Lesson 3 Network technologies - Controlling

Size: px
Start display at page:

Download "Lesson 3 Network technologies - Controlling"

Transcription

1 Lesson 3 Network technologies - Controlling Objectives : Network control or traffic engineering is one of the important techniques in the network. Understanding QoS control, traffic engineering and OAM are objectives of this lesson. 1

2 Basic concept of ATM communication Hardware routing Fixed length cell 53 bytes #j #k ATM switch VCI/VPI Label swapping #i Virtual connection ATM : Fixed length packet = cell Virtual connection = Connection Oriented 2 Fig.3.1 Hardware routing = Label swapping

3 Protocol stack of ATM/Frame relay/packet communication systems (1) Terminal Network Node Terminal NNI Layer 4~ Terminal Upper layer Packet switch Transmission line Packet switch Terminal Upper layer Layer 3 Layer 2 Logical channel multiplexing Out of order control Sequential number management Flow control Receive frame confirming Frame Mux/Demux Transmission error control Logical channel multiplexing Out of order control Sequential number management Flow control Receive frame confirming Frame Mux/Demux Transmission error control Layer 1 Physical/Electrical conditions UNI Physical layer NNI Physical layer UNI Physical/Electrical conditions (a) Packet switch communication system (X.25 protocol) Fig (a) Packet switch is based on software forwarding Throughput is limited.

4 Protocol stack of ATM/Frame relay/packet communication systems (3) Terminal Fiber transmission line = A few bit error Terminal Layer 4~ Layer 3 Upper layer Upper layer Layer 2 Order control Transmission error control ATM switch Order control Transmission error control Layer 1 Cell Mux/Demux ATM layer ATM layer Cell Mux/Demux Physical/Electrical conditions UNI Physical layer NNI Physical layer UNI Physical/Electrical conditions (c)atm communication system UNI : User-Network Interface NNI : Network Node Interface Basically, there is no layer 2 processing in the core network. Fig (c) Only cell (packet) forwarding High-speed operation.

5 ATM cell format 53byte = 5 byte header + 48 byte payload 5bytes 48bytes Header Information field UNI NNI (MSB) VPI VCI Bit VPI VCI HEC PT VCI (LSB) CLP (MSB) GFC VPI VCI Bit VCI HEC PT (b) In case of UNI VPI VCI (LSB) CLP (a) In case of NNI HEC : Error control for header information Fig.3.4 5

6 6 Relationship between packet size and quality Header P byte t sec Payload H byte

7 Function outline of AAL AAL type AAL type 1 AAL type 2 AAL type 3/4 AAL type 5 Channel 1 Channel 1 Frame 1 Frame 1 Concept Channel 2 Cell VCI1 VCI2 Channel 2 VCI structured cell Frame 2 Cell MID =1 MID MID =2 =1 MID =2 MID =2 (Same VCI) Cell VCI1 VCI1 VCI2 Frame 2 VCI2 VCI2 Characteristic Feature Assemble and disassemble cells to/from specific VCI by each channel. By building up multiple channels into the same cell, shorten the delay time to construct the cell even in low bit rate information. Multiplex the frames of multiple channels into the same VCI (recognizes by MID (Multiplexing Identifier)) Assemble and disassemble the cell by frame unit AAL Protocol function Absorbing the cell arriving time fluctuation Detecting loss of cell and bit error Multiplexing multiple frames into the same VCI (length of each channel s information is variable) Absorbing the cell fluctuation Detecting loss of cell and bit error Error detection Below functions are realized by SSCS Resending control for error recovery Flow control Multiplexing multiple frames into the same VCI Error correction by cell unit Error correction by frame unit Fig Major application field Voice and circuit switching information Low bit rate voice Data SMDS/ATM-CL Data Control signal between network/terminal ATM-CL Multimedia terminal image Voice

8 Structure and function of AAL2 CPS packet CID LI UUI HEC CPS packet payload (variable length) CPS packet header (3bytes) Offset value Sequential number Parity CPS-PDU OSF SN P CPS packet CPS packet CPS packet PAD 4bits 1 1 0~47bytes Start Field ATM cell 5bytes 48bytes CID: Channel Identifier (8bits) LI: Payload Length Indicator (6bits) UUI: User-to-User Indication (5bits) HEC: Header Error Control (5bits) CPS-INFO:Information (1-45/64 bytes) AAL2 is used for Voice transmission. Fig.3.8 8

9 Structure and function of AAL3/4 SSCS Upper layer data (corresponding to layer 2~4)(4byte~256Kbyte) Common Part Identifier Beginning tag Buffer Allocation size 4bytes integer of SSCS+PAD Alignment: makes trailer be 4bytes CPCS CPI Btag BA size PAD AL Etag L I (CS Common part) 1byte 1byte 2bytes 0~3bytes 1byte 1byte 2bytes SAR-PDU 2bytes ST SN MID LI 2bytes CRC Length of CS common part(4byte ~256Kbyte) End tag: Makes the same as the beginning tag to detect assembling error. 2bits 4bits 10bits 44bytes 6bits 10bits Bit error detection of SAR-PDU 5bytes 48bytes Indicates the Length of SAR payload Fig ATM cell SSCS: Convergence Sublayer Service dependent part CPCS: Common Part CS Message identifier (identifies AAL connection or CS message) Sequential number: Detects Cell loss/error insertion Segment type (position indication as CS frame of SAR payload) Beginning: 10 (BOM) Middle : 00 (COM) End : 01 (EOM) Single : 11 (SSM) AAL3/4 is used for data transmission. Data packet is 4k byte long, for example. Divided into short packet.

