Introduction to Computer Science (I1100) With 1 coin 2 possibilities: Head / Tail or 0/1

Size: px
Start display at page:

Download "Introduction to Computer Science (I1100) With 1 coin 2 possibilities: Head / Tail or 0/1"

Transcription

1 With 1 coin 2 possibilities: Head / Tail or 0/1 77

2 What if I have 2 coins?! 0 0 With 2 coins, I can have 4 possibilities With 3 coins, I can have 2*2*2=8 possibilities With 4 coins, I can have 2 4 =16 possibilities 78

3 Computer architecture Number Systems 79

4 Outline Number systems Definitions Positional number systems Decimal system Binary system Hexadecimal system Octal system Comparison of numbers in the four systems Nonpositional number systems 80

5 Introduction A number system defines how a number can be represented using distinct symbols. A number can be represented differently in different systems. Example: (2A) 16 = (52) 8 = (42) 10 We use characters to create words. The number of symbols is limited. We need to repeat characters and combine then to create words. 81

6 Introduction It is the same for numbers. There s a limited number of symbols (digits) to represent numbers. Digits need to be repeated. 2 categories of number systems: 1. Positional 2. Non-Positional 82

7

8

9 Positional number systems In a positional number system, the position a symbol occupies in the number, determines the value it represents. In this system, a number represented as : ± has the value of : =± b is the base 85

10 Decimal system (base 10) We have 10 symbols to represent a number. The set of symbols is S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ± used to show that a number can be positive or negative. However these signs are not stored in computers (discussed in the next chapter). In the decimal system, a number is written as : ± An integer (number with no fractional part) is familiar to all of us, its value =±

11 Decimal system (base 10) Another way to show an integer is to use place values, which are powers of 10 for decimal numbers Place value ± Number =± Value 87

12 Decimal system (base 10) Example 1 Place value of (+224) 10 in the decimal system Place value Number = Value 88

13 Decimal system (base 10) Example 2 Place value of (-7508) 10 in the decimal system Place value Number = ( ) Value = ( ) Value 89

14 Decimal system (base 10) Reals A real (number with fractional part) is also familiar. Represented by ± Its value =±

15 Decimal system (base 10) Reals - Example Place value Number =+ ( ) Value 91

16 Binary system (base 2) The word binary is derived from the Latin root bini (or two by two) We use only 2 symbols, S = {0, 1} The symbols in this system are referred to as binary digits or bits. Data and programs are stored in the computer using a string of bits. Why? Because computer is made of electronic switches that can only have 2 states, on and off. We can represent an integer as : ± The value is calculated as =±

17 Binary system (base 2) Another way to show a binary number using place values: Place value ± Number =± Value 93

18 Binary system (base 2) Example (11001) 2 in binary is the same as 25 in decimal Place value Number = Value = Value 94

19 Binary system (base 2) Maximum value The maximum value of a binary integer with k digits is when all digits equal to 1. n max =2 k -1 Example: if k = 5, n=(11111) 2 = 2 5-1=(31) 10 95

20 Binary system (base 2) Reals A real (number with fractional part) is also familiar. Represented by ± Its value =±

21 Binary system (base 2) Reals - Example (101.11) 2 in binary is equal to 5.75 in decimal Place value Number = Value = =

22 Hexadecimal system (base 16) Binary system is used in computers however it is not convenient for representation of numbers outside the computer. There s an obvious relation between binary and hexadecimal systems (as well as with octal system). We use only 16 symbols, S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} A, B, C, D, E, Fare equivalent to 10, 11, 12, 13, 14, and 15 respectively. The symbols in this system are referred to as hexadecimal digits. We can represent an integer as : ± The value is calculated as =±

23 Hexadecimal system (base 16) Another way to show an hexadecimal number using place values: Place value ± Number =± Value 99

24 Hexadecimal system (base 16) Example (2AE) 16 in hexadecimal is the equivalent to 686 in decimal Place value 2 A E Number = Value = Value 100

25 Hexadecimal system (base 16) Maximum value The maximum value of an hexadecimal integer with k digits is equal to n max =16 k -1 Example: if k = 5, n=16 5-1=( ) 10 It is not common to represent real numbers in hexadecimal. We leave it as an exercise. 101

26 Octal system (base 8) Devised to show the equivalent of the binary system outside the computer. We use only 8 symbols, S = {0, 1, 2, 3, 4, 5, 6, 7} The symbols in this system are referred to as octal digits. We can represent an integer as : ± The value is calculated as =±

