NATIONAL UNIVERSITY OF SINGAPORE

Size: px
Start display at page:

Download "NATIONAL UNIVERSITY OF SINGAPORE"

Transcription

1 NATIONAL UNIVERSITY OF SINGAPORE SCHOOL OF COMPUTING EXAMINATION FOR Semester 1 AY2013/14 CS2100 COMPUTER ORGANISATION ANSWER SCRIPT Nov 2013 Time allowed: 2 hours Caveat on the grading scheme: I have given a sample grading Your scheme Matriculation in the yellow Number: boxes. However you will be surprise how varied DRAFT the actual ANSWERS answers you guys give. It is not possible for me to forsee all possible student answers. As such, the stated grading schemes for each question are mere guidelines. I will need to exercise discretion on the actual grading itself. You must write you answers to the questions in the appropriate space provided. Any writing outside the given space will not be considered during marking. Begin on the next page. Q1 Q2 Q3 Q4 Q5 Q6 Total Score /100 ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 1 of 15

2 Answer for Question 1a: Present State Next State Flip-Flop A Flip-Flop B Flip-Flop C A B C A B C J A K A J B K B J C K C X 1 X 0 X X X X X X X X X X X X 1 0 X X X X X X X X X X X 0 X 1 0 X X X X X X X X X X X 1 1 X 0 X X X X X X X X X X Full marks: 10 Filling in the table correctly: 3 mark Six K-maps: 1 mark each Getting circuit correct: 1 marks J A = B B 0 X X 1 A X X X X K A = B B X X X X A 0 X X 1 J B = 1 B 1 X X X A X X X 1 K B = 1 B X X X 1 A 1 X X X J C = 0 B 0 X X 0 A 0 X X 0 K C = 0 B X X X X A 0 X X X ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 2 of 15

3 Answer for Question 1b: Full marks: 5 Getting A correct: 2 mark Getting B correct: 3 marks ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 3 of 15

4 Answer for Question 2a: 0x44e13800 Full marks: 3 Final answer correct: 2 marks Working: 1 mark Answer for Question 2b: This is a bad idea because there is only 23 bits of significance in the IEEE single precision floating point numbers. So, for example, while the integer 0x x1 is 0x in integer, in floating point, 0x is represented by the IEEE single precision number 0x4b When we add 1 (or 1.0) to this number, we still get 0x4b Full marks: 3 Hitting the nail on the precision issue: 2 marks A good example: 1 mark Answer for Question 2c: 0x47a8cabf is This is x 2 ( ) or x x3f86b723 is This is x 2 ( ) or Shifting the smaller number to align the binary point, we have Guard bit = 1 Round bit = 0 Sticky bit = 1 Full marks: 3 1 mark for each bit (subject to correctness of working) No working provided or working wrong: 1 mark ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 4 of 15

5 Answer for Question 2d: Performing the addition, we get Rounding to nearest, we get the result of: x or 0x47A8CB46 Full marks: 6 Performing the addition correctly: 3 marks (Partial marks for partially correct answer all will depend on my estimation of how many percent is the answer correct.) Rounding correctly done: 1 mark Final answer in hex correct: 2 marks Final answer not presented in hex: 1 marks ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 5 of 15

6 Answer for Question 3a: ori $a2, $s3, 0xFEED Full marks: 3 Partial marks for partially correct answer all will depend on my estimation of how many percent is the answer correct. Answer for Question 3b: xor $t2, $s1, $a1 is equivalent to and $at, $s1, $a1 # s1 AND a1 or $t2, $s1, $a1 # s1 OR a1 nor $at, $at, $at # NOT(s1 AND a1) and $t2, $t2, $at (s 1 + a 1 ) (s 1 a 1 ) = (s 1 + a 1 ) (s 1 + a 1 ) = s 1 (s 1 + a 1 ) + a 1 (s 1 + a 1 ) = s 1 s 1 + s 1 a 1 + a 1 s 1 + a 1 a 1 = 0 + s 1 a 1 + a 1 s = s 1 a 1 + a 1 s 1 = s 1 a 1 Full marks: 5 Partial marks for partially correct answer all will depend on my estimation of how badly wrong is your answer. ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 6 of 15

