EE 382C Final Project Presentation. Ted Jiang Curt Harting 5/24/11

Size: px
Start display at page:

Download "EE 382C Final Project Presentation. Ted Jiang Curt Harting 5/24/11"

Transcription

1 EE 382C Final Project Presentation Ted Jiang Curt Harting 5/24/11

2 Overview Dragonfly Network 15 End Points

3 Overview 22 s per Group 330 Endpoints per Group

4 15 End Points Overview 331 Groups Endpoints Total

5 Board & Rack Design 15 nodes RACK Each 32U Rack has 30 endpoints and 2 router nodes (15 nodes per router) Each router has 51 QSFP connectors 15 on front for endpoint to router 36 on the back for intra/inter group

6 Group Layout 11 Racks per group in 2 rows 3.0m 2.73m 1m Hot Aisle 2.5m Cold Aisle Hot Aisle Cold Aisle Data Center will be 18 groups (49.5m) by 19 groups (57m)

7 Cost Estimation - Optical Item Amount Cost For 1 Total Cost Optical Cables Electrical Cables to end point Electrical Cables Intra-Group PCB Boards 1U 330*330/2 = $100 $5,445, ,000 $0.10 $10,000 21*22*331/ 2=76,461 22*331 = 7282 Connectors 51*22* ,000 = 471,382 $0.10 $7,461 $250 $1,820,500 $0.10 $47,138 E Cables - Intragroup 0% E Cables - Endpoint 0% Connectors 1% PCB Boards 1U 25% Chips 1% Optical Cables 73% Chips 22*331 = $12.25 $89, TOTAL $7,419,304

8 Cost Estimation - Electrical Item Amount Cost For 1 Total Cost Electrical Inter Electrical Endpoint 330*330 * 5/2 = 272,250 $0.10 $27, ,000 $0.10 $10,000 E Cables - Intergroup 0% E Cables - Endpoint 0% E Cables Connectors - Intragroup 1% 0% Electrical Intra 21*22*331/ 2=76,461 $0.10 $7,461 PCB Boards 1U 25% PCB 22*331 = 7282 Connectors 51*22* ,000 = 471,382 Chips 22*331 = 7282 Repeaters 330*330*5 /2 = 272,250 $250 $1,820,500 $0.10 $47,138 $12.25 $89,205 $0.5*1mm 2 + $0.1*4 + $0.1*10cm 2 = $1.9 $517,275 TOTAL $2,518,804 Savings 66% Repeaters 7% Chips 1%

9 Latency Estimation Component Amount w/ Optical All Electrical Longest intergroup cable (80m) 400ns 464ns Average intergroup cable (25m) 125ns 145ns Connectors (total) 4ns 2ns Board (1/4m) + SERDES 2.25ns 2.25ns Longest Endpoint to (2/3m) 3.33ns 3.33ns Longest Intra-Group Wires (3m) 15ns 15ns Chip to Chip Intergroup WC 410ns 472ns Chip to Chip Intergroup AC 135ns 153ns Chip to Chip Intragroup 22ns 22ns Chip to Chip Endpoint to 10ns 10ns Chip Latency (2Ghz clock) 20ns 20ns

10 Chip Area Component Area (um2) Crossbar (51x51x20) 52,020 Inter-group Buffers, each: 17,000 (850ns*40Gbps = 34000b) Inter-group Buffers, Total 255,000 Intra-group buffers, each: 500 (25ns*40Gbps = 1000b) Intra-group buffers, total 10,500 Endpoint buffers, total 4,500 Total XBAR, Buffer 322,020 Other stuff 177,980 Chip Area 500,000um 2 Perimeter I/O Needed 2,040 Tbps Perimeter Needed 20.4mm Die Size (2:1 aspect) 7mm x 3.5mm

11 Power Estimation Item Power - Optical Power - Electrical Optical Cables Inter 108,900W NA Electrical Cables Inter NA 0W Electrical Repeaters NA 45,738W End Point Wires 0W 0W Intra-Group Wires 0W 0W Chip Serdes 29,711W 29,711W Data crossing Chip (10mm) 14,855W 14,855W Reading/Writing Memory 1.486W 1.486W TOTAL 153kW 90.3kW 63kw*24hr*365*$0.1 = $55188/year

12 Simulation Setup Simulate a single group 330 node generators 330 group generators Group Traffic Generator Simulated Group R R R R R R R R Node traffic generator