27 Octal system (base 8) Another way to show an octal number using place values: Place value ± Number =± Value 103

28 Octal system (base 8) Example (1256) 8 in octal is the equivalent to 686 in decimal Place value Number = Value = Value 104

29 Octal system (base 8) Maximum value The maximum value of an octal integer with k digits is equal to n max =8 k -1 Example: if k = 5, n=8 5-1=(32767) 10 It is not common to represent real numbers in octal. We leave it as an exercise. 105

30 Summary of the four positional systems System Base Symbols Example Decimal 10 0, 1, 2, 3, 4, 5, 6, 7, 8, Binary 2 0, 1 ( ) 2 Octal 8 0, 1, 2, 3, 4, 5, 6, 7 (156.23) 8 Hexadecimal 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (A2C.A1)

31 Comparison of numbers in the Decimal, Binary and Octal systems Decimal Binary Octal

32 Comparison of numbers in the four systems Decimal Binary Octal Hexadecimal A B C D E F 108

33 Conversion Need to know how to convert a number in one system to the equivalent number in another system. We first show how to convert from any base to decimal. Then we show how to convert from decimal to any base. Then, we show how to convert from binary to hexadecimal or octal and vice versa. 109

34 Conversion from base b to decimal To convert: multiply each digit with its place value in the source system and add the results to get the number in the decimal system. Decimal point System b b b b Place value Mutiplication Integral Fraction Decimal 110

35 Conversion Example 1 Convert the binary number (110.11) 2 to decimal. (110.11) 2 = 6.75 Binary Place Value Partial result Decimal

36 Conversion Example 2 Convert the hexadecimal number (1A.23) 16 to decimal. Hexadecimal 1 A 2 3 Place Value Partial result Decimal = (1A.23)

37 Conversion Example 3 Convert the octal number (23.17) 8 to decimal. Octal Place Value Partial result Decimal = (23.17)

38 Conversion from decimal to base b We can convert a decimal number to its equivalent in any base: We need 2 procedures: 1. One for the integral part 2. One for the fractional part 114

39 Converting the integral part Done by repetitive division. Source number Remainders Quotients Divide by destination base 0 Q Q Q S R R R R D Destination number Destination digits 115

40 Converting the integral part Example 1 Convert 35 in decimal to binary (base 2) Divide by D = (100011) 2 116

41 Converting the integral part Example 2 Convert 126 in decimal to octal = (176) 8 117

42 Converting the integral part Example 3 Convert 126 in decimal to hexadecimal = (7E)

43 Converting the fractional part Done by repetitive multiplication. Source number Integral part Fractional part Multiply by destination base S F F F 0 I I I I Destination number Destination digits 119

44 Converting the fractional part Convert the decimal number to binary I I I = (0.101) 2 120

45 Converting the fractional part Convert the decimal number to octal (with a maximum of 4 digits) I I I I = (0.5044) 8 121

46 Converting the fractional part Convert the decimal number to hexadecimal 178.6= (B2.9)

47 Number of digits In a base b, we can find the number of digits of an integer using = log means the smallest integer greater than or equal to Example: find the required number of bits in the decimal number 234 in all four systems In decimal = log 234 = 2.37 =3 In binary = log 234 = 7.8 =8(because 234=( ) 2 ) In octal = log 234 = 2.62 =3(because 234=(352) 8 ) In hexadecimal = log 234 = 1.96 =2(because 234=(EA) 16 ) 123

48 Binary hexadecimal conversion 4 bits in binary is one digit in hexadecimal B m B m-1 B m-2 B m-3 B 7 B 6 B 5 B 4 B 3 B 2 B 1 B 0 Binary H n H 1 H 0 Hexadecimal 124

49 Binary hexadecimal conversion Example Show the hexadecimal equivalent of the binary number ( ) 2 We arrange the binary number in 4-bit patterns: The leftmost patter can have 1 to 4 bits Change the number to hexadecimal ( ) 2 = (4E2)

50 Binary hexadecimal conversion Example What s the binary equivalent of (24C) 16 Each hexadecimal digit is converted to 4-bit patterns: C 1100 The result ( ) 2 126

51 Binary octal conversion 3 bits in binary is one octal digit B m B m-1 B m-2 B 5 B 4 B 3 B 2 B 1 B 0 Binary O n O 1 O 0 Octal 127

52 Binary octal conversion Example Show the octal equivalent of the binary number ( ) 2 We arrange the binary number in 3-bit patterns: Change the number to octal ( ) 2 = (562) 8 128

