function at the given point. Thus, for our previous example we would find that lim f(x) = 0

Size: px
Start display at page:

Download "function at the given point. Thus, for our previous example we would find that lim f(x) = 0"

Transcription

1 Limits In order to introduce the notion of the it, we will consider the following situation. Suppose you are given a function, defined on some interval, except at a single point in the interval. What, if anything, can you say about the value of the function at that point? Let us suppose we are given the function f(x) = x 2 on [-1,0) (0,1] ie, the function is defined on [-1,1] except for at 0. What can we say about f(0)? Since we know the function is given by x 2 at all points except for 0, it seems that the function should be defined in the same way at 0. Thus, it seems like f(0) should be 0. However, a general function can be defined to have an arbitrary value at any point. Thus, both f(x) = x 2 on [-1,0) (0,1] with f(0) = 0 and f(x) = x 2 on [-1,0) (0,1] with f(0) = 1 are both equally valid functions (as well as any other value for f(0)). Thus, despite whatever intuition we have about what value f(0) should have, there is nothing about our function that demands it have that value, so in fact we cannot conclude anything about the value of f(0). Despite the fact we can conclude nothing about the actual value of f(0), we want to build on the notion that a function should have a certain function value at a certain point, which is determined irrespective of the actual value at that point (ie, what f(x) actually is doesn t determine what f(x) should be, in this notion of what should be). In this way, what a function value should be at a given point is determined only by the values of the function at the points around that point, but not the point itself. Just as we could say that a function should take on a specific value at a specific point based on an algebraic definition of the function, we can also explore the notion of what should be from a graphical standpoint. If we graph the function f(x) = x 2 on [-1,0) (0,1] it looks like a continuous function with a hole in the middle of it. The value that we previously determined should be f(0) is exactly the one which fills the hole. Thus, in some sense the function value that should be defined for f(0) is the one that fits in with the graph. Given that we can define a function in any way we like, it is not difficult to construct a function for which there is no value that fills in the hole. It is worth noting, however, that if there is a value which fills the hole, it will be unique. When we build the it concept from this, it will have both of these important properties - it will not necessarily exist, but if it does, it will be unique. The it is in some sense a refined version of the above concept. Intuitively, the notion of a it is the value a function approaches as its inputs approach a given point. Thus, when we write f(x) = L we mean that as the values x in the domain of the function approach the point x 0, the function values f(x) correspondingly approach the value L. As previously stated, the actual value of a function at a point does not determine in any way what it (if any) the function approaches (the function need not even be defined at the point in question). This is consistent with our previous notion of the function value that seemed like it should be the value of the

2 function at the given point. Thus, for our previous example we would find that f(x) = 0 (the it as x approaches 0 for our previous function is 0). It is important to emphasize that the value of a it is not just a value a function approaches at the given point, but a value it approaches in a very special way (surely this must be so, as an increasing function approaches all larger values, but not all larger values seem like they should be the right value for the function at a given point). The key to describing this special way that the function values approach the it value lies in approximation. Consider the following definition: we say that f(x) = L if for any error tolerance around L, we can restrict the values of f(x) to be within that error tolerance of L by restricting the values of x to be sufficiently close to x 0 ; ie. for all values of x within some interval around x 0 (excluding x 0 ) the distance between f(x) and L is within the error tolerance. Note that this requires we be able to find such an interval no matter how small the error tolerance is (but an error tolerance must be greater than 0, because we are still considering an approximation, just an approximation we can make as accurate as we like); in general, a tighter error tolerance will necessitate a smaller interval around the point x 0 we are interested in. Such an interval cannot contain even a single point for which the function value lies out of the error tolerance around L. While we must be able to find an interval for any error tolerance to show a function approaches a it at some point, we need only to find a single error tolerance for which there is no such interval in order to show a function does not approach a specific it L at some point (and we need to show this for all values L in order to show there is no it). Finally, it follows from this definition that a it is unique; that is, a function can only approach one value at a given point in this special way, if it approaches any value at all. This refined definition is very important, because most cases will not be as simple as the function we previously considered. We will revisit this notion later with the formal definition of a it, but before doing so we will attempt to gain further insight into its using the less daunting, intuitive notion. Our approach will be to begin with very simple functions, and use our understanding of them to calculate its of more complicated functions. Before doing so, it should be emphasized that a function need not have a it at a given point. Consider the function f(x) given by f(x) = x x which is defined for all x, with x 0. This function does not have a it as x approaches 0. Inuititively, the graph is broken with a jump in it, so there is no way for the function values to be approaching a single value at x = 0. The way to see this based on our definition is as follows: for any interval around 0 (an interval must be more than a single point), we can find an x 1 with x 1 < 0 and an x 2 with x 2 > 0. Thus, f(x 1 ) = 1 and f(x 2 ) = 1. For any error