10 PVC(Permanent Virtual Connection) and SVC (Switched Virtual Connection) service PVC User OpS Operator sets up ATM network A B Private line Connection has already been established and data is delivered to destination when user selects the VCI (attaches it to header). C Operator connects fixedly in advance. SVC Connection set up XXXX VCI#3 ATM network Set up connection Fig Important User OK #3 Communication is done by cell-relay #7 A XXXX Dynamically connects by signaling

11 Soft PVC, virtual high-speed path set-up Controller A ATM NW User VCI-A PVC-A table PVC-B B VCI-A VCI-B PVC-A PVC-B 11

12 Traffic control technology in ATM node 2UPC(Usage Parameter control) 4 Shaping 3Priority control 2Mb/s 5Routing control Resource information 1 CAC(Connection admission control) Traffic monitoring Important Congestion QoS information Fault 12 Fig.3.12

13 Mechanism of Call Admission Control (CAC) New connection 50Mb/s X Unacceptable Transmission line bandwidth 150 Mb/s 20Mb/s Acceptable Connection-3 rest 30 Mb/s 40 Mb/s Connection-2 30 Mb/s Connection-1 50 Mb/s CAC device CAC device Fig.3.13

14 Adaptive CAC method 150M 100M 50M Numbers ((time) (a) 50M 100M 150M (bps) (b) Total, S New connection Overload, O Expected packet loss = O S 30M 50M 100M (c) 150M (bps) 14

15 Operation of Usage Parameter Control (UPC) Traffic exceeded the threshold Traffic volume Threshold level Time UPC circuit Repeating ATM switch UPC : Usage Parameter Control ATM network Subscriber ATM switch Fig

16 UPC methods and operation mechanism UPC method Mechanism Time chart Operation and feature (1) Leaky bucket method Depth Arrived cell Violation if overflowed Depth Count up when cell arrived Countdown at constant rate Hardware is simple Controls burst traffic by depth Leaks at constant rate (2) Credit window algorithm Counter + Reset T Count up arrived cells in T hours UPC monitoring miss may exist Hardware is simple T T Specified value (3) Sliding window algorithm (DB system) Cells go through Time, T Number of cells on bridge is specified value. T T T Count up the number of cells at all time phase Accurate monitoring of traffic volume is possible Hardware is complex Fig

17 Mechanism of priority control (1) Threshold control (2) Separate queue control Only priority cells are stored Both priority and nonpriority cells are stored Priority Priority queue Priority Non priority Threshold value Nonpriority Non-priority queue Discarded Only non-priority cells are discarded Distinguished by PT bit, etc. Transmits only when there is no cells in priority queue Fig

18 Principle of traffic shaper Traffic shaper Guarantees minimum cell interval Traffic volume Traffic volume Time Time Fig

19 Packet level transfer in ATM network Transmission terminal Packet A ATM cells EOP TOP End cell Top cell ATM network ATM Discarded EOP Receiving terminal TOP Packet A Request for resending EOP TOP Meaningless as packet A Lost part within ATM network Resend Packet reassembling completed Packet A Load within ATM network increases Fig

20 Mechanism of EPD(Early Packet Discard) Input traffic EOP... EOP... Threshold (TH) Buffer of ATM switch Input Queue length Input traffic Over threshold occurred EOP... EOP... Threshold (TH) Buffer of ATM switch Discard all in packet unit Queue length Fig

21 Packet throughput control by EPD 1 Packet throughput (throughput in packet level) EPD Conventional ATM transmission Abrupt decrease of throughput Invalid packets increases because of packet resending owing to congestion. 1 Offered load (load to be communicated) Fig

22 Operation of ATM network when congestion occurred Operation system OpS Indicates congestion on header of user cell (FECN) BECN 5UPC control Generation of congestion notifying cell (BECN) Congestion 1Notice of congestion Switch 1Notice of congestion UPC Priority Over traffic TransmissionNon- priority line Transmission line CAC 2Connection Admission Control 3Priority control Cell discarded 4Rerouting control Header converter #5 #9 #24 Changes header s conversion value Fig CAC : Connection Admission Control UPC : Usage Parameter Control FECN : Forward Explicit Congestion Notification BECN : Backward Explicit Congestion Notification

23 OAM level and flow End to end F5 flow Segment F5 flow ATM layer End to end F4 flow Segment F4 flow Virtual channel level Virtual path level F3 flow Physical layer Transmission path level F2 flow Digital section level F1 flow Repeater section level : End point of each level :Connection point of each level Fig

24 Relationship between OAM flow and equipment in physical layer and ATM layer Terminal using VC VP termination device (VC switch) VP cross connect VP cross connect VP termination device (VC switch) Terminal using VC VC VP VP VC VC End to end F5 flow VP Segment F5 flow VC level (F5) End to end F4 flow Segment F4 flow VP level (F4) Transmission path termination device Transmission path cross connect Repeater Transmission path cross connect Repeater Transmission path termination device (Example:Switch) (Example:Cross connect device) F3 flow Transmission path level (F3) F2 flow F2 flow F2 flow Digital section level (F2) Fig F1 flow F1 flow F1 flow Repeater section level (F1)