53 Binary octal conversion Example What s the binary equivalent of (24) 8 Each octal digit is converted to 3-bit patterns: The result ( ) 2 129

54 Hexadecimal Binary Octal conversion 3 bits in binary is one octal digit Octal Binary 8 4 E Hexadecimal 130

55 Nonpositional number systems Nonpositional number systems are not used in computers. Uses a limited number of symbols in which each symbol has a value. The position a symbol occupies in the number normally bears no relation to its value 131

56 Nonpositional number systems Roman numerals S={I, V, X, L, C, D, M} Symbol I V X L C D M Value To find the value of a number: 1. When a symbol with smaller value is placed after a symbol having an equal or larger value, the values are added. 2. When a symbol with smaller value is placed before a symbol having a larger value, the smaller value is subtracted from the larger one. 3. A symbol S 1 cannot come before another symbol S 2 if S 1 10* S 2. Example: I or V cannot come before C. 132

57 Nonpositional number systems Roman numerals - Examples III = 3 IV 5-1 = 4 VIII =8 XVIII =18 XIX 10+(10-1)=19 LXXII =72 CI 100+1=101 MMVII =2007 MDC =

58 References Foundations of Computer Science Behrouz A. Forouzan, Firouz Mosharraf 134

59 Upcoming lecture number Character typed on keyboard Part of an image Part of a song Part of a film 65 A Program Math routine Program Text editor Program Image recorder Program Music recorder Program Video recorder Memory Memory Memory Memory Memory 145

2 Number Systems 2.1. Foundations of Computer Science Cengage Learning

2 Number Systems 2.1. Foundations of Computer Science Cengage Learning 2 Number Systems 2.1 Foundations of Computer Science Cengage Learning 2.2 Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish between

More information

CHAPTER 2 Number Systems

CHAPTER 2 Number Systems CHAPTER 2 Number Systems Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish between non-positional and positional number systems.

More information

COE 202- Digital Logic. Number Systems II. Dr. Abdulaziz Y. Barnawi COE Department KFUPM. January 23, Abdulaziz Barnawi. COE 202 Logic Design

COE 202- Digital Logic. Number Systems II. Dr. Abdulaziz Y. Barnawi COE Department KFUPM. January 23, Abdulaziz Barnawi. COE 202 Logic Design 1 COE 0- Digital Logic Number Systems II Dr. Abdulaziz Y. Barnawi COE Department KFUPM COE 0 Logic Design January 3, 016 Objectives Base Conversion Decimal to other bases Binary to Octal and Hexadecimal

More information

CS & IT Conversions. Magnitude 10,000 1,

CS & IT Conversions. Magnitude 10,000 1, CS & IT Conversions There are several number systems that you will use when working with computers. These include decimal, binary, octal, and hexadecimal. Knowing how to convert between these number systems

More information

Fundamentals of Programming (C)

Fundamentals of Programming (C) Borrowed from lecturer notes by Omid Jafarinezhad Fundamentals of Programming (C) Group 8 Lecturer: Vahid Khodabakhshi Lecture Number Systems Department of Computer Engineering Outline Numeral Systems

More information

Positional notation Ch Conversions between Decimal and Binary. /continued. Binary to Decimal

Positional notation Ch Conversions between Decimal and Binary. /continued. Binary to Decimal Positional notation Ch.. /continued Conversions between Decimal and Binary Binary to Decimal - use the definition of a number in a positional number system with base - evaluate the definition formula using

More information

in this web service Cambridge University Press

in this web service Cambridge University Press 978-0-51-85748- - Switching and Finite Automata Theory, Third Edition Part 1 Preliminaries 978-0-51-85748- - Switching and Finite Automata Theory, Third Edition CHAPTER 1 Number systems and codes This

More information

COE 202: Digital Logic Design Number Systems Part 2. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Number Systems Part 2. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 0: Digital Logic Design Number Systems Part Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: -34 Objectives Arithmetic operations: Binary number system Other number systems Base Conversion

More information

Chapter Binary Representation of Numbers

Chapter Binary Representation of Numbers Chapter 4 Binary Representation of Numbers After reading this chapter, you should be able to: convert a base- real number to its binary representation,. convert a binary number to an equivalent base- number.