3 tolerance less than 1, it is impossible to find a value L so that both of these function values (-1 and 1) are within the error tolerance around it, yet any interval around 0 must contain such values x 1 and x 2. Thus, this function has no it at x = 0. There are many functions which do not have its at certain points (or perhaps at any point), but fortunately most of these functions are not encountered in physical systems. Now let us consider some functions which do approach specific values in the special way defined by the it. Let us consider the function f(x) = c for all x. I propose that for any point x 0 f(x) = c Consider any error tolerance. Since the value of the function is always c, for any interval around f(x), no matter how large or small, the function value will be within that error tolerance. The above proposition follows. Now let us consider the function f(x) = x. Now I propose that for any point x 0 f(x) = x 0 Consider any error tolerance. If we restrict the values of x within that error tolerance of x 0, then similarly the function values will be within that error tolerance, as they are exactly the same as the values of x. The above proposition follows. Using similar, but more complicated mathematical arguments, in conjunction with the rigorous definition of the it, we can prove the following results. Note that these results follow from the way in which we have defined the it; thus, they are inescapable. By considering this notion of the it, it must have the following properties. Properties of Limits Suppose x x0 f(x) = L and x x0 g(x) = M where L, M R (L, M are real numbers). 1. Constant Multiple Rule: x x0 k f(x) = k L, k R 2. Sum Rule: x x0 [f(x) + g(x)] = L + M 3. Product Rule: x x0 [f(x) g(x)] = L M 4. Quotient Rule: x x0 f(x) g(x) = L M, M 0 5. Power Rule: x x0 [f(x)] m/n = L m/n, m, n Z, L m/n R Using these properties, in conjunction with the its of f(x) = x and f(x) = c at any point, we are now equipped to deal with the it of any polynomial at any point. Let us start

4 with a piecewise linear example, before moving on to higher order polynomials. Example 1 Consider the function f(x) defined below. Find the value of the it as x approaches any point in [0,4] if it exists, and state why it does not, if it does not exist. x 0 x < 1 0 x = < x 2 f(x) = 3 x 2 < x < x 4, x x = 3.5 Solution The first step is to graph this piecewise function, in order to obtain a better idea of what it looks like. Using the it laws and our results about f(x) = x and f(x) = c we can already determine that in the middle of an interval where f(x) is defined as a line the it will exist. Thus, we need to concern ourselves with the junctions of these intervals, and the points where there are holes in the graph. Since the value of the function at a given point does not alter its it, we can immediately conclude that the two holes in the graph are irrelevant, meaning that the it exists as it would at those points if there were no holes. At a junction where the function lines up (ie. there are no jumps in the graph) the it exists, as both sides are approaching the same value, in the fashion required by the it. Thus, the it exists at all points other than x = 3 where there is an actual jump in the graph of the function. Example 2 Find x 1 (3x 2 + x 4) Solution First we apply the sum rule to spread the it to each of the individual terms, and then we can evaluate it of the second two terms immediately. For the first, we use the constant product rule to separate 3 from x 2, and finally the product rule (using x x) or power rule to evaluate the it for x 2. Thus, x 1 (3x2 + x 4) = 3 x 2 + x + ( 4) = = 2 x 1 x 1 x 1 3x 2 5x 2 Example 3 Find x 2 x 2 Solution The first thing to notice is that the denominator is 0 when x = 2, so we cannot immediately apply the quotient rule. If we evaluate the numerator at x = 2 we see that = 0, so the numerator also has a 0 at x = 2. If a polynomial has a 0 at some point, it means that the polynomial factors with a linear term that is 0 at that point. Thus, we know there is a factor of (x 2) in the numerator. Now we need to find another linear term that will factor the original polynomial. (3x 2 5x 2) = (a + b)(x 2) Since we know a x = 3x 2 it follows a = 3x, and similarly b = 1. Thus, 3x 2 5x 2 x 2 x 2 = x 2 (3x + 1)(x 2) x 2 = x 2 (3x + 1) = 7