7 Answer for Question 3c: FINDMIN: slt $t0, $a1, $0 # Make sure N > 0 bne $t0, $0, OUT # if not, get out add $t0, $a0, $a1 # Address of ARR[N] lw $v0, -1($t0) # Get ARR[N-1] - make it the current min addi $t0, $t0, -1 # Advance index to ARR[N-1] LOOP: beq $t0, $a0, OUT # Will terminate when we reached ARR[0] lw $t1, -1($t0) # Get ARR[i-1] slt $t0, $v0, $t1 # current min < ARR[N-1]? bne $t0, $0, NEXT # if so, go to next element addi $v0, $t1, 0 # otherwise, update current min NEXT: addi $t0, $t0, -1 # decrement address j LOOP OUT: jr $ra # Current min already in return value $v0 Full marks: 12 Partial marks for partially correct answer all will depend on my estimation of how badly wrong is your answer. ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 7 of 15

8 Answer for Question 4a: The instruction is beq $t5, $a1, 0x1481 Signal Value Read reg 1 Read reg 2 Write reg RegDst 0xD 0x5 X / 0x2 X RegWrite 0 ALUSrc 0 Branch 1 Address 0 ALUOp 0x2 MemWrite 0 MemRead 0 MemtoReg ❶ ❷ X 0x x6208 Full marks: 5 For each incorrect entry that is not a don t-care in the answer, 0.5 marks, subjected to a minimum total mark of 0. ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 8 of 15

9 Answer for Question 4b: The shift instructions are R-format instructions. However, in the existing datapath, the shift amount is not extracted. In order to support the shift instructions, we will need: 1. The shift amount field to be extracted and passed directly into the ALU. 2. Shifters have to be added to the ALU. 3. ALU control must decode shift instructions and issue the appropriate instructions to the ALU to perform shifting. 4. All other data path is as per R-format instructions. Full marks: 5 Each of these 4 points: 1 mark each How well the answer is written up: 1 mark Answer for Question 4c: lui is a I-format instructions. Under the current datapath, RS and the immediate is passed into the ALU. RT is also handled correctly for writing. So in order to support the lui instructions: 1. Shifters have to be added to the ALU. 2. ALU control should be modified to instruct the ALU s shifter to shift the immediate by 16 bits. 3. The rest of the processing is handled as per I-format instructions. Full marks: 5 Points 1 and 3: 1 mark each Point 2: 2 marks How well the answer is written up: 1 mark ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 9 of 15

10 Answer for Question 5a: Clock Cycle ❶ ❷ ❸ ❹ ❺ i i i No. The situation is not correctly handled. While a NOP was inserted as the load-use hazard was detected, when the load finishes accessing memory, the current hardware only forwards into the ALU as RT. But for a sw instruction, the ALU uses RS and the immediate to compute the address and discards the RT. Instead the incorrect RT read from the register file by the sw instruction is written into memory. Full marks: 4 Filling up the table correctly: 2 marks Identifying the issue in the handling: 2 marks ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 10 of 15

11 Answer for Question 5b(i): The existing load-use hazard mechanism will insert a NOP, and the forwarding needs to be done as above. Full marks: 4 Identifying the forwarding path correctly: 2 marks Explaining the solution: 2 marks ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 11 of 15

12 Answer for Question 5b(ii): The changes are: 1. A multiplexor must be added at point 1. This over-rides the value read by the sw from the register file. 2. A new forwarding rule must be added: if (ID/EX.MemWrite = 1) # i.e., a sw in EX and (MEM/WB.MemRead = 1) # i.e., a lw in WB and (ID/EX.RegisterRt = MEM/WB.RegisterRt) then forward via point 1. Note that this will require the MemRead command to be passed along to the WB stage. Note that the NOP insertion is unavoidable even though it seems like it is possible to forward from the WB stage back to the MEM stage. When the lw is in the EX stage, the sw is still being decoded and hence there is no way of telling if it is a lw-sw situation or any other load-use situation. Full marks: 4 Identifying the multiplexor to be added and where it is to be added: 1 mark The forwarding rule: 2 marks Detail of description: 1 mark Answer for Question 5c: 0 = Not taken, 1 = Taken Initial State Loop 00 BR 00 Iteration 0 (PC at CONT) Loop 00 BR 01 Iteration 1 (PC at CONT) Loop 00 BR 00 Iteration 2 (PC at CONT) Loop 00 BR 01 ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 12 of 15

13 Iteration 3 (PC at CONT) Loop 00 BR 00 Iteration 98 (PC at CONT) Loop 00 BR 01 Iteration 99 (PC at CONT) Loop 00 BR 00 PC at OUT Loop 01 BR 00 Full marks: 4 Each of the entries before the last two: 0.5 mark each Last two entries: 1 mark each ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 13 of 15