More information

Number representations

Number representations Number representations Number bases Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at conversions among them and between each of them and decimal. Binary Base-two, or

More information

CMPS 10 Introduction to Computer Science Lecture Notes

CMPS 10 Introduction to Computer Science Lecture Notes CMPS Introduction to Computer Science Lecture Notes Binary Numbers Until now we have considered the Computing Agent that executes algorithms to be an abstract entity. Now we will be concerned with techniques

More information

Chapter 2 Binary Values and Number Systems

Chapter 2 Binary Values and Number Systems Chapter 2 Binary Values and Number Systems Chapter Goals 10 進位 2 / 8 / 16 進位 進位系統間轉換 各進位系統小數表示 各進位系統加減法 各進位系統乘除法 2 24 6 Numbers Natural Numbers Zero and any number obtained by repeatedly adding one to

More information

Objectives. Connecting with Computer Science 2

Objectives. Connecting with Computer Science 2 Objectives Learn why numbering systems are important to understand Refresh your knowledge of powers of numbers Learn how numbering systems are used to count Understand the significance of positional value

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

Octal & Hexadecimal Number Systems. Digital Electronics

Octal & Hexadecimal Number Systems. Digital Electronics Octal & Hexadecimal Number Systems Digital Electronics What, More Number Systems? Why do we need more number systems? Humans understand decimal Check out my ten digits! Digital electronics (computers)

More information

Switching Circuits and Logic Design Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Switching Circuits and Logic Design Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Switching Circuits and Logic Design Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 02 Octal and Hexadecimal Number Systems Welcome

More information

Level ISA3: Information Representation

Level ISA3: Information Representation Level ISA3: Information Representation 1 Information as electrical current At the lowest level, each storage unit in a computer s memory is equipped to contain either a high or low voltage signal Each

More information

TOPIC: NUMBER SYSTEMS

TOPIC: NUMBER SYSTEMS Ministry of Secondary Education Progressive Comprehensive High School PCHS Mankon Bamenda Department of Computer Studies Republic of Cameroon Peace Work - Fatherland TOPIC: NUMBER SYSTEMS Class: Comp.

More information

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems

More information

Number Systems CHAPTER Positional Number Systems

Number Systems CHAPTER Positional Number Systems CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

More information

MC1601 Computer Organization

MC1601 Computer Organization MC1601 Computer Organization Unit 1 : Digital Fundamentals Lesson1 : Number Systems and Conversions (KSB) (MCA) (2009-12/ODD) (2009-10/1 A&B) Coverage - Lesson1 Shows how various data types found in digital

More information

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the

More information

Number Systems. Both numbers are positive

Number Systems. Both numbers are positive Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

Digital Systems and Binary Numbers

Digital Systems and Binary Numbers Digital Systems and Binary Numbers Mano & Ciletti Chapter 1 By Suleyman TOSUN Ankara University Outline Digital Systems Binary Numbers Number-Base Conversions Octal and Hexadecimal Numbers Complements

More information

TOPICS. Other Number Systems. Other Number Systems 9/9/2017. Octal Hexadecimal Number conversion

TOPICS. Other Number Systems. Other Number Systems 9/9/2017. Octal Hexadecimal Number conversion Topic : Introduction To computers Faculty : Department of commerce and Management BY: Prof.Meeta R. Gujarathi E mail: meetargujarathi@gmail.com Octal Hexadecimal Number conversion TOPICS Other Number Systems

More information

T02 Tutorial Slides for Week 2

T02 Tutorial Slides for Week 2 T02 Tutorial Slides for Week 2 ENEL 353: Digital Circuits Fall 2017 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 19 September, 2017

More information

Number Systems. TA: Mamun. References: Lecture notes of Introduction to Information Technologies (ITEC 1011) by Dr Scott MacKenzie

Number Systems. TA: Mamun. References: Lecture notes of Introduction to Information Technologies (ITEC 1011) by Dr Scott MacKenzie Number Systems TA: Mamun References: Lecture notes of Introduction to Information Technologies (ITEC 1011) by Dr Scott MacKenzie Common Number Systems System Base Symbols Decimal 10 0, 1, 9 Binary 2 0,

More information

Lecture 2: Number Systems

Lecture 2: Number Systems Lecture 2: Number Systems Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University Contents

More information

Digital Logic Lecture 2 Number Systems

Digital Logic Lecture 2 Number Systems Digital Logic Lecture 2 Number Systems By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. Basic definitions. Number systems types. Conversion between different

More information

Octal and Hexadecimal Integers

Octal and Hexadecimal Integers Octal and Hexadecimal Integers CS 350: Computer Organization & Assembler Language Programming A. Why? Octal and hexadecimal numbers are useful for abbreviating long bitstrings. Some operations on octal