5 Note that above we were able to cancel the factors of (x 2) precisely because when we are considering the it, we are looking at points where x 2, so that term is nonzero (if we were faced with something of the form 0 we could not cancel the 0 s and conclude that it is 1). 0 Example 4 Find f(x) if f(x) = Solution We cannot use the quotient rule, because x = 0. However, if we simplify the expression to modify the factor of in the denominator, then we will be able to apply the quotient rule. We do this by multiplying by 1, where 1 is conveniently chosen to be the conjugate of the numerator over itself (which will remove the square root from the numerator) = = x ( ) = With this simplified expression, we can now take the it of the numerator and denominator, to find that f(x) = 0 There is one final theorem to discuss, which may be used to calculate a it of a function, even if we do not have an expression for that function. Theorem: The Sandwich Theorem Suppose g(x) f(x) h(x) for all x in an open interval about x 0, not necessarily containing x 0. If g(x) = h(x) = L x x0 Then f(x) = L Example 5 Find f(x) if for every x 0 Solution Since it follows from the sandwich theroem that This above analysis shows, for instance, that x 2 f(x) x 2 x2 = 0 = x 2 f(x) = 0 x2 sin( 1 x ) = 0

Techniques for Evaluating Limits. Techniques for Evaluating Limits. Techniques for Evaluating Limits

Techniques for Evaluating Limits. Techniques for Evaluating Limits. Techniques for Evaluating Limits PreCalc CH 12.2.notebook In the beginning of this chapter we evaluated limits of rational functions and saw that the indeterminate form gave us problems. There is a technique that can overcome this difficulty

More information

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01)

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01) Calculus I (part ): Limits and Continuity (by Evan Dummit, 206, v. 2.0) Contents Limits and Continuity. Limits (Informally)...............................................2 Limits and the Limit Laws..........................................

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Using Arithmetic of Real Numbers to Explore Limits and Continuity

Using Arithmetic of Real Numbers to Explore Limits and Continuity Using Arithmetic of Real Numbers to Explore Limits and Continuity by Maria Terrell Cornell University Problem Let a =.898989... and b =.000000... (a) Find a + b. (b) Use your ideas about how to add a and

More information

1-3 Continuity, End Behavior, and Limits

1-3 Continuity, End Behavior, and Limits Determine whether each function is continuous at the given x-value(s). Justify using the continuity test. If discontinuous, identify the type of discontinuity as infinite, jump, or removable. 1. f (x)

More information

1 Basic Mathematical Operations

1 Basic Mathematical Operations 1 Basic Mathematical Operations Recall the basic operations of addition, substraction, multiplication, and division. Consider evaluating the following expression: 2+3 5 Do we add 2 and 3 first or do we

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

Chapter 4 Using Fundamental Identities Section USING FUNDAMENTAL IDENTITIES. Fundamental Trigonometric Identities. Reciprocal Identities

Chapter 4 Using Fundamental Identities Section USING FUNDAMENTAL IDENTITIES. Fundamental Trigonometric Identities. Reciprocal Identities Chapter 4 Using Fundamental Identities Section 4.1 4.1 USING FUNDAMENTAL IDENTITIES Fundamental Trigonometric Identities Reciprocal Identities csc x sec x cot x Quotient Identities tan x cot x Pythagorean