14 Answer for Question 6a: Byte offset = 4 bits Index = 10 bits Tag = 18 bits Each way will need 1 valid bit, 1 dirty bit, 18 bits tag, 4x32 = 128 bits data. Total = 148 bits of storage. Each set has 4 ways, totaling 4 * 148 = 592 bits. There are 1024 sets. So the total storage needed to implement the cache is 1024 *592 bits = 606,208 bits. Full marks: 3 Getting the number of bits for each field correct: 1 mark Getting the total for each set correct: 1 mark Getting the total correct: 1 mark Answer for Question 6b: M[0x80104A3B] Index Valid Tag Word1 Word x x80104A38 0x80104A3C Hit Miss M[0x ] Index Valid Tag Word1 Word x x80104A38 0x80104A3C 1 1 0x x x Hit Miss ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 14 of 15

15 M[0x80104A9B] Index Valid Tag Word1 Word x x80104A38 0x80104A3C 1 1 0x x x x x80104A98 0x80104A9C 3 Hit Miss M[0x ] Index Valid Tag Word1 Word x x80104A38 0x80104A3C 1 1 0x x x x x80104A98 0x80104A9C 3 1 0x x x C Hit Miss M[0x80104A38] Index Valid Tag Word1 Word x x80104A38 0x80104A3C 1 1 0x x x x x80104A98 0x80104A9C 3 1 0x x x C Hit Miss M[0x A] Index Valid Tag Word1 Word x x80104A38 0x80104A3C 1 1 0xE3103 0x x C 2 1 0x x80104A98 0x80104A9C 3 1 0x x x C Hit Miss Full marks: 12 Two marks for each reference. For each reference, correctly identifying hit or miss is 0.5 mark, the rest is for getting the hexadecimal entry correct. End of Answer Sheet ANSWER SHEET CS2100 Semester 1 AY2013/14 Page 15 of 15

CS 351 Exam 2 Mon. 11/2/2015

CS 351 Exam 2 Mon. 11/2/2015 CS 351 Exam 2 Mon. 11/2/2015 Name: Rules and Hints The MIPS cheat sheet and datapath diagram are attached at the end of this exam for your reference. You may use one handwritten 8.5 11 cheat sheet (front

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information

CSEN 601: Computer System Architecture Summer 2014

CSEN 601: Computer System Architecture Summer 2014 CSEN 601: Computer System Architecture Summer 2014 Practice Assignment 5 Solutions Exercise 5-1: (Midterm Spring 2013) a. What are the values of the control signals (except ALUOp) for each of the following

More information

CSE 378 Midterm 2/12/10 Sample Solution

CSE 378 Midterm 2/12/10 Sample Solution Question 1. (6 points) (a) Rewrite the instruction sub $v0,$t8,$a2 using absolute register numbers instead of symbolic names (i.e., if the instruction contained $at, you would rewrite that as $1.) sub

More information

Laboratory Exercise 6 Pipelined Processors 0.0

Laboratory Exercise 6 Pipelined Processors 0.0 Laboratory Exercise 6 Pipelined Processors 0.0 Goals After this laboratory exercise, you should understand the basic principles of how pipelining works, including the problems of data and branch hazards

More information

Processor (I) - datapath & control. Hwansoo Han

Processor (I) - datapath & control. Hwansoo Han Processor (I) - datapath & control Hwansoo Han Introduction CPU performance factors Instruction count - Determined by ISA and compiler CPI and Cycle time - Determined by CPU hardware We will examine two

More information

ECE 313 Computer Organization FINAL EXAM December 14, This exam is open book and open notes. You have 2 hours.

ECE 313 Computer Organization FINAL EXAM December 14, This exam is open book and open notes. You have 2 hours. This exam is open book and open notes. You have 2 hours. Problems 1-4 refer to a proposed MIPS instruction lwu (load word - update) which implements update addressing an addressing mode that is used in

More information

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination May 23, 2014 Name: Email: Student ID: Lab Section Number: Instructions: 1. This

More information

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 4 The Processor: A Based on P&H Introduction We will examine two MIPS implementations A simplified version A more realistic pipelined

More information

EE557--FALL 1999 MAKE-UP MIDTERM 1. Closed books, closed notes

EE557--FALL 1999 MAKE-UP MIDTERM 1. Closed books, closed notes NAME: STUDENT NUMBER: EE557--FALL 1999 MAKE-UP MIDTERM 1 Closed books, closed notes Q1: /1 Q2: /1 Q3: /1 Q4: /1 Q5: /15 Q6: /1 TOTAL: /65 Grade: /25 1 QUESTION 1(Performance evaluation) 1 points We are

More information

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds?