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 CS 64 Lecture 2 Data Representation Reading: FLD 1.2-1.4 Decimal Numbers: Base 10 Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 ) + (1x10 0 ) 1010 10?= 1010 2?= 1

More information

FLIPPED CLASS F#3- Number System. Department of CSE, Coimbatore CTPS 2018

FLIPPED CLASS F#3- Number System. Department of CSE, Coimbatore CTPS 2018 FLIPPED CLASS F#3- Number System Department of CSE, Coimbatore CTPS 2018 1 Common Number Systems System Base Symbols Used by humans? Used in computers? Decimal 10 0, 1, 9 Yes No Binary 2 0, 1 No Yes Octal

More information

Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence

Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence GATE Postal Correspondence Computer Sc. & IT 1 Digital Logic Computer Sciencee & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key concepts,

More information

Lecture 1: Digital Systems and Number Systems

Lecture 1: Digital Systems and Number Systems Lecture 1: Digital Systems and Number Systems Matthew Shuman September 26th, 2012 The Digital Abstraction 1.3 in Text Analog Systems Analog systems are continuous. Look at the analog clock in figure 1.

More information

What Is It? Instruction Register Address Register Data Register

What Is It? Instruction Register Address Register Data Register What Is It? Consider the following set of 32 binary digits, written in blocks of four so that the example is not impossible to read. 0010 0110 0100 1100 1101 1001 1011 1111 How do we interpret this sequence

More information

Data Representation COE 301. Computer Organization Prof. Muhamed Mudawar

Data Representation COE 301. Computer Organization Prof. Muhamed Mudawar Data Representation COE 30 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline Positional Number

More information

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b.

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b. Section 2.3 Rational Numbers A rational number is a number that may be written in the form a b for any integer a and any nonzero integer b. Why is division by zero undefined? For example, we know that

More information

Review of Number Systems

Review of Number Systems Review of Number Systems The study of number systems is important from the viewpoint of understanding how data are represented before they can be processed by any digital system including a digital computer.

More information

Numeral system Numerals

Numeral system Numerals Book B: Chapter 9 Different Numeral Systems Revision. (a) Numerals in the system Numeral system Numerals Denary,,,,,, 6, 7, 8 and 9 Binary and Hexadecimal,,,,,, 6, 7, 8, 9, A (i.e. ), B (i.e. ), C (i.e.

More information

Chapter 1 Emad Felemban

Chapter 1 Emad Felemban Chapter 1 Emad Felemban Digital Computers and Digital Systems Binary Numbers Number Base Conversion Octal and Hexadecimal Numbers Complements Singed Binary Numbers Binary Codes Binary Storage and Registers

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

Introduction to Numbering Systems

Introduction to Numbering Systems NUMBER SYSTEM Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems that we will work with are Binary Base 2 Octal Base 8 Hexadecimal

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

More information

Chapter 1 Review of Number Systems

Chapter 1 Review of Number Systems 1.1 Introduction Chapter 1 Review of Number Systems Before the inception of digital computers, the only number system that was in common use is the decimal number system which has a total of 10 digits

More information

MYcsvtu Notes DATA REPRESENTATION. Data Types. Complements. Fixed Point Representations. Floating Point Representations. Other Binary Codes

MYcsvtu Notes DATA REPRESENTATION. Data Types. Complements. Fixed Point Representations. Floating Point Representations. Other Binary Codes DATA REPRESENTATION Data Types Complements Fixed Point Representations Floating Point Representations Other Binary Codes Error Detection Codes Hamming Codes 1. DATA REPRESENTATION Information that a Computer

More information

Introduction to Computers and Programming. Numeric Values

Introduction to Computers and Programming. Numeric Values Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 5 Reading: B pp. 47-71 Sept 1 003 Numeric Values Storing the value of 5 10 using ASCII: 00110010 00110101 Binary notation: 00000000

More information

Conversion Between Number Bases

Conversion Between Number Bases Conversion Between Number Bases MATH 100 Survey of Mathematical Ideas J. Robert Buchanan Department of Mathematics Summer 2018 General Number Bases Bases other than 10 are sometimes used in numeration

More information

6. Binary and Hexadecimal

6. Binary and Hexadecimal COMP1917 15s2 6. Binary and Hexadecimal 1 COMP1917: Computing 1 6. Binary and Hexadecimal Reading: Moffat, Section 13.2 Outline Number Systems Binary Computation Converting between Binary and Decimal Octal