25 Example of alarm transmission in physical layer Transmission path termination device Transmission path cross connect Transmission path cross connect Transmission path termination device Repeater Repeater Transmission path fault occurred Signal off detected Repeater section level (F1) Detected MS-AIS sent MS-RAI sent Detected Digital section level (F2) Detected P-AIS sent P-RAI sent Detected Transmission (F3) path level Fig MS-: Multiples Section P-: Path AIS: Alarm Indication Signal RAI: Remote Alarm Indication

26 Outline of operation of alarm transmission function in ATM layer VP(VC) connection Fault exists ahead Stop transmission or Change route Detected :End terminal :Connection point :Occurrence :Detected Fault VP(VC)AIS cell Occurred (periodically) Fault detected When fault was Returned(periodically) detected, send back RDI VP(VC)-RDI cell Fig

27 Outline of operation of continuity check function VP(VC)connection Continuity check cell User cell Fault exists ahead Detected User s vacant time :End terminal :Connection point :Occurrence :Detected VP(VC)-RDI cell When cells were not found for a specified time, returns RDI. Fig

28 Outline of operation of loop-back function VP(VC)connection ID number xx Loop-back cell :End terminal :Connection point :Occurrence :Detected Confirm connecti on Same loop-back cell as the transmitted one Loop back the loop-back cell of xx Fig

29 Outline of operation of performance monitoring function VP(VC)connection User cell Performance monitoring cell User cell Performance monitoring cell User cell x 32 Parity Detected :End terminal :Connection point :Occurrence :Detected x32 Reverse directionperformanc e monitoring cell Notifies the result of monitoring to opposite side terminal OK or NG x K Calculate (Parity) Fig

30 Conclusions for Lesson3 1. ATM protocol is one of the typical connection oriented protocol. There are three key futures included ATM protocol, QoS, traffic and OAM. 2. Traffic engineering is key issue. CAC, UPC and other control method are used for not only ATM but also other protocols such as MPLS. 3. OAM is also important for network operator. Using OAM network operator can monitor and control the network. 30

31 1 Background (Simple) 2, Motivation --Conventional approach --Problems 3, Key point --Originality --Ideas (with Figure.) 4, Effectiveness -- Merit, graph.. 5 Conclusions -- future study issue --show your idea

Basic concept of ATM communication

Basic concept of ATM communication Lesson 3 AM Network (2days) Basic concept of AM communication Protocol structure of AM network Hardware routing OSI reference model AM network protocols Objectives : AM concepts are typical connection

More information

ATM Technology in Detail. Objectives. Presentation Outline

ATM Technology in Detail. Objectives. Presentation Outline ATM Technology in Detail Professor Richard Harris Objectives You should be able to: Discuss the ATM protocol stack Identify the different layers and their purpose Explain the ATM Adaptation Layer Discuss

More information

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction Areas for Discussion Packet Switching - Asynchronous Transfer Mode 3.3 Cell Switching (ATM) Introduction Cells Joseph Spring School of Computer Science BSc - Computer Network Protocols & Arch s Based on

More information

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching.

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching. Asynchronous Transfer Mode (ATM) Networks! All source media is first broken down into a stream of fixed sized units known as cells.! Cell streams relating to different media types are multiplexed together

More information

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy)

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy) ATM Asynchronous Transfer Mode (and some SDH) (Synchronous Digital Hierarchy) Why use ATM? Circuit switched connections: After initial setup no processing in network nodes Fixed bit rates, fixed time delay

More information

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets Cell Switching (ATM) Connection-oriented packet-switched network Used in both WAN and LAN settings Signaling (connection setup) Protocol: Q2931 Specified by ATM forum Packets are called cells 5-byte header

More information

Asynchronous. nous Transfer Mode. Networks: ATM 1

Asynchronous. nous Transfer Mode. Networks: ATM 1 Asynchronous nous Transfer Mode (ATM) Networks: ATM 1 Issues Driving LAN Changes Traffic Integration Voice, video and data traffic Multimedia became the buzz word One-way batch Two-way batch One-way interactive

More information

Cell Format. Housekeeping. Segmentation and Reassembly AAL 3/4

Cell Format. Housekeeping. Segmentation and Reassembly AAL 3/4 Housekeeping 1 st Project Handout ue Friday Oct 5 Quiz: Friday Sept 21 Material covered so far 1 st Test October 12 Cell Format User-Network Interface (UNI) 4 8 16 3 1 GFC VPI VCI Type CLP 8 HEC (CRC-8)

More information

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline ATM Asynchronous Transfer Mode these slides are based on USP ATM slides from Tereza Carvalho 1 ATM Networks Outline ATM technology designed as a support for ISDN Definitions: STM and ATM Standardization

More information

CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514

CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514 Lecture 11 Asynchronous Transfer Mode () Outline Introduction Virtual Circuit Setup PVC vs. SVC Quality of Service and Congestion Control IP over and Frame Relay interworking Network (integrated voice,

More information

Packet Switching. Hongwei Zhang Nature seems to reach her ends by long circuitous routes.