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

14.1 Encoding for different models of computation

14.1 Encoding for different models of computation Lecture 14 Decidable languages In the previous lecture we discussed some examples of encoding schemes, through which various objects can be represented by strings over a given alphabet. We will begin this

More information

Lagrange Multipliers and Problem Formulation

Lagrange Multipliers and Problem Formulation Lagrange Multipliers and Problem Formulation Steven J. Miller Department of Mathematics and Statistics Williams College Williamstown, MA 01267 Abstract The method of Lagrange Multipliers (and its generalizations)

More information

Pre-Calculus Notes: Chapter 3 The Nature of Graphs

Pre-Calculus Notes: Chapter 3 The Nature of Graphs Section Families of Graphs Name: Pre-Calculus Notes: Chapter 3 The Nature of Graphs Family of graphs Parent graph A group of graphs that share similar properties The most basic graph that s transformed

More information

Section Rational Functions and Inequalities. A rational function is a quotient of two polynomials. That is, is a rational function if

Section Rational Functions and Inequalities. A rational function is a quotient of two polynomials. That is, is a rational function if Section 6.1 --- Rational Functions and Inequalities A rational function is a quotient of two polynomials. That is, is a rational function if =, where and are polynomials and is not the zero polynomial.

More information

1. How many white tiles will be in Design 5 of the pattern? Explain your reasoning.

1. How many white tiles will be in Design 5 of the pattern? Explain your reasoning. Algebra 2 Semester 1 Review Answer the question for each pattern. 1. How many white tiles will be in Design 5 of the pattern Explain your reasoning. 2. What is another way to represent the expression 3.

More information

2 The Fractional Chromatic Gap

2 The Fractional Chromatic Gap C 1 11 2 The Fractional Chromatic Gap As previously noted, for any finite graph. This result follows from the strong duality of linear programs. Since there is no such duality result for infinite linear

More information

COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS

COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS JOSHUA LENERS Abstract. An algorithm is function from ω to ω defined by a finite set of instructions to transform a given input x to the desired output

More information

Midterm 2 Solutions. CS70 Discrete Mathematics for Computer Science, Fall 2007

Midterm 2 Solutions. CS70 Discrete Mathematics for Computer Science, Fall 2007 CS70 Discrete Mathematics for Computer Science, Fall 007 Midterm Solutions Note: These solutions are not necessarily model answers Rather, they are designed to be tutorial in nature, and sometimes contain

More information

Problem One: A Quick Algebra Review

Problem One: A Quick Algebra Review CS103A Winter 2019 Solutions for Week One Handout 01S Problem One: A Quick Algebra Review In the first week of CS103, we'll be doing a few proofs that will require some algebraic manipulations and reasoning

More information

Chapter 0: Algebra II Review

Chapter 0: Algebra II Review Chapter 0: Algebra II Review Topic 1: Simplifying Polynomials & Exponential Expressions p. 2 - Homework: Worksheet Topic 2: Radical Expressions p. 32 - Homework: p. 45 #33-74 Even Topic 3: Factoring All

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.3 New Functions from Old Functions In this section, we will learn: How to obtain new functions from old functions and how to combine pairs of functions. NEW

More information

( 3) ( 4 ) 1. Exponents and Radicals ( ) ( xy) 1. MATH 102 College Algebra. still holds when m = n, we are led to the result

( 3) ( 4 ) 1. Exponents and Radicals ( ) ( xy) 1. MATH 102 College Algebra. still holds when m = n, we are led to the result Exponents and Radicals ZERO & NEGATIVE EXPONENTS If we assume that the relation still holds when m = n, we are led to the result m m a m n 0 a = a = a. Consequently, = 1, a 0 n n a a a 0 = 1, a 0. Then