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds? Chapter 4: Assessing and Understanding Performance 1. Define response (execution) time. 2. Define throughput. 3. Describe why using the clock rate of a processor is a bad way to measure performance. Provide

More information

Single Cycle Data Path

Single Cycle Data Path Single ycle ata Path S 365 Lecture 6 Prof. Yih Huang S365 1 MIPS Lite We're ready to look at an implementation of the MIPS Simplified to support only: memory-reference instructions: lw, sw arithmetic-logical

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

Chapter 5 Solutions: For More Practice

Chapter 5 Solutions: For More Practice Chapter 5 Solutions: For More Practice 1 Chapter 5 Solutions: For More Practice 5.4 Fetching, reading registers, and writing the destination register takes a total of 300ps for both floating point add/subtract

More information

CS232 Final Exam May 5, 2001

CS232 Final Exam May 5, 2001 CS232 Final Exam May 5, 2 Name: This exam has 4 pages, including this cover. There are six questions, worth a total of 5 points. You have 3 hours. Budget your time! Write clearly and show your work. State

More information

Lecture 4: Review of MIPS. Instruction formats, impl. of control and datapath, pipelined impl.

Lecture 4: Review of MIPS. Instruction formats, impl. of control and datapath, pipelined impl. Lecture 4: Review of MIPS Instruction formats, impl. of control and datapath, pipelined impl. 1 MIPS Instruction Types Data transfer: Load and store Integer arithmetic/logic Floating point arithmetic Control

More information

ECE Sample Final Examination

ECE Sample Final Examination ECE 3056 Sample Final Examination 1 Overview The following applies to all problems unless otherwise explicitly stated. Consider a 2 GHz MIPS processor with a canonical 5-stage pipeline and 32 general-purpose

More information

Pipelining and Caching. CS230 Tutorial 09

Pipelining and Caching. CS230 Tutorial 09 Pipelining and Caching CS230 Tutorial 09 Pipelining Hazards Data hazard: What happens when one instruction needs something that isn t ready? Example: add $3, $1, $2 add $5, $3, $4 This is solved by forwarding

More information

Winter 2002 FINAL EXAMINATION

Winter 2002 FINAL EXAMINATION University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructors: Dr. S. A. Norman (L01) and Dr. S. Yanushkevich (L02) Note for Winter 2005 students Winter

More information

EE557--FALL 1999 MIDTERM 1. Closed books, closed notes

EE557--FALL 1999 MIDTERM 1. Closed books, closed notes NAME: SOLUTIONS STUDENT NUMBER: EE557--FALL 1999 MIDTERM 1 Closed books, closed notes GRADING POLICY: The front page of your exam shows your total numerical score out of 75. The highest numerical score

More information

Chapter 5: The Processor: Datapath and Control

Chapter 5: The Processor: Datapath and Control Chapter 5: The Processor: Datapath and Control Overview Logic Design Conventions Building a Datapath and Control Unit Different Implementations of MIPS instruction set A simple implementation of a processor

More information

The Evolution of Microprocessors. Per Stenström

The Evolution of Microprocessors. Per Stenström The Evolution of Microprocessors Per Stenström Processor (Core) Processor (Core) Processor (Core) L1 Cache L1 Cache L1 Cache L2 Cache Microprocessor Chip Memory Evolution of Microprocessors Multicycle

More information

Computer Organization and Structure

Computer Organization and Structure Computer Organization and Structure 1. Assuming the following repeating pattern (e.g., in a loop) of branch outcomes: Branch outcomes a. T, T, NT, T b. T, T, T, NT, NT Homework #4 Due: 2014/12/9 a. What

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

LECTURE 5. Single-Cycle Datapath and Control

LECTURE 5. Single-Cycle Datapath and Control LECTURE 5 Single-Cycle Datapath and Control PROCESSORS In lecture 1, we reminded ourselves that the datapath and control are the two components that come together to be collectively known as the processor.

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

Final Project: MIPS-like Microprocessor

Final Project: MIPS-like Microprocessor Final Project: MIPS-like Microprocessor Objective: The objective of this project is to design, simulate, and implement a simple 32-bit microprocessor with an instruction set that is similar to a MIPS.