Packet Switching. Hongwei Zhang  Nature seems to reach her ends by long circuitous routes. Problem: not all networks are directly connected Limitations of directly connected networks: limit on the number of hosts supportable limit on the geographic span of the network Packet Switching Hongwei

More information

1997, Scott F. Midkiff 1

1997, Scott F. Midkiff 1 Welcome to! Loooooooooooooooots of acronyms! By Scott Midkiff ECpE/CS 5516, VPI Spring 1997 (modified by Marc Abrams for Spring 1998) A lot of what s in came from the phone and ing worlds, not the LAN

More information

ATM Introduction. The Grand Unification 2005/03/11. (C) Herbert Haas

ATM Introduction. The Grand Unification 2005/03/11. (C) Herbert Haas ATM Introduction The Grand Unification Agenda What is it? Who wants it? Who did it? Header and Switching ATM Layer Hypercube Adaptation Layers Signaling Addresses 2 What is ATM? High-Speed Virtual Circuits

More information

Introduction. ATM Technology. What is ATM? Agenda

Introduction. ATM Technology. What is ATM? Agenda Introduction Technology Asynchronous Transfer Mode Principles, ing, AAL, Signaling In 1986 the CCITT (now ITU-T) adopted as background technology for B-ISDN B-ISDN intended to replace several widespread

More information

Appendix 5 - ATM Technology in Detail

Appendix 5 - ATM Technology in Detail Technology Asynchronous Transfer Mode Principles, Layering, AAL, Signaling Agenda Introduction Reference Model Physical Layer Layer Switching Details Adaptation Layer Signaling and Addressing Technology,

More information

HWP2 Application level query routing HWP1 Each peer knows about every other beacon B1 B3

HWP2 Application level query routing HWP1 Each peer knows about every other beacon B1 B3 HWP2 Application level query routing HWP1 Each peer knows about every other beacon B2 B1 B3 B4 B5 B6 11-Feb-02 Computer Networks 1 HWP2 Query routing searchget(searchkey, hopcount) Rget(host, port, key)

More information

Asynchronous Transfer Mode (ATM) ATM concepts

Asynchronous Transfer Mode (ATM) ATM concepts Asynchronous Transfer Mode (ATM) Asynchronous Transfer Mode (ATM) is a switching technique for telecommunication networks. It uses asynchronous time-division multiplexing,[1][2] and it encodes data into

More information

different problems from other networks ITU-T specified restricted initial set Limited number of overhead bits ATM forum Traffic Management

different problems from other networks ITU-T specified restricted initial set Limited number of overhead bits ATM forum Traffic Management Traffic and Congestion Management in ATM 3BA33 David Lewis 3BA33 D.Lewis 2007 1 Traffic Control Objectives Optimise usage of network resources Network is a shared resource Over-utilisation -> congestion

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

MPLS AToM Overview. Documentation Specifics. Feature Overview

MPLS AToM Overview. Documentation Specifics. Feature Overview MPLS AToM Overview This document provides an introduction to MPLS AToM and includes the following sections: Documentation Specifics, page 14 Feature Overview, page 14 Benefits, page 26 What To Do Next,

More information

Administrivia. Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook

Administrivia. Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook Administrivia Homework on class webpage If you are having problems following me in class (or doing the homework problems), please buy the textbook Project Discussion class_ gotcha Reading finally on webpage

More information

Module 10 Frame Relay and ATM

Module 10 Frame Relay and ATM Module 10 Frame Relay and ATM Lesson 35 ATM: Virtual Path, Virtual Channel. ATM Adaptation Layer (AAL) 10.3.1 VIRTUAL PATH AND VIRTUAL CHANNEL Connection between two endpoints is accomplished through virtual

More information

Lecture 22 Overview. Last Lecture. This Lecture. Next Lecture. Internet Applications. ADSL, ATM Source: chapter 14

Lecture 22 Overview. Last Lecture. This Lecture. Next Lecture. Internet Applications. ADSL, ATM Source: chapter 14 Last Lecture Lecture 22 Overview Internet Applications This Lecture ADSL, ATM Source: chapter 14 Next Lecture Wireless Networking Source: chapter 15 COSC244 & TELE202 Lecture 22 - ADSL, ATM 1 Modem Enable

More information

ATM Quality of Service (QoS)

ATM Quality of Service (QoS) ATM Quality of Service (QoS) Traffic/Service Classes, Call Admission Control Usage Parameter Control, ABR Agenda Introduction Service Classes and Traffic Attributes Traffic Control Flow Control Special

More information

This Lecture. BUS Computer Facilities Network Management X.25. X.25 Packet Switch. Wide Area Network (WAN) Technologies. X.

This Lecture. BUS Computer Facilities Network Management X.25. X.25 Packet Switch. Wide Area Network (WAN) Technologies. X. This ecture BUS350 - Computer Facilities Network Management Wide rea Network (WN) Technologies. X.5 Frame Relay TM Faculty of Information Technology Monash University Faculty of Information Technology

More information

ATM Logical Connections: VCC. ATM Logical Connections: VPC

ATM Logical Connections: VCC. ATM Logical Connections: VPC ATM Logical Connections: VCC Logical Connections in ATM are referred to as virtual channel connections (VCCs). Virtual channel (VC) is a generic term used to describe unidirectional transport of ATM cells

More information

A T M. Cell Switched Technology. not SMDS. Defacto Standard Multimedia capable Use with SONET or SDH. Fixed Length - 53 bytes. DigiPoints Volume 1

A T M. Cell Switched Technology. not SMDS. Defacto Standard Multimedia capable Use with SONET or SDH. Fixed Length - 53 bytes. DigiPoints Volume 1 A T M Cell Switched Technology Fixed Length - 53 bytes not SMDS Defacto Standard Multimedia capable Use with SONET or SDH SCTE VA 12.1 SONET Optical Carrier (OC) Rates and SDH Synchronous Transport Module