More information

6.1 Evaluate Roots and Rational Exponents

6.1 Evaluate Roots and Rational Exponents VOCABULARY:. Evaluate Roots and Rational Exponents Radical: We know radicals as square roots. But really, radicals can be used to express any root: 0 8, 8, Index: The index tells us exactly what type of

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.6 Indirect Argument: Contradiction and Contraposition Copyright Cengage Learning. All

More information

PreCalculus 300. Algebra 2 Review

PreCalculus 300. Algebra 2 Review PreCalculus 00 Algebra Review Algebra Review The following topics are a review of some of what you learned last year in Algebra. I will spend some time reviewing them in class. You are responsible for

More information

Generating Functions

Generating Functions 6.04/8.06J Mathematics for Computer Science Srini Devadas and Eric Lehman April 7, 005 Lecture Notes Generating Functions Generating functions are one of the most surprising, useful, and clever inventions

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

Equations and Functions, Variables and Expressions

Equations and Functions, Variables and Expressions Equations and Functions, Variables and Expressions Equations and functions are ubiquitous components of mathematical language. Success in mathematics beyond basic arithmetic depends on having a solid working

More information

3.1 Constructions with sets

3.1 Constructions with sets 3 Interlude on sets Sets and functions are ubiquitous in mathematics. You might have the impression that they are most strongly connected with the pure end of the subject, but this is an illusion: think

More information

lim x c x 2 x +2. Suppose that, instead of calculating all the values in the above tables, you simply . What do you find? x +2

lim x c x 2 x +2. Suppose that, instead of calculating all the values in the above tables, you simply . What do you find? x +2 MA123, Chapter 3: The idea of its (pp. 47-67, Gootman) Chapter Goals: Evaluate its. Evaluate one-sided its. Understand the concepts of continuity and differentiability and their relationship. Assignments:

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.5 Exponential Functions In this section, we will learn about: Exponential functions and their applications. EXPONENTIAL FUNCTIONS The function f(x) = 2 x is

More information

Voluntary State Curriculum Algebra II

Voluntary State Curriculum Algebra II Algebra II Goal 1: Integration into Broader Knowledge The student will develop, analyze, communicate, and apply models to real-world situations using the language of mathematics and appropriate technology.

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Skill 3 Relations and Functions

Skill 3 Relations and Functions Skill 3 Relations and Functions 3a: Use Interval and Set Notation 3b: Determine the domain and range of a relation given a set of ordered pairs, a graph, or an equation 3c: Determine whether a relation

More information

Limits and an Introduction to Calculus. Copyright Cengage Learning. All rights reserved.

Limits and an Introduction to Calculus. Copyright Cengage Learning. All rights reserved. Limits and an Introduction to Calculus 12 Copyright Cengage Learning. All rights reserved. 12.2 TECHNIQUES FOR EVALUATING LIMITS Copyright Cengage Learning. All rights reserved. What You Should Learn Use

More information

Lab copy. Do not remove! Mathematics 152 Spring 1999 Notes on the course calculator. 1. The calculator VC. The web page

Lab copy. Do not remove! Mathematics 152 Spring 1999 Notes on the course calculator. 1. The calculator VC. The web page Mathematics 152 Spring 1999 Notes on the course calculator 1. The calculator VC The web page http://gamba.math.ubc.ca/coursedoc/math152/docs/ca.html contains a generic version of the calculator VC and

More information

Limits and Derivatives (Review of Math 249 or 251)

Limits and Derivatives (Review of Math 249 or 251) Chapter 3 Limits and Derivatives (Review of Math 249 or 251) 3.1 Overview This is the first of two chapters reviewing material from calculus; its and derivatives are discussed in this chapter, and integrals

More information

Sections 1.3 Computation of Limits

Sections 1.3 Computation of Limits 1 Sections 1.3 Computation of Limits We will shortly introduce the it laws. Limit laws allows us to evaluate the it of more complicated functions using the it of simpler ones. Theorem Suppose that c is