More information

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off.

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off. Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 552 Introductions to Computer Architecture Homework #2 (Suggested Solution) 1. (10 points) MIPS and C program translations

More information

Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20)

Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20) Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20) The MIPS jump and link instruction, jal is used to support procedure calls by jumping to jump address (similar to j ) and

More information

CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control)

CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) 1) If this exam were a CPU, you d be halfway through the pipeline (Sp15 Final) We found that the instruction fetch and memory stages

More information

CS 251, Winter 2019, Assignment % of course mark

CS 251, Winter 2019, Assignment % of course mark CS 251, Winter 2019, Assignment 5.1.1 3% of course mark Due Wednesday, March 27th, 5:30PM Lates accepted until 1:00pm March 28th with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

Pipeline design. Mehran Rezaei

Pipeline design. Mehran Rezaei Pipeline design Mehran Rezaei How Can We Improve the Performance? Exec Time = IC * CPI * CCT Optimization IC CPI CCT Source Level * Compiler * * ISA * * Organization * * Technology * With Pipelining We

More information

Final Exam Fall 2007

Final Exam Fall 2007 ICS 233 - Computer Architecture & Assembly Language Final Exam Fall 2007 Wednesday, January 23, 2007 7:30 am 10:00 am Computer Engineering Department College of Computer Sciences & Engineering King Fahd

More information

Single Cycle CPU Design. Mehran Rezaei

Single Cycle CPU Design. Mehran Rezaei Single Cycle CPU Design Mehran Rezaei What does it mean? Instruction Fetch Instruction Memory clk pc 32 32 address add $t,$t,$t2 instruction Next Logic to generate the address of next instruction The Branch

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

Processor Design Pipelined Processor (II) Hung-Wei Tseng

Processor Design Pipelined Processor (II) Hung-Wei Tseng Processor Design Pipelined Processor (II) Hung-Wei Tseng Recap: Pipelining Break up the logic with pipeline registers into pipeline stages Each pipeline registers is clocked Each pipeline stage takes one

More information

Computer Architecture I Midterm I (solutions)

Computer Architecture I Midterm I (solutions) Computer Architecture I Midterm II May 9 2017 Computer Architecture I Midterm I (solutions) Chinese Name: Pinyin Name: E-Mail... @shanghaitech.edu.cn: Question Points Score 1 1 2 23 3 13 4 18 5 14 6 15

More information

Lab 4 Report. Single Cycle Design BAOTUNG C. TRAN EEL4713C

Lab 4 Report. Single Cycle Design BAOTUNG C. TRAN EEL4713C Lab 4 Report Single Cycle Design BAOTUNG C. TRAN EEL4713C Added Hardware : Andi and Ori : For this instruction, I had to add a zero extender into my design. Which therefore required me to add a mux that

More information

CS 61C Fall 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control)

CS 61C Fall 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) CS 61C Fall 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) 1) If this exam were a CPU, you d be halfway through the pipeline (Sp15 Final) We found that the instruction fetch and memory stages

More information

Systems Architecture

Systems Architecture Systems Architecture Lecture 15: A Simple Implementation of MIPS Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

CSc 256 Midterm 2 Fall 2011

CSc 256 Midterm 2 Fall 2011 CSc 256 Midterm 2 Fall 2011 NAME: 1a) You are given a MIPS branch instruction: x: beq $12, $0, y The address of the label "y" is 0x400468. The memory location at "x" contains: address contents 0x40049c

More information

Perfect Student CS 343 Final Exam May 19, 2011 Student ID: 9999 Exam ID: 9636 Instructions Use pencil, if you have one. For multiple choice

Perfect Student CS 343 Final Exam May 19, 2011 Student ID: 9999 Exam ID: 9636 Instructions Use pencil, if you have one. For multiple choice Instructions Page 1 of 7 Use pencil, if you have one. For multiple choice questions, circle the letter of the one best choice unless the question specifically says to select all correct choices. There

More information

Problem 4 The order, from easiest to hardest, is Bit Equal, Split Register, Replace Under Mask.