More information

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM CISC452 Telecommunications Systems Lesson 6 Frame Relay and ATM 1 Technology Comparison Private Line X.25 SMDS Frame Relay ATM IP Speed 56K - 622M 9.6K - 2.048M 56K - 34M Dial - 45M 1.5M - 622M Dial -

More information

Chapter 10. Circuits Switching and Packet Switching 10-1

Chapter 10. Circuits Switching and Packet Switching 10-1 Chapter 10 Circuits Switching and Packet Switching 10-1 Content Switched communication networks Circuit switching networks Circuit-switching concepts Packet-switching principles X.25 (mentioned but not

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control Chapter 12 Congestion in Data Networks Effect of Congestion Control Ideal Performance Practical Performance Congestion Control Mechanisms Backpressure Choke Packet Implicit Congestion Signaling Explicit

More information

What Is Congestion? Computer Networks. Ideal Network Utilization. Interaction of Queues

What Is Congestion? Computer Networks. Ideal Network Utilization. Interaction of Queues 168 430 Computer Networks Chapter 13 Congestion in Data Networks What Is Congestion? Congestion occurs when the number of packets being transmitted through the network approaches the packet handling capacity

More information

Asynchronous Transfer Mode

Asynchronous Transfer Mode ATM Asynchronous Transfer Mode CS420/520 Axel Krings Page 1 Protocol Architecture (diag) CS420/520 Axel Krings Page 2 1 Reference Model Planes User plane Provides for user information transfer Control

More information

Telematics Chapter 7: MPLS

Telematics Chapter 7: MPLS Telematics Chapter 7: MPLS User watching video clip Beispielbild Application Layer Presentation Layer Session Layer Transport Layer Server with video clips Application Layer Presentation Layer Session

More information

Lecture 4 Wide Area Networks - Congestion in Data Networks

Lecture 4 Wide Area Networks - Congestion in Data Networks DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Congestion in Data Networks Mei Yang Based on Lecture slides by William Stallings 1 WHAT IS CONGESTION? congestion occurs when the number

More information

Technical Committee. Network Management

Technical Committee. Network Management Technical Committee Network Management AAL Management for the M4 NE View Interface January, 1997 AAL Management for the M4 NE View AAL Management for the M4 NE View Interface November 1996 (C) 1996 The

More information

Module 10 Frame Relay and ATM

Module 10 Frame Relay and ATM Module 10 Frame Relay and ATM Lesson 34 ATM: Concepts And Header 10.2.1 INTRODUCTION IP has a varying packet size which causes no problem while multiplexing but makes switching difficult. ATM uses a fixed

More information

ATM Asynchronous Transfer Mode revisited

ATM Asynchronous Transfer Mode revisited ATM Asynchronous Transfer Mode revisited ACN 2007 1 ATM GOAL To establish connections between an arbitrary number of hosts...... over channels that fulfills a certain QoS level. -> ATM networks make it

More information

Congestion in Data Networks. Congestion in Data Networks

Congestion in Data Networks. Congestion in Data Networks Congestion in Data Networks CS420/520 Axel Krings 1 Congestion in Data Networks What is Congestion? Congestion occurs when the number of packets being transmitted through the network approaches the packet

More information

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis Broadband ISDN 3BA33 David Lewis 3BA33 D.Lewis 2007 1 B-ISDN Model has 3 planes User Control Management 3BA33 D.Lewis 2007 3 Broadband ISDN Was Expected to be the Universal Network of the future Takes

More information

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites Asynchronous Transfer Mode Page 12.i DigiPoints Volume 1 Module 12 Asynchronous Transfer Mode Summary This last module of, covers ATM, and provides an end-to-end data communications model that draws on

More information

PRODUCT SUMMARY. SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION

PRODUCT SUMMARY. SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION PRODUCT SUMMARY SARA-Lite ATM AAL0/5 Segmentation and Reassembly Product TheTranSwitchSARA-Lite product provides

More information

Introduction to ATM Traffic Management on the Cisco 7200 Series Routers

Introduction to ATM Traffic Management on the Cisco 7200 Series Routers CHAPTER 1 Introduction to ATM Traffic Management on the Cisco 7200 Series Routers In the latest generation of IP networks, with the growing implementation of Voice over IP (VoIP) and multimedia applications,

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213 UNIT I HIGH SPEED NETWORKS Part A (2 Marks) 1. Differentiate Frame relay and X.25 packet-switching service. -> Call control signaling is carried on

More information

Management of Low and Variable Bit Rate. ATM Adaptation Layer Type 2 Traffic

Management of Low and Variable Bit Rate. ATM Adaptation Layer Type 2 Traffic Western Australian Telecommunications Research Institute and The University of Western Australia Management of Low and Variable Bit Rate ATM Adaptation Layer Type 2 Traffic Charles Voo This thesis is presented

More information

Advanced Internet Technologies

Advanced Internet Technologies Advanced Internet Technologies Chapter 2 ATM Dr.-Ing. Falko Dressler Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/

More information

SDH. Protected monitoring point or dedicated monitor access

SDH. Protected monitoring point or dedicated monitor access CMA 3000 ATM Test Options SPECIFICATIONS Testing ATM connections has never been easier CMA 3000 is Anritsu s next-generation portable and futureproof field tester for the installation and maintenance of

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SEED NETWORKS LAYERS The function and associated information of the planes is as follows: The reference model is composed of the following planes: Control lane manages the call and connection.

