Instructions

Control Instructions Control Instructions Tuesday 22 September 15 Many slides adapted from: and Design, Patterson & Hennessy 5th Edition, 2014, MK and from Prof. Mary Jane Irwin, PSU Summary Previous Class Instruction Set

More information