More information

Common Number Systems

Common Number Systems Common Number Systems System Base Symbols Used by humans? Used in computers? Decimal 10 0, 1, 9 Yes No Binary 2 0, 1 No Yes Octal 8 0, 1, 7 No No Hexadecimal 16 0, 1, 9, A, B, F No No Quantities/Counting

More information

Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010

Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010 Contents Number systems and conversion Binary arithmetic Representation of negative numbers Addition of two s complement numbers Addition of one s complement numbers Binary s Readings Unit.~. UNIT NUMBER

More information

Digital Fundamentals. CHAPTER 2 Number Systems, Operations, and Codes

Digital Fundamentals. CHAPTER 2 Number Systems, Operations, and Codes Digital Fundamentals CHAPTER 2 Number Systems, Operations, and Codes Decimal Numbers The decimal number system has ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 The decimal numbering system has a base of

More information

Numeral Systems. -Numeral System -Positional systems -Decimal -Binary -Octal. Subjects:

Numeral Systems. -Numeral System -Positional systems -Decimal -Binary -Octal. Subjects: Numeral Systems -Numeral System -Positional systems -Decimal -Binary -Octal Subjects: Introduction A numeral system (or system of numeration) is a writing system for expressing numbers, that is a mathematical

More information

Information Science 1

Information Science 1 Information Science 1 - Representa*on of Data in Memory- Week 03 College of Information Science and Engineering Ritsumeikan University Topics covered l Basic terms and concepts of The Structure of a Computer

More information

Internal Data Representation

Internal Data Representation Appendices This part consists of seven appendices, which provide a wealth of reference material. Appendix A primarily discusses the number systems and their internal representation. Appendix B gives information

More information

Chapter 3 DATA REPRESENTATION

Chapter 3 DATA REPRESENTATION Page1 Chapter 3 DATA REPRESENTATION Digital Number Systems In digital systems like computers, the quantities are represented by symbols called digits. Many number systems are in use in digital technology

More information

Lecture (01) Digital Systems and Binary Numbers By: Dr. Ahmed ElShafee

Lecture (01) Digital Systems and Binary Numbers By: Dr. Ahmed ElShafee ١ Lecture (01) Digital Systems and Binary Numbers By: Dr. Ahmed ElShafee Digital systems Digital systems are used in communication, business transactions, traffic control, spacecraft guidance, medical

More information

Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System

Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System Moodle 1 WILLINGDON COLLEGE SANGLI ELECTRONICS (B. Sc.-I) Introduction to Number System E L E C T R O N I C S Introduction to Number System and Codes Moodle developed By Dr. S. R. Kumbhar Department of

More information

Numbers and Representations

Numbers and Representations Çetin Kaya Koç http://koclab.cs.ucsb.edu/teaching/cs192 koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.cs.ucsb.edu Fall 2016 1 / 38 Outline Computational Thinking Representations of integers Binary and decimal

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

Decimal/Binary Conversion on the Soroban

Decimal/Binary Conversion on the Soroban Decimal/Binary Conversion on the Soroban Conversion of a whole number from decimal to binary This method uses successive divisions by two, in place, utilizing a simple right-to-left algorithm. The division

More information

Numbering systems. Dr Abu Arqoub

Numbering systems. Dr Abu Arqoub Numbering systems The decimal numbering system is widely used, because the people Accustomed (معتاد) to use the hand fingers in their counting. But with the development of the computer science another

More information

LESSON TITLE. Language English Local Language Introduction to Computer Science. Mr. VAR Sovannrath Submission Date October 30th, 2014 Version 1.

LESSON TITLE. Language English Local Language Introduction to Computer Science. Mr. VAR Sovannrath Submission Date October 30th, 2014 Version 1. LESSON TITLE Country Cambodia Language English Local Language Course Title Introduction to Computer Science Lesson Title 06. Number Systems SME Mr. VAR Sovannrath Submission Date October 30th, 2014 Version

More information

Computer Organization and Assembly Language. Lab Session 01

Computer Organization and Assembly Language. Lab Session 01 Objective: Lab Session 01 Introduction to Assembly Language Tools and Familiarization with Emu8086 environment To be able to understand Data Representation and perform conversions from one system to another

More information

Python Numbers. Learning Outcomes 9/19/2012. CMSC 201 Fall 2012 Instructor: John Park Lecture Section 01 Discussion Sections 02-08, 16, 17

Python Numbers. Learning Outcomes 9/19/2012. CMSC 201 Fall 2012 Instructor: John Park Lecture Section 01 Discussion Sections 02-08, 16, 17 Python Numbers CMSC 201 Fall 2012 Instructor: John Park Lecture Section 01 Discussion Sections 02-08, 16, 17 1 (adapted from Meeden, Evans & Mayberry) 2 Learning Outcomes To become familiar with the basic