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

AP Calculus Summer Review Packet

AP Calculus Summer Review Packet AP Calculus Summer Review Packet Name: Date began: Completed: **A Formula Sheet has been stapled to the back for your convenience!** Email anytime with questions: danna.seigle@henry.k1.ga.us Complex Fractions

More information

Lecture 7: Primitive Recursion is Turing Computable. Michael Beeson

Lecture 7: Primitive Recursion is Turing Computable. Michael Beeson Lecture 7: Primitive Recursion is Turing Computable Michael Beeson Closure under composition Let f and g be Turing computable. Let h(x) = f(g(x)). Then h is Turing computable. Similarly if h(x) = f(g 1

More information

Lesson 6-2: Function Operations

Lesson 6-2: Function Operations So numbers not only have a life but they have relationships well actually relations. There are special relations we call functions. Functions are relations for which each input has one and only one output.

More information

Section 2-7. Graphs of Rational Functions

Section 2-7. Graphs of Rational Functions Section 2-7 Graphs of Rational Functions Section 2-7 rational functions and domain transforming the reciprocal function finding horizontal and vertical asymptotes graphing a rational function analyzing

More information

Divisibility Rules and Their Explanations

Divisibility Rules and Their Explanations Divisibility Rules and Their Explanations Increase Your Number Sense These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, ) by another positive integer or 0 (although

More information

11.2 Techniques for Evaluating Limits

11.2 Techniques for Evaluating Limits 11.2 Techniques for Evaluating Limits Copyright Cengage Learning. All rights reserved. What You Should Learn Use the dividing out technique to evaluate limits of functions. Use the rationalizing technique

More information

Natasha S. Sharma, PhD

Natasha S. Sharma, PhD Revisiting the function evaluation problem Most functions cannot be evaluated exactly: 2 x, e x, ln x, trigonometric functions since by using a computer we are limited to the use of elementary arithmetic

More information

An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis October 12, 2016 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

More information

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s.

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Using Monte Carlo to Estimate π using Buffon s Needle Problem An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Here s the problem (in a simplified form). Suppose

More information

CHAPTER 4: Polynomial and Rational Functions

CHAPTER 4: Polynomial and Rational Functions 171S MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

The method of rationalizing

The method of rationalizing Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section The method of rationalizing What you need to know already: The concept of it and the factor-and-cancel method of

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.4 Rational Expressions Copyright Cengage Learning. All rights reserved. Objectives The Domain of an Algebraic Expression Simplifying Rational

More information

Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5

Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5 Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5 [talking head] Formal Methods of Software Engineering means the use of mathematics as an aid to writing programs. Before we can

More information

The eighth scene in a series of articles on elementary mathematics. written by Eugene Maier designed and illustrated by Tyson Smith. equals me.

The eighth scene in a series of articles on elementary mathematics. written by Eugene Maier designed and illustrated by Tyson Smith. equals me. me. multiplied by me. equals me. The eighth scene in a series of articles on elementary mathematics. written by Eugene Maier designed and illustrated by Tyson Smith The array model, with edge pieces used

More information

The method of rationalizing

The method of rationalizing Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section The method of rationalizing What you need to know already: The concept of it and the factor-and-cancel method of

More information

MA 1128: Lecture 02 1/22/2018

MA 1128: Lecture 02 1/22/2018 MA 1128: Lecture 02 1/22/2018 Exponents Scientific Notation 1 Exponents Exponents are used to indicate how many copies of a number are to be multiplied together. For example, I like to deal with the signs

More information

Exponents. Common Powers

Exponents. Common Powers Exponents An exponent defines the number of times a number is to be multiplied by itself. For example, in a b, where a is the base and b the exponent, a is multiplied by itself btimes. In a numerical example,

More information

Grade 12 Revision Trigonometry (Compound Angles)

Grade 12 Revision Trigonometry (Compound Angles) Compound angles are simply the sum of, or the difference between, two other angles This angle is an example of a compound angle P (x ; 0) Easy to calculate trig ratios of angles α and β but what about

More information

For Review Purposes Only. Two Types of Definitions Closed Form and Recursive Developing Habits of Mind. Table H Output.