13 Simulated Group 22 routers with 51 ports each Fully connected 20-bit flits 10 flits per packet Group Traffic Generator 300 cycles Progressive adaptive routing 4 virtual channels R 44 cycles Simulated Group R 10 cycles N All 10 hotspots reside in the simulated group

14 Node Traffic Generator Hotspot RDMA UR RPC X500 WC RPC X500 Request To network Reply From network

15 Group Traffic Generator Respond to requests from the simulated group Generate fake requests based on feedback from the simulated group The four traffic types Adaptive cross traffic Added effects Simulated delay on messages Sending a portion of the traffic adaptively

16 Results Throughput 30 traffic iterations in 6.8 million cycles ~17% endpoint throughput ~24% global channel utilization Latency (simulated group) UR RPC transaction: 1250 cycles b WC RPC transaction: 2300 cycles 36 RDMA transaction: Gbps cycles Hotspot transaction: 1400 cycles %

17 Simulation Stability Generation Rate (Packets/cycle) Feedback Generation Variables Cross Traffic UR Traffic WC Traffic Simulation time (10000 cycles)

18 Simulation Stability 1 Feedback Adaptivity Variables Fraction of total packets WC Adaptive UR Adaptive Simulation time (10000 cycles)

19 Throughput Network Throughput Global channel Node Throughput (flits/cycle) Simulation time (10000 cycles)

20 Throughput Instantanious node composition Hotspot RDMA UR RPC WC RPC

21 Latency Packet Network Latency Min Nonmin Source Nonmin 1-hop Latency (cycles) Simulation time (10000 cycles)

22 Progressive Adaptive Routing Adaptive routing success Source 1-hop Fraction of total packets Simulation time (10000 cycles)

23 Hotspot Packet Network Latency Min Nonmin Source Nonmin 1-hop Latency (cycles) Simulation time (10000 cycles)

24 Hotspot Network Throughput Global channel Node Throughput (flits/cycle) Simulation time (10000 cycles)

25 Other Considerations Outstanding requests and latency ~28% network throughput with 8 outstanding request Use concentration to increase global channel utilization Higher global channel utilization Higher latency Lower endpoint throughput

26 1 0.8 Instantanious node composition Hotspot RDMA UR RPC WC RPC

Traffic Pattern-based

Traffic Pattern-based Traffic Pattern-based C Adaptive Routing in Dragonfly Networks Peyman Faizian, Shafayat Rahman Atiqul Mollah, Xin Yuan Florida State University Scott Pakin Mike Lang Los Alamos National Laboratory Motivation

More information

A Single Chip Shared Memory Switch with Twelve 10Gb Ethernet Ports

A Single Chip Shared Memory Switch with Twelve 10Gb Ethernet Ports A Single Chip Shared Memory Switch with Twelve 10Gb Ethernet Ports Takeshi Shimizu, Yukihiro Nakagawa, Sridhar Pathi, Yasushi Umezawa, Takashi Miyoshi, Yoichi Koyanagi, Takeshi Horie, Akira Hattori Hot

More information

Comparison of Deadlock Recovery and Avoidance Mechanisms to Approach Message Dependent Deadlocks in on-chip Networks

Comparison of Deadlock Recovery and Avoidance Mechanisms to Approach Message Dependent Deadlocks in on-chip Networks Comparison of Deadlock Recovery and Avoidance Mechanisms to Approach Message Dependent Deadlocks in on-chip Networks Andreas Lankes¹, Soeren Sonntag², Helmut Reinig³, Thomas Wild¹, Andreas Herkersdorf¹

More information

Dynamic Packet Fragmentation for Increased Virtual Channel Utilization in On-Chip Routers

Dynamic Packet Fragmentation for Increased Virtual Channel Utilization in On-Chip Routers Dynamic Packet Fragmentation for Increased Virtual Channel Utilization in On-Chip Routers Young Hoon Kang, Taek-Jun Kwon, and Jeff Draper {youngkan, tjkwon, draper}@isi.edu University of Southern California

More information

OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management

OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management Marina Garcia 22 August 2013 OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management M. Garcia, E. Vallejo, R. Beivide, M. Valero and G. Rodríguez Document number OFAR-CM: Efficient Dragonfly

More information

Low-Power Interconnection Networks

Low-Power Interconnection Networks Low-Power Interconnection Networks Li-Shiuan Peh Associate Professor EECS, CSAIL & MTL MIT 1 Moore s Law: Double the number of transistors on chip every 2 years 1970: Clock speed: 108kHz No. transistors:

More information

Arista 7020R Series: Q&A

Arista 7020R Series: Q&A 7020R Series: Q&A Document Arista 7020R Series: Q&A Product Overview What is the 7020R Series? The Arista 7020R Series, including the 7020SR, 7020TR and 7020TRA, offers a purpose built high performance

More information

Quality-of-Service for a High-Radix Switch

Quality-of-Service for a High-Radix Switch Quality-of-Service for a High-Radix Switch Nilmini Abeyratne, Supreet Jeloka, Yiping Kang, David Blaauw, Ronald G. Dreslinski, Reetuparna Das, and Trevor Mudge University of Michigan 51 st DAC 06/05/2014

More information

ANALYSIS AND IMPROVEMENT OF VALIANT ROUTING IN LOW- DIAMETER NETWORKS

ANALYSIS AND IMPROVEMENT OF VALIANT ROUTING IN LOW- DIAMETER NETWORKS ANALYSIS AND IMPROVEMENT OF VALIANT ROUTING IN LOW- DIAMETER NETWORKS Mariano Benito Pablo Fuentes Enrique Vallejo Ramón Beivide With support from: 4th IEEE International Workshop of High-Perfomance Interconnection

More information

Topologies. Maurizio Palesi. Maurizio Palesi 1

Topologies. Maurizio Palesi. Maurizio Palesi 1 Topologies Maurizio Palesi Maurizio Palesi 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and

More information

Slim Fly: A Cost Effective Low-Diameter Network Topology

Slim Fly: A Cost Effective Low-Diameter Network Topology TORSTEN HOEFLER, MACIEJ BESTA Slim Fly: A Cost Effective Low-Diameter Network Topology Images belong to their creator! NETWORKS, LIMITS, AND DESIGN SPACE Networks cost 25-30% of a large supercomputer Hard

More information

RHiNET-3/SW: an 80-Gbit/s high-speed network switch for distributed parallel computing

RHiNET-3/SW: an 80-Gbit/s high-speed network switch for distributed parallel computing RHiNET-3/SW: an 0-Gbit/s high-speed network switch for distributed parallel computing S. Nishimura 1, T. Kudoh 2, H. Nishi 2, J. Yamamoto 2, R. Ueno 3, K. Harasawa 4, S. Fukuda 4, Y. Shikichi 4, S. Akutsu

More information

Topologies. Maurizio Palesi. Maurizio Palesi 1

Topologies. Maurizio Palesi. Maurizio Palesi 1 Topologies Maurizio Palesi Maurizio Palesi 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and

More information

EE382C Lecture 1. Bill Dally 3/29/11. EE 382C - S11 - Lecture 1 1

EE382C Lecture 1. Bill Dally 3/29/11. EE 382C - S11 - Lecture 1 1 EE382C Lecture 1 Bill Dally 3/29/11 EE 382C - S11 - Lecture 1 1 Logistics Handouts Course policy sheet Course schedule Assignments Homework Research Paper Project Midterm EE 382C - S11 - Lecture 1 2 What

More information

A 400Gbps Multi-Core Network Processor

A 400Gbps Multi-Core Network Processor A 400Gbps Multi-Core Network Processor James Markevitch, Srinivasa Malladi Cisco Systems August 22, 2017 Legal THE INFORMATION HEREIN IS PROVIDED ON AN AS IS BASIS, WITHOUT ANY WARRANTIES OR REPRESENTATIONS,

More information

ECE/CS 757: Advanced Computer Architecture II Interconnects

ECE/CS 757: Advanced Computer Architecture II Interconnects ECE/CS 757: Advanced Computer Architecture II Interconnects Instructor:Mikko H Lipasti Spring 2017 University of Wisconsin-Madison Lecture notes created by Natalie Enright Jerger Lecture Outline Introduction

More information

The Impact of Optics on HPC System Interconnects

The Impact of Optics on HPC System Interconnects The Impact of Optics on HPC System Interconnects Mike Parker and Steve Scott Hot Interconnects 2009 Manhattan, NYC Will cost-effective optics fundamentally change the landscape of networking? Yes. Changes

More information

Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation

Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation Kshitij Bhardwaj Dept. of Computer Science Columbia University Steven M. Nowick 2016 ACM/IEEE Design Automation

More information

Lecture 3: Topology - II

Lecture 3: Topology - II ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 3: Topology - II Tushar Krishna Assistant Professor School of Electrical and