More information

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross Part 5: Link Layer Technologies CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross 1 Outline PPP ATM X.25 Frame Relay 2 Point to Point Data Link Control One sender, one receiver,

More information

Network Services and Applications. MAP-TELE 2007/08 José Ruela

Network Services and Applications. MAP-TELE 2007/08 José Ruela Network Services and Applications MAP-TELE 2007/08 José Ruela Service Integration, QoS Applications and Services Service Integration Service separation vs. service integration In the past communication

More information

ATM networks. C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory

ATM networks. C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory ATM networks C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Issues Driving LAN Changes Traffic Integration Voice, video and data

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS INTRODUCTION ATM stands for Asynchronous Transfer Mode ATM is a flexible high bandwidth, low delay network technology that is: Capable of handling voice, video and data

More information

Vanguard Managed Solutions

Vanguard Managed Solutions Vanguard Managed Solutions Vanguard Applications Ware IP and LAN Feature Protocols Asynchronous Transfer Mode Notice 2005 Vanguard Managed Solutions, LLC 575 West Street Mansfield, Massachusetts 02048

More information

Network Working Group Request for Comments: 2761 Category: Informational February 2000

Network Working Group Request for Comments: 2761 Category: Informational February 2000 Network Working Group Request for Comments: 2761 Category: Informational J. Dunn C. Martin ANC, Inc. February 2000 Terminology for ATM Benchmarking Status of this Memo This memo provides information for

More information

EUROPEAN ETS TELECOMMUNICATION August 1995 STANDARD

EUROPEAN ETS TELECOMMUNICATION August 1995 STANDARD EUROPEAN ETS 300 354 TELECOMMUNICATION August 1995 STANDARD Source: ETSI TC-NA Reference: DE/NA-052729 ICS: 33.040 Key words: Broadband, ISDN, PRM Broadband Integrated Services Digital Network (B-ISDN);

More information

Figure 10.1 Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing.

Figure 10.1 Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing. Figure. Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing. (a) PCI =,,, 4 4 PCI =, 4 4 6 PCI = 6, Link/Port RT Link/Port RT Link/Port RT In Port PCI 4 Out Port PCI 4 6 Port

More information

Can you be sure that there are no weak links?

Can you be sure that there are no weak links? Can you be sure that there are no weak links? Application Note 55 Advanced Broadband Testing: ATM QoS Traffic Contract Signalling Monitoring ATM Service Contents Practice 3 Turn-up: A fast test of UNI

More information

Intermediate Traffic Management

Intermediate Traffic Management Intermediate Traffic Management This presentation has been generated by the ATM Forum for the purpose of educating the public on ATM Technology and the ATM Forum s activities. This presentation is the

More information

Congestion Control Open Loop

Congestion Control Open Loop Congestion Control Open Loop Muhammad Jaseemuddin Dept. of Electrical & Computer Engineering Ryerson University Toronto, Canada References 1. A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamental

More information

(Refer Slide Time: 2:20)

(Refer Slide Time: 2:20) Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture -23 X.25 and Frame Relay Hello and welcome to today s lecture on X.25 and

More information

TEMPORARY DOCUMENT. Attached is a clean copy of Draft Recommendation X.84. TD 1143 Rev3 is the source document used to produce this clean version.

TEMPORARY DOCUMENT. Attached is a clean copy of Draft Recommendation X.84. TD 1143 Rev3 is the source document used to produce this clean version. INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 17 TELECOMMUNICATION STANDARDIZATION SECTOR STUDY PERIOD 2001-2004 English only Original: English Question(s): 5/17 Geneva, 10-19 March 2004 Source: Title:

More information

ATM Switches. Switching Technology S ATM switches

ATM Switches. Switching Technology S ATM switches ATM Switches Switching Technology S38.65 http://www.netlab.hut.fi/opetus/s3865 9 - ATM switches General of ATM switching Structure of an ATM switch Example switch implementations Knockout switch Abacus

More information

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections 168 430 Computer Networks Chapter 11 Asynchronous Transfer Mode Protocol Architecture Similarities between ATM and packet switching Transfer of data in discrete chunks Multiple logical connections over

More information

COMP9332 Network Routing & Switching

COMP9332 Network Routing & Switching COMP9332 Network Routing & Switching Switching in IP Networks with MPLS http://www.cse.unsw.edu.au/~cs9332 1 Lecture Overview This lecture introduces the concept of switching, which allows faster processing

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS ATM SWITCHING ATM is a connection-oriented transport concept An end-to-end connection (virtual channel) established prior to transfer of cells Signaling used for connection

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode William Stallings Data and Computer Communications 7 th Edition Chapter 11 Asynchronous Transfer Mode Protocol Architecture Similarities between ATM and packet switching Transfer of data in discrete chunks

More information

Generic Requirements for Operations of ATM NEs

Generic Requirements for Operations of ATM NEs GR 1248 CORE Issue 4, November 1998 Contents Contents Contents Preface...Preface-1 1. Introduction...1-1 1.1 Purpose of Document...1-1 1.2 Major Changes From Issue 3 of GR-1248-CORE...1-1 1.3 Scope of

More information

NETWORK PARADIGMS. Bandwidth (Mbps) ATM LANS Gigabit Ethernet ATM. Voice, Image, Video, Data. Fast Ethernet FDDI SMDS (DQDB)