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

Lecture (01) Introduction Number Systems and Conversion (1)

Lecture (01) Introduction Number Systems and Conversion (1) Lecture (01) Introduction Number Systems and Conversion (1) By: Dr. Ahmed ElShafee ١ Digital systems Digital systems are used in communication, business transactions, traffic control, spacecraft guidance,

More information

The. Binary. Number System

The. Binary. Number System The Binary Number System Why is Binary important? Everything on a computer (or other digital device) is represented by Binary Numbers One to Five in various systems 1 2 3 4 5 I II III IV V 1 10 11 100

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 TOPICS TODAY Course overview Levels of machines Machine models: von Neumann & System Bus Fetch-Execute Cycle Base

More information

Chapter 2 Exercises and Answers

Chapter 2 Exercises and Answers Chapter 2 Exercises and nswers nswers are in blue. For Exercises -5, match the following numbers with their definition.. Number. Natural number C. Integer number D. Negative number E. Rational number unit

More information

DATA REPRESENTATION. Data Types. Complements. Fixed Point Representations. Floating Point Representations. Other Binary Codes. Error Detection Codes

DATA REPRESENTATION. Data Types. Complements. Fixed Point Representations. Floating Point Representations. Other Binary Codes. Error Detection Codes 1 DATA REPRESENTATION Data Types Complements Fixed Point Representations Floating Point Representations Other Binary Codes Error Detection Codes 2 Data Types DATA REPRESENTATION Information that a Computer

More information

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation Complement Number Systems A complement number system is used to represent positive and negative integers A complement number system is based on a fixed length representation of numbers Pretend that integers

More information

Chapter 2: Number Systems

Chapter 2: Number Systems Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

CHAPTER TWO. Data Representation ( M.MORRIS MANO COMPUTER SYSTEM ARCHITECTURE THIRD EDITION ) IN THIS CHAPTER

CHAPTER TWO. Data Representation ( M.MORRIS MANO COMPUTER SYSTEM ARCHITECTURE THIRD EDITION ) IN THIS CHAPTER 1 CHAPTER TWO Data Representation ( M.MORRIS MANO COMPUTER SYSTEM ARCHITECTURE THIRD EDITION ) IN THIS CHAPTER 2-1 Data Types 2-2 Complements 2-3 Fixed-Point Representation 2-4 Floating-Point Representation

More information

ITEC 1011 Introduction to Information Technologies

ITEC 1011 Introduction to Information Technologies Number Systems Common Number Systems System Base Symbols Used by humans? Used in computers? Decimal 10 0, 1, 9 Yes No Binary 2 0, 1 No Yes Octal 8 0, 1, 7 No No Hexadecimal 16 0, 1, 9, A, B, F No No Quantities/Counting

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Data Representation ti and Arithmetic for Computers Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Questions What do you know about

More information

CHAPTER 2 (b) : AND CODES

CHAPTER 2 (b) : AND CODES DKT 122 / 3 DIGITAL SYSTEMS 1 CHAPTER 2 (b) : NUMBER SYSTEMS OPERATION AND CODES m.rizal@unimap.edu.my sitizarina@unimap.edu.my DECIMAL VALUE OF SIGNED NUMBERS SIGN-MAGNITUDE: Decimal values of +ve & -ve

More information

Digital Systems and Binary Numbers

Digital Systems and Binary Numbers Digital Systems and Binary Numbers Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National University Prof. Wangrok Oh(CNU) 1 / 51 Overview 1 Course Summary 2 Binary Numbers 3 Number-Base

More information

Beyond Base 10: Non-decimal Based Number Systems

Beyond Base 10: Non-decimal Based Number Systems Beyond Base : Non-decimal Based Number Systems What is the decimal based number system? How do other number systems work (binary, octal and hex) How to convert to and from nondecimal number systems to

More information

UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS

UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS (09 periods) Computer Arithmetic: Data Representation, Fixed Point Representation, Floating Point Representation, Addition and

More information

BSC & BIT Numbering Systems. ITU Lecture 3b

BSC & BIT Numbering Systems. ITU Lecture 3b BSC & BIT -1 2017-18 Numbering Systems ITU 07102 Lecture 3b Introduction We use a number to present a quantity (value) of any thing that can be quantified. Quantities are measured, monitored, recorded,

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text About the course : In this digital world, embedded systems are more