Problem 4 The order, from easiest to hardest, is Bit Equal, Split Register, Replace Under Mask. HW3 Solutions (CS552 Spring 2013) Grade distribution: (Total: 100) - Verilog submission of problems 1), 2) and 3) carry 15 points each(total: 45 points) - Written part of problem 1), 2) and 3) carry 5

More information

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu CENG 342 Computer Organization and Design Lecture 6: MIPS Processor - I Bei Yu CEG342 L6. Spring 26 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified

More information

ECE 3056: Architecture, Concurrency and Energy of Computation. Single and Multi-Cycle Datapaths: Practice Problems

ECE 3056: Architecture, Concurrency and Energy of Computation. Single and Multi-Cycle Datapaths: Practice Problems ECE 3056: Architecture, Concurrency and Energy of Computation Single and Multi-Cycle Datapaths: Practice Problems 1. Consider the single cycle SPIM datapath. a. Specify the values of the control signals

More information

ECE Exam I - Solutions February 19 th, :00 pm 4:25pm

ECE Exam I - Solutions February 19 th, :00 pm 4:25pm ECE 3056 Exam I - Solutions February 19 th, 2015 3:00 pm 4:25pm 1. (35 pts) Consider the following block of SPIM code. The text segment starts at 0x00400000 and the data segment starts at 0x10010000..data

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

CS2100 COMPUTER ORGANISATION

CS2100 COMPUTER ORGANISATION CS00 NATIONAL UNIVERSITY OF SINGAPORE CS00 COMPUTER ORGANISATION (Semester : AY07/8) Time Allowed: Hours INSTRUCTIONS TO CANDIDATES. This assessment paper consists of SEVEN (7) questions and comprises

More information

CSE 141 Computer Architecture Summer Session Lecture 3 ALU Part 2 Single Cycle CPU Part 1. Pramod V. Argade

CSE 141 Computer Architecture Summer Session Lecture 3 ALU Part 2 Single Cycle CPU Part 1. Pramod V. Argade CSE 141 Computer Architecture Summer Session 1 2004 Lecture 3 ALU Part 2 Single Cycle CPU Part 1 Pramod V. Argade Reading Assignment Announcements Chapter 5: The Processor: Datapath and Control, Sec. 5.3-5.4

More information

CS232 Final Exam May 5, 2001

CS232 Final Exam May 5, 2001 CS232 Final Exam May 5, 2 Name: Spiderman This exam has 4 pages, including this cover. There are six questions, worth a total of 5 points. You have 3 hours. Budget your time! Write clearly and show your

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Faculty of Science FINAL EXAMINATION

Faculty of Science FINAL EXAMINATION Faculty of Science FINAL EXAMINATION COMPUTER SCIENCE COMP 273 INTRODUCTION TO COMPUTER SYSTEMS Examiner: Prof. Michael Langer April 18, 2012 Associate Examiner: Mr. Joseph Vybihal 2 P.M. 5 P.M. STUDENT

More information

Project Description EEC 483 Computer Organization, Spring 2019

Project Description EEC 483 Computer Organization, Spring 2019 Project Description EEC 483 Computer Organization, Spring 2019 Title: Implement a (single-cycle) MIPS processor on Altera DE10-Lite using Quartus and VHDL Goal: This project is designed to help understand

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

RISC Processor Design

RISC Processor Design RISC Processor Design Single Cycle Implementation - MIPS Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 13 SE-273: Processor Design Feb 07, 2011 SE-273@SERC 1 Courtesy:

More information

/ : Computer Architecture and Design Fall Midterm Exam October 16, Name: ID #:

/ : Computer Architecture and Design Fall Midterm Exam October 16, Name: ID #: 16.482 / 16.561: Computer Architecture and Design Fall 2014 Midterm Exam October 16, 2014 Name: ID #: For this exam, you may use a calculator and two 8.5 x 11 double-sided page of notes. All other electronic

More information

University of Jordan Computer Engineering Department CPE439: Computer Design Lab

University of Jordan Computer Engineering Department CPE439: Computer Design Lab University of Jordan Computer Engineering Department CPE439: Computer Design Lab Experiment : Introduction to Verilogger Pro Objective: The objective of this experiment is to introduce the student to the

More information

Topic #6. Processor Design

Topic #6. Processor Design Topic #6 Processor Design Major Goals! To present the single-cycle implementation and to develop the student's understanding of combinational and clocked sequential circuits and the relationship between

More information

CS 351 Exam 2, Fall 2012

CS 351 Exam 2, Fall 2012 CS 351 Exam 2, Fall 2012 Your name: Rules You may use one handwritten 8.5 x 11 cheat sheet (front and back). This is the only resource you may consult during this exam. Include explanations and comments