NETWORK PARADIGMS. Bandwidth (Mbps) ATM LANS Gigabit Ethernet ATM. Voice, Image, Video, Data. Fast Ethernet FDDI SMDS (DQDB) 1. INTRODUCTION NETWORK PARADIGMS Bandwidth (Mbps) 1000 ATM LANS Gigabit Ethernet ATM 100 10 Fast Ethernet FDDI SMDS (DQDB) Voice, Image, Video, Data 1 Ethernet/ Token Ring/ Token Bus Frame Relay X.25

More information

QoS: Match on ATM CLP

QoS: Match on ATM CLP QoS: Match on ATM CLP First Published: May 7, 2004 Last Updated: February 28, 2006 The QoS: Match on ATM CLP feature allows you to match and classify packets arriving at an interface on the basis of the

More information

ASYNCHRONOUS TRANSFER MODE

ASYNCHRONOUS TRANSFER MODE Fundamentals of Telecommunications. Roger L. Freeman Copyright 1999 Roger L. Freeman Published by John Wiley & Sons, Inc. ISBNs: 0-471-29699-6 (Hardback); 0-471-22416-2 (Electronic) 18 ASYNCHRONOUS TRANSFER

More information

Packet Switching. Packet Switching (CSE 573S) Packet Switching Methods. Packet Switching. Ken Wong Washington University

Packet Switching. Packet Switching (CSE 573S) Packet Switching Methods. Packet Switching. Ken Wong Washington University Packet Switching Packet Switching (CSE 57S) Ken Wong Washington University kenw@wustl.edu www.arl.wustl.edu/~kenw Key Idea: Transmit data in packets (short bundles) with headers (control)» Large messages

More information

COMPUTER NETWORKS Data link layer protocols

COMPUTER NETWORKS Data link layer protocols Data link layer (layer 2) Gruppo Reti TLC nome.cognome@polito.it http://www.telematica.polito.it/ Copyright Quest opera è protetta dalla licenza Creative Commons NoDerivs-NonCommercial. Per vedere una

More information

Ethernet Switches (more)

Ethernet Switches (more) Ethernet Switches layer 2 (frame) forwarding, filtering using LAN addresses Switching: A-to-B and A - to-b simultaneously, no collisions large number of interfaces often: individual hosts, star-connected

More information

Explore some common protocols. Telephone network protocols. Traditional digital transmission. Digital Communications II

Explore some common protocols. Telephone network protocols. Traditional digital transmission. Digital Communications II Explore some common protocols Common Protocols Digital Communications II Much discussion of principles, but not protocol details These change with time Real protocols draw many things together Overview

More information

Byte-Based Weighted Random Early Detection

Byte-Based Weighted Random Early Detection Byte-Based Weighted Random Early Detection First Published: August 26, 2003 Last Updated: February 28, 2006 This feature module explains how to enable byte-based Weighted Random Early Detection (WRED).

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

Overview p. 1 Broadband and ATM p. 2 The Evolution Toward Broadband p. 3 Access Networks, Core Networks, and Service Providers p.

Overview p. 1 Broadband and ATM p. 2 The Evolution Toward Broadband p. 3 Access Networks, Core Networks, and Service Providers p. Contents p. v Preface p. xxiii Conventions p. xxiv Acknowledgments p. xxiv Overview p. 1 Broadband and ATM p. 2 The Evolution Toward Broadband p. 3 Access Networks, Core Networks, and Service Providers

More information

Packet Switching Techniques

Packet Switching Techniques Packet Switching Techniques 188lecture3.ppt Pasi Lassila 1 Problem Aim: Build larger networks connecting more users also spanning different network technologies Shared media networks limited number of

More information

frame-relay lmi-n391dte

frame-relay lmi-n391dte frame-relay lmi-n391dte frame-relay lmi-n391dte To set a full status polling interval, use the frame-relay lmi-n391dte interface configuration command. To restore the default interval value, assuming that

More information

Label Switching. The idea. Add a small label (sometimes called a tag ) on the front of a packet and route the packet based on the label. cs670.

Label Switching. The idea. Add a small label (sometimes called a tag ) on the front of a packet and route the packet based on the label. cs670. Label Switching The idea Add a small label (sometimes called a tag ) on the front of a packet and route the packet based on the label label How it works IP IP payload When the packet reaches a router,

More information

CompSci 356: Computer Network Architectures. Lecture 7: Switching technologies Chapter 3.1. Xiaowei Yang

CompSci 356: Computer Network Architectures. Lecture 7: Switching technologies Chapter 3.1. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 7: Switching technologies Chapter 3.1 Xiaowei Yang xwy@cs.duke.edu Types of switching Datagram Virtual circuit Source routing Today Bridges and LAN switches

More information

Quality of Service (QoS) Computer network and QoS ATM. QoS parameters. QoS ATM QoS implementations Integrated Services Differentiated Services

Quality of Service (QoS) Computer network and QoS ATM. QoS parameters. QoS ATM QoS implementations Integrated Services Differentiated Services 1 Computer network and QoS QoS ATM QoS implementations Integrated Services Differentiated Services Quality of Service (QoS) The data transfer requirements are defined with different QoS parameters + e.g.,

More information

ATM Networks. Raj Jain

ATM Networks. Raj Jain ATM Networks Professor of Computer and Information Sciences The Ohio State University Columbus, OH 43210-1277 http://www.cis.ohio-state.edu/~jain/ 1 Overview ATM: Overview ATM Protocol Layers Network Interfaces

More information

Chapter 3 Packet Switching

Chapter 3 Packet Switching Chapter 3 Packet Switching Self-learning bridges: Bridge maintains a forwarding table with each entry contains the destination MAC address and the output port, together with a TTL for this entry Destination