More information

CMPE223/CMSE222 Digital Logic Design. Positional representation

CMPE223/CMSE222 Digital Logic Design. Positional representation CMPE223/CMSE222 Digital Logic Design Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Positional representation First consider integers Begin with positive only

More information

Chapter 1 Preliminaries

Chapter 1 Preliminaries Chapter 1 Preliminaries This chapter discusses the major classes of programming languages and the relationship among them. It also discusses the binary and the hexadecimal number systems which are used

More information

BINARY SYSTEM. Binary system is used in digital systems because it is:

BINARY SYSTEM. Binary system is used in digital systems because it is: CHAPTER 2 CHAPTER CONTENTS 2.1 Binary System 2.2 Binary Arithmetic Operation 2.3 Signed & Unsigned Numbers 2.4 Arithmetic Operations of Signed Numbers 2.5 Hexadecimal Number System 2.6 Octal Number System

More information

Lesson 1: THE DECIMAL SYSTEM

Lesson 1: THE DECIMAL SYSTEM Lesson 1: THE DECIMAL SYSTEM The word DECIMAL comes from a Latin word, which means "ten. The Decimal system uses the following ten digits to write a number: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each time

More information

Chapter 4 Section 2 Operations on Decimals

Chapter 4 Section 2 Operations on Decimals Chapter 4 Section 2 Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers.

More information

Korea University of Technology and Education

Korea University of Technology and Education MEC52 디지털공학 Binary Systems Jee-Hwan Ryu School of Mechanical Engineering Binary Numbers a 5 a 4 a 3 a 2 a a.a - a -2 a -3 base or radix = a n r n a n- r n-...a 2 r 2 a ra a - r - a -2 r -2...a -m r -m

More information

Chapter 3: Number Systems and Codes. Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc.

Chapter 3: Number Systems and Codes. Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc. Chapter 3: Number Systems and Codes Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc., 5 th edition Decimal System The radix or base of a number system determines

More information

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems In everyday life, we humans most often count using decimal or base-10 numbers. In computer science, it

More information

Digital Systems and Binary Numbers

Digital Systems and Binary Numbers Digital Systems and Binary Numbers ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Spring, 2018 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outline

More information

CS 121 Digital Logic Design. Chapter 1. Teacher Assistant. Hadeel Al-Ateeq

CS 121 Digital Logic Design. Chapter 1. Teacher Assistant. Hadeel Al-Ateeq CS 121 Digital Logic Design Chapter 1 Teacher Assistant Hadeel Al-Ateeq Announcement DON T forgot to SIGN your schedule OR you will not be allowed to attend next lecture. Communication Office hours (8

More information

Number Systems MA1S1. Tristan McLoughlin. November 27, 2013

Number Systems MA1S1. Tristan McLoughlin. November 27, 2013 Number Systems MA1S1 Tristan McLoughlin November 27, 2013 http://en.wikipedia.org/wiki/binary numeral system http://accu.org/index.php/articles/1558 http://www.binaryconvert.com http://en.wikipedia.org/wiki/ascii

More information

UNIT 7A Data Representation: Numbers and Text. Digital Data

UNIT 7A Data Representation: Numbers and Text. Digital Data UNIT 7A Data Representation: Numbers and Text 1 Digital Data 10010101011110101010110101001110 What does this binary sequence represent? It could be: an integer a floating point number text encoded with

More information

College of Computer and Information Sciences Department of Computer Science. CSC 220: Computer Organization. Unit1 Number Systems

College of Computer and Information Sciences Department of Computer Science. CSC 220: Computer Organization. Unit1 Number Systems College of Computer and Information Sciences Department of Computer Science CSC 220: Computer Organization Unit1 Number Systems Common Number Systems System Base Symbols Used by humans? Used in computers?

More information

Digital Systems COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

Digital Systems COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Digital Systems COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Welcome to COE 202 Course Webpage: http://faculty.kfupm.edu.sa/coe/mudawar/coe202/ Lecture

More information

Agenda EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 1: Introduction. Go over the syllabus 3/31/2010

Agenda EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 1: Introduction. Go over the syllabus 3/31/2010 // EE : INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture : Introduction /9/ Avinash Kodi, kodi@ohio.edu Agenda Go over the syllabus Introduction ti to Digital it Systems // Why Digital Systems?

More information

Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties

Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties Chapter 3: Arithmetic Properties CHAPTER 3: ARITHMETIC PROPERTIES Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 3: Arithmetic Properties Date: Lesson: Learning Log Title:

More information