More information

Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium Tuesday, April 18 7:00pm to 10:00pm

Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium Tuesday, April 18 7:00pm to 10:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructor for L01 and L02: Dr. S. A. Norman Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 251, Winter 2018, Assignment 5.0.4 3% of course mark Due Wednesday, March 21st, 4:30PM Lates accepted until 10:00am March 22nd with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department Page 1 of 13 King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department COE 301 COMPUTER ORGANIZATION ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY

More information

The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE Test II November 14, 2000

The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE Test II November 14, 2000 The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE 513 01 Test II November 14, 2000 Name: 1. (5 points) For an eight-stage pipeline, how many cycles does it take to

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

ECE 3056: Architecture, Concurrency, and Energy of Computation. Sample Problem Sets: Pipelining

ECE 3056: Architecture, Concurrency, and Energy of Computation. Sample Problem Sets: Pipelining ECE 3056: Architecture, Concurrency, and Energy of Computation Sample Problem Sets: Pipelining 1. Consider the following code sequence used often in block copies. This produces a special form of the load

More information

Winter 2009 FINAL EXAMINATION Location: Engineering A Block, Room 201 Saturday, April 25 noon to 3:00pm

Winter 2009 FINAL EXAMINATION Location: Engineering A Block, Room 201 Saturday, April 25 noon to 3:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructors: S. A. Norman (L01), N. R. Bartley (L02) Winter 2009 FINAL EXAMINATION Location:

More information

CS Computer Architecture Spring Week 10: Chapter

CS Computer Architecture Spring Week 10: Chapter CS 35101 Computer Architecture Spring 2008 Week 10: Chapter 5.1-5.3 Materials adapated from Mary Jane Irwin (www.cse.psu.edu/~mji) and Kevin Schaffer [adapted from D. Patterson slides] CS 35101 Ch 5.1

More information

CS 2506 Computer Organization II Test 1. Do not start the test until instructed to do so! printed

CS 2506 Computer Organization II Test 1. Do not start the test until instructed to do so! printed Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No calculators or other computing devices may

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 14: One Cycle MIPs Datapath Adapted from Computer Organization and Design, Patterson & Hennessy, UCB R-Format Instructions Read two register operands Perform

More information

EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution

EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution Important guidelines: Always state your assumptions and clearly explain your answers. Please upload your solution document

More information

c. What are the machine cycle times (in nanoseconds) of the non-pipelined and the pipelined implementations?

c. What are the machine cycle times (in nanoseconds) of the non-pipelined and the pipelined implementations? Brown University School of Engineering ENGN 164 Design of Computing Systems Professor Sherief Reda Homework 07. 140 points. Due Date: Monday May 12th in B&H 349 1. [30 points] Consider the non-pipelined

More information

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath COMP33 - Computer Architecture Lecture 8 Designing a Single Cycle Datapath The Big Picture The Five Classic Components of a Computer Processor Input Control Memory Datapath Output The Big Picture: The

More information

ECE Exam I February 19 th, :00 pm 4:25pm

ECE Exam I February 19 th, :00 pm 4:25pm ECE 3056 Exam I February 19 th, 2015 3:00 pm 4:25pm 1. The exam is closed, notes, closed text, and no calculators. 2. The Georgia Tech Honor Code governs this examination. 3. There are 4 questions and

More information

Lecture 8: Control COS / ELE 375. Computer Architecture and Organization. Princeton University Fall Prof. David August

Lecture 8: Control COS / ELE 375. Computer Architecture and Organization. Princeton University Fall Prof. David August Lecture 8: Control COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Datapath and Control Datapath The collection of state elements, computation elements,

More information

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Full Datapath Branch Target Instruction Fetch Immediate 4 Today s Contents We have looked

More information

CSc 256 Midterm 2 Spring 2012

CSc 256 Midterm 2 Spring 2012 CSc 256 Midterm 2 Spring 2012 NAME: 1a) You are given this MIPS assembly language instruction (i.e., pseudo- instruction): ble $12, 0x20004880, there Translate this MIPS instruction to an efficient sequence

More information

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141 EECS 151/251A Fall 2017 Digital Design and Integrated Circuits Instructor: John Wawrzynek and Nicholas Weaver Lecture 13 Project Introduction You will design and optimize a RISC-V processor Phase 1: Design

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined

More information

Codeword[1] Codeword[0]