For Review Purposes Only. Two Types of Definitions Closed Form and Recursive Developing Habits of Mind. Table H Output. 79_CH_p-9.pdf Page 7. Two Types of Definitions Closed Form and Recursive The table below is from Exercise of Lesson.. Table H Developing You can describe a function that agrees with this table in more

More information

Instructor: Padraic Bartlett. Lecture 2: Schreier Diagrams

Instructor: Padraic Bartlett. Lecture 2: Schreier Diagrams Algebraic GT Instructor: Padraic Bartlett Lecture 2: Schreier Diagrams Week 5 Mathcamp 2014 This class s lecture continues last s class s discussion of the interplay between groups and graphs. In specific,

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section 1.5 Transformation of Functions 61 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

ELEC-270 Solutions to Assignment 5

ELEC-270 Solutions to Assignment 5 ELEC-270 Solutions to Assignment 5 1. How many positive integers less than 1000 (a) are divisible by 7? (b) are divisible by 7 but not by 11? (c) are divisible by both 7 and 11? (d) are divisible by 7

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

Material from Recitation 1

Material from Recitation 1 Material from Recitation 1 Darcey Riley Frank Ferraro January 18, 2011 1 Introduction In CSC 280 we will be formalizing computation, i.e. we will be creating precise mathematical models for describing

More information

A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum.

A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum. Problem Solving Drill 05: Exponents and Radicals Question No. 1 of 10 Question 1. Simplify: 7u v 4u 3 v 6 Question #01 (A) 11u 5 v 7 (B) 8u 6 v 6 (C) 8u 5 v 7 (D) 8u 3 v 9 To simplify this expression you

More information

2.2 Limit of a Function and Limit Laws

2.2 Limit of a Function and Limit Laws Limit of a Function and Limit Laws Section Notes Page Let s look at the graph y What is y()? That s right, its undefined, but what if we wanted to find the y value the graph is approaching as we get close

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

(Refer Slide Time 3:31)

(Refer Slide Time 3:31) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 5 Logic Simplification In the last lecture we talked about logic functions

More information

Section 1: Limits and Continuity

Section 1: Limits and Continuity Chapter The Derivative Applied Calculus 74 Section 1: Limits and Continuity In the last section, we saw that as the interval over which we calculated got smaller, the secant slopes approached the tangent

More information

College Algebra Extra Credit Worksheet

College Algebra Extra Credit Worksheet College Algebra Extra Credit Worksheet Fall 011 Math W1003 (3) Corrin Clarkson Due: Thursday, October 0 th, 011 1 Instructions Each section of this extra credit work sheet is broken into three parts. The

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions 6 Chapter 1 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations in order to explain or

More information

2.3 Algorithms Using Map-Reduce

2.3 Algorithms Using Map-Reduce 28 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK one becomes available. The Master must also inform each Reduce task that the location of its input from that Map task has changed. Dealing with a failure

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Topic 3: Propositions as types

Topic 3: Propositions as types Topic 3: Propositions as types May 18, 2014 Propositions as types We have seen that the main mathematical objects in a type theory are types. But remember that in conventional foundations, as based on

More information

Skill 1: Multiplying Polynomials

Skill 1: Multiplying Polynomials CS103 Spring 2018 Mathematical Prerequisites Although CS103 is primarily a math class, this course does not require any higher math as a prerequisite. The most advanced level of mathematics you'll need

More information

Equality for Abstract Data Types

Equality for Abstract Data Types Object-Oriented Design Lecture 4 CSU 370 Fall 2008 (Pucella) Tuesday, Sep 23, 2008 Equality for Abstract Data Types Every language has mechanisms for comparing values for equality, but it is often not

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

EC121 Mathematical Techniques A Revision Notes

EC121 Mathematical Techniques A Revision Notes EC Mathematical Techniques A Revision Notes EC Mathematical Techniques A Revision Notes Mathematical Techniques A begins with two weeks of intensive revision of basic arithmetic and algebra, to the level