More information

WAN Technologies (to interconnect IP routers) Mario Baldi

WAN Technologies (to interconnect IP routers) Mario Baldi WAN Technologies (to interconnect IP routers) Mario Baldi www.baldi.info WAN_Technologies - 1 Copyright: see page 2 Copyright Notice This set of transparencies, hereinafter referred to as slides, is protected

More information

ACE-2002, ACE-2002E. Multiservice Access Concentrators/ ATM Network Termination Units FEATURES

ACE-2002, ACE-2002E. Multiservice Access Concentrators/ ATM Network Termination Units FEATURES Multiservice Access Concentrators/ ATM Network Termination Units FEATURES Multiservice/ATM network demarcation device or access concentrator (ACE-2002), cellular access concentrator () Offer converged

More information

Configuring Layer 2 Local Switching

Configuring Layer 2 Local Switching CHAPTER 17 The Layer 2 Local Switching feature allows you to switch Layer 2 data between two physical or virtual interfaces of the same type on the same router. The interfaces can be on the same line card

More information

Outline. Circuit Switching. Circuit Switching : Introduction to Telecommunication Networks Lectures 13: Virtual Things

Outline. Circuit Switching. Circuit Switching : Introduction to Telecommunication Networks Lectures 13: Virtual Things 8-5: Introduction to Telecommunication Networks Lectures : Virtual Things Peter Steenkiste Spring 05 www.cs.cmu.edu/~prs/nets-ece Outline Circuit switching refresher Virtual Circuits - general Why virtual

More information

UBR Congestion controlled Video Transmission over ATM Eltayeb Omer Eltayeb, Saudi Telecom Company

UBR Congestion controlled Video Transmission over ATM Eltayeb Omer Eltayeb, Saudi Telecom Company UBR Congestion controlled Video Transmission over ATM Eltayeb Omer Eltayeb, Saudi Telecom Company ABSTRACT The ATM unspecified bit rate (UBR) class of service some times referred to as best effort service-

More information

Quality of Service Commands policy-map. This command has no default behavior or values.

Quality of Service Commands policy-map. This command has no default behavior or values. Quality of Service Commands policy-map policy-map To create or modify a policy map that can be attached to one or more interfaces to specify a service policy, use the policy-map global configuration command.

More information

INTERNATIONAL TELECOMMUNICATION UNION. SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital networks General aspects

INTERNATIONAL TELECOMMUNICATION UNION. SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital networks General aspects INTERNATIONAL TELECOMMUNICATION UNION ITU-T G.804 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (06/2004) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital networks General

More information

Switching and Forwarding

Switching and Forwarding Switching and Forwarding Outline Store-and-Forward Switches ridges and Extended LNs ell Switching Segmentation and Reassembly Scalable Networks Switch forwards packets from input port to output port port

More information

Configuring Frame Relay-ATM Interworking

Configuring Frame Relay-ATM Interworking Configuring -ATM Interworking The -ATM Interworking features enable and ATM networks to exchange data, despite differing network protocols. There are two types of -ATM Interworking: FRF.5 -ATM Network

More information

Principles of Telecommunications Network Architecture

Principles of Telecommunications Network Architecture 01_01_32.fm Page 1 Thursday, March 23, 2000 2:53 PM C H A P T E R 1 Principles of Telecommunications Network Architecture A telecommunications network is a collection of nodes and links that communicate

More information

Frame Relay. Frame Relay: characteristics

Frame Relay. Frame Relay: characteristics Frame Relay Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network management and QoS provisioning - 1 Frame Relay: characteristics Packet switching

More information

WAN technology which are to be discussed:

WAN technology which are to be discussed: WAN Technology Operates at 3 layer OSI model as below: 1. PHY 2. Data Link 3. Network Most of WAN technology are packetswitched network categorized as Switched Virtual circuit Network ( 3-phase, connection

More information

Technical Committee. Interoperability Abstract Test Suites for the Physical Layer. af-test

Technical Committee. Interoperability Abstract Test Suites for the Physical Layer. af-test Technical Committee Interoperability Abstract Test Suites af-test-0036.000 April, 1995 af-test-0036.000 Interoperability Abstract Test Suites Interoperability Abstract Test Suites Version 1.0 April, 1995

More information

Network management and QoS provisioning - revise. When someone have to share the same resources is possible to consider two particular problems:

Network management and QoS provisioning - revise. When someone have to share the same resources is possible to consider two particular problems: Revise notes Multiplexing & Multiple Access When someone have to share the same resources is possible to consider two particular problems:. multiplexing;. multiple access. The first one is a centralized

More information

Telecommunication. AAL (ATM Adaptation Layer) Krzysztof Wajda. Department of Telecommunications, AGH-UST November, 2016

Telecommunication. AAL (ATM Adaptation Layer) Krzysztof Wajda. Department of Telecommunications, AGH-UST November, 2016 Telecommunication Networks and Systems AAL (ATM Adaptation Layer) Krzysztof Wajda Department of Telecommunications, AGH-UST November, 2016 Outline Motivation to introduce so many AAL versions Description

More information

Understanding Packet Counters in show policy map interface Output

Understanding Packet Counters in show policy map interface Output Understanding Packet Counters in show policy map interface Output Document ID: 10107 Contents Introduction Prerequisites Requirements Components Used Conventions What Is Congestion? What Is the Difference

More information