Codeword[1] Codeword[0] Student #: ID: A CSE 221 - Quiz 3 - Fall 29 Problem 1. Convolutional encoding is commonly used on cell phones to ensure data is received with few errors using the low transmit power typically available

More information

ECE 313 Computer Organization EXAM 2 November 11, 2000

ECE 313 Computer Organization EXAM 2 November 11, 2000 This exam is open book and open notes. You have 50 minutes. Credit for problems requiring calculation will be given only if you show your work. 1. ALU Design / Logic Operations 20 Points The subset of

More information

The Processor: Datapath & Control

The Processor: Datapath & Control Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Processor: Datapath & Control Processor Design Step 3 Assemble Datapath Meeting Requirements Build the

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

CS2100 Computer Organisation Tutorial #10: Pipelining Answers to Selected Questions

CS2100 Computer Organisation Tutorial #10: Pipelining Answers to Selected Questions CS2100 Computer Organisation Tutorial #10: Pipelining Answers to Selected Questions Tutorial Questions 2. [AY2014/5 Semester 2 Exam] Refer to the following MIPS program: # register $s0 contains a 32-bit

More information

Final Exam Spring 2017

Final Exam Spring 2017 COE 3 / ICS 233 Computer Organization Final Exam Spring 27 Friday, May 9, 27 7:3 AM Computer Engineering Department College of Computer Sciences & Engineering King Fahd University of Petroleum & Minerals

More information

Inf2C - Computer Systems Lecture Processor Design Single Cycle

Inf2C - Computer Systems Lecture Processor Design Single Cycle Inf2C - Computer Systems Lecture 10-11 Processor Design Single Cycle Boris Grot School of Informatics University of Edinburgh Previous lectures Combinational circuits Combinations of gates (INV, AND, OR,

More information

CSE Quiz 3 - Fall 2009

CSE Quiz 3 - Fall 2009 Student #: ID: B CSE 221 - Quiz 3 - Fall 29 Problem 1. (a) Enter an appropriate value in each table cell corresponding to the Instruction in the column. Enter an X if the value is not applicable for the

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3.

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3. Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup =2n/05n+15 2n/0.5n 1.5 4 = number of stages 4.5 An Overview

More information

CS/COE0447: Computer Organization

CS/COE0447: Computer Organization CS/COE0447: Computer Organization and Assembly Language Datapath and Control Sangyeun Cho Dept. of Computer Science A simple MIPS We will design a simple MIPS processor that supports a small instruction

More information

CS/COE0447: Computer Organization

CS/COE0447: Computer Organization A simple MIPS CS/COE447: Computer Organization and Assembly Language Datapath and Control Sangyeun Cho Dept. of Computer Science We will design a simple MIPS processor that supports a small instruction

More information

CPE 335 Computer Organization. Basic MIPS Pipelining Part I

CPE 335 Computer Organization. Basic MIPS Pipelining Part I CPE 335 Computer Organization Basic MIPS Pipelining Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE232 Basic MIPS Pipelining

More information

Computer System Architecture Midterm Examination Spring 2002

Computer System Architecture Midterm Examination Spring 2002 Computer System Architecture 6.823 Midterm Examination Spring 2002 Name: This is an open book, open notes exam. 110 Minutes 1 Pages Notes: Not all questions are of equal difficulty, so look over the entire

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

CS 351 Exam 2, Section 1 Wed. 11/2/2016

CS 351 Exam 2, Section 1 Wed. 11/2/2016 CS 351 Exam 2, Section 1 Wed. 11/2/2016 Name: Rules and Hints You may use one handwritten 8.5 11 cheat sheet (front and back). This is the only additional resource you may consult during this exam. No

More information

Department of Electrical Engineering and Computer Sciences Fall 2003 Instructor: Dave Patterson CS 152 Exam #1. Personal Information

Department of Electrical Engineering and Computer Sciences Fall 2003 Instructor: Dave Patterson CS 152 Exam #1. Personal Information University of California, Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2003 Instructor: Dave Patterson 2003-10-8 CS 152 Exam #1 Personal Information First

More information

Lecture 10: Simple Data Path

Lecture 10: Simple Data Path Lecture 10: Simple Data Path Course so far Performance comparisons Amdahl s law ISA function & principles What do bits mean? Computer math Today Take QUIZ 6 over P&H.1-, before 11:59pm today How do computers

More information

Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007

Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007 Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007 Final Exam This is a closed-book take-home exam. You are permitted a calculator and two 8.5x sheets of paper with notes. The exam

More information