More information

(Refer Slide Time 6:48)

(Refer Slide Time 6:48) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

More information

Algebra of Sets (Mathematics & Logic A)

Algebra of Sets (Mathematics & Logic A) Algebra of Sets (Mathematics & Logic A) RWK/MRQ October 28, 2002 Note. These notes are adapted (with thanks) from notes given last year by my colleague Dr Martyn Quick. Please feel free to ask me (not

More information

Pre-Calculus Summer Assignment

Pre-Calculus Summer Assignment Name: Pre-Calculus Summer Assignment Due Date: The beginning of class on September 8, 017. The purpose of this assignment is to have you practice the mathematical skills necessary to be successful in Pre-Calculus.

More information

The design recipe. Readings: HtDP, sections 1-5. (ordering of topics is different in lectures, different examples will be used)

The design recipe. Readings: HtDP, sections 1-5. (ordering of topics is different in lectures, different examples will be used) The design recipe Readings: HtDP, sections 1-5 (ordering of topics is different in lectures, different examples will be used) Survival and Style Guides CS 135 Winter 2018 02: The design recipe 1 Programs

More information

correlated to the Michigan High School Mathematics Content Expectations

correlated to the Michigan High School Mathematics Content Expectations correlated to the Michigan High School Mathematics Content Expectations McDougal Littell Algebra 1 Geometry Algebra 2 2007 correlated to the STRAND 1: QUANTITATIVE LITERACY AND LOGIC (L) STANDARD L1: REASONING

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

2-5 Rational Functions

2-5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any. 3. f (x) = The function is undefined at the real zeros of the denominator b(x) = (x + 3)(x 4). The real

More information

Math Calculus f. Business and Mgmt - Worksheet 9. Solutions for Worksheet 9 - Piecewise Defined Functions and Continuity

Math Calculus f. Business and Mgmt - Worksheet 9. Solutions for Worksheet 9 - Piecewise Defined Functions and Continuity Math 220 - Calculus f. Business and Mgmt - Worksheet 9 Solutions for Worksheet 9 - Piecewise Defined Functions and Continuity Evaluating and Graphing Functions Exercise 1: Compose these pairs of functions

More information

CCNY Math Review Chapter 2: Functions

CCNY Math Review Chapter 2: Functions CCN Math Review Chapter : Functions Section.1: Functions.1.1: How functions are used.1.: Methods for defining functions.1.3: The graph of a function.1.: Domain and range.1.5: Relations, functions, and

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

In this chapter, we define limits of functions and describe some of their properties.

In this chapter, we define limits of functions and describe some of their properties. Chapter 2 Limits of Functions In this chapter, we define its of functions and describe some of their properties. 2.. Limits We begin with the ϵ-δ definition of the it of a function. Definition 2.. Let

More information

Jessica Su (some parts copied from CLRS / last quarter s notes)

Jessica Su (some parts copied from CLRS / last quarter s notes) 1 Max flow Consider a directed graph G with positive edge weights c that define the capacity of each edge. We can identify two special nodes in G: the source node s and the sink node t. We want to find

More information

p x i 1 i n x, y, z = 2 x 3 y 5 z

p x i 1 i n x, y, z = 2 x 3 y 5 z 3 Pairing and encoding functions Our aim in this part of the course is to show that register machines can compute everything that can be computed, and to show that there are things that can t be computed.

More information

The notion of functions

The notion of functions Chapter 1 The notion of functions Textbook Chapter 1 1.1 The concept of functions Although the concept of functions was invented a very long time ago, it is very easy today to gain an intuitive notion

More information

Recursively Enumerable Languages, Turing Machines, and Decidability

Recursively Enumerable Languages, Turing Machines, and Decidability Recursively Enumerable Languages, Turing Machines, and Decidability 1 Problem Reduction: Basic Concepts and Analogies The concept of problem reduction is simple at a high level. You simply take an algorithm

More information

Introduction to Boolean Algebra

Introduction to Boolean Algebra Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

More information