More information

OpenSMART: Single-cycle Multi-hop NoC Generator in BSV and Chisel

OpenSMART: Single-cycle Multi-hop NoC Generator in BSV and Chisel OpenSMART: Single-cycle Multi-hop NoC Generator in BSV and Chisel Hyoukjun Kwon and Tushar Krishna Georgia Institute of Technology Synergy Lab (http://synergy.ece.gatech.edu) hyoukjun@gatech.edu April

More information

Network-on-chip (NOC) Topologies

Network-on-chip (NOC) Topologies Network-on-chip (NOC) Topologies 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and performance

More information

Lecture 15: NoC Innovations. Today: power and performance innovations for NoCs

Lecture 15: NoC Innovations. Today: power and performance innovations for NoCs Lecture 15: NoC Innovations Today: power and performance innovations for NoCs 1 Network Power Power-Driven Design of Router Microarchitectures in On-Chip Networks, MICRO 03, Princeton Energy for a flit

More information

Lecture 22: Router Design

Lecture 22: Router Design Lecture 22: Router Design Papers: Power-Driven Design of Router Microarchitectures in On-Chip Networks, MICRO 03, Princeton A Gracefully Degrading and Energy-Efficient Modular Router Architecture for On-Chip

More information

Themes. The Network 1. Energy in the DC: ~15% network? Energy by Technology

Themes. The Network 1. Energy in the DC: ~15% network? Energy by Technology Themes The Network 1 Low Power Computing David Andersen Carnegie Mellon University Last two classes: Saving power by running more slowly and sleeping more. This time: Network intro; saving power by architecting

More information

Cisco ASR 9000 Modular Line Card and Modular Port Adapters

Cisco ASR 9000 Modular Line Card and Modular Port Adapters Cisco ASR 9000 Modular Line Card and Modular Port Adapters In this section you will identify the following aspects of the Modular Line Card: Part number and description Location Status LEDs Part number

More information

NoC Test-Chip Project: Working Document

NoC Test-Chip Project: Working Document NoC Test-Chip Project: Working Document Michele Petracca, Omar Ahmad, Young Jin Yoon, Frank Zovko, Luca Carloni and Kenneth Shepard I. INTRODUCTION This document describes the low-power high-performance

More information

Multi-gigabit Switching and Routing

Multi-gigabit Switching and Routing Multi-gigabit Switching and Routing Gignet 97 Europe: June 12, 1997. Nick McKeown Assistant Professor of Electrical Engineering and Computer Science nickm@ee.stanford.edu http://ee.stanford.edu/~nickm

More information

Flow Control can be viewed as a problem of

Flow Control can be viewed as a problem of NOC Flow Control 1 Flow Control Flow Control determines how the resources of a network, such as channel bandwidth and buffer capacity are allocated to packets traversing a network Goal is to use resources

More information

PCI Express: Evolution, Deployment and Challenges

PCI Express: Evolution, Deployment and Challenges PCI Express: Evolution, Deployment and Challenges Nick Ma 马明辉 Field Applications Engineer, PLX Freescale Technology Forum, Beijing Track: Enabling Technologies Freescale Technology Forum, Beijing - November

More information

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 26: Interconnects James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L26 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Housekeeping Your goal today get an overview of parallel

More information

Phastlane: A Rapid Transit Optical Routing Network

Phastlane: A Rapid Transit Optical Routing Network Phastlane: A Rapid Transit Optical Routing Network Mark Cianchetti, Joseph Kerekes, and David Albonesi Computer Systems Laboratory Cornell University The Interconnect Bottleneck Future processors: tens

More information

Data Centers. Tom Anderson

Data Centers. Tom Anderson Data Centers Tom Anderson Transport Clarification RPC messages can be arbitrary size Ex: ok to send a tree or a hash table Can require more than one packet sent/received We assume messages can be dropped,

More information

Cisco Nexus 9200 Switch Datasheet

Cisco Nexus 9200 Switch Datasheet Cisco Nexus 9200 Switch Datasheet CONTENT Content... 1 Overview... 2 Appearance... 2 Key Features and Benefits... 3 NX-OS Software... 4 Nexus 9200 Compare models... 6 Specification of nexus 9200 series

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance Lecture 13: Interconnection Networks Topics: lots of background, recent innovations for power and performance 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees,

More information

CSE 1 23: Computer Networks

CSE 1 23: Computer Networks CSE 1 23: Computer Networks Homework 3 Out: 11/08, Due: 11/15 Instructions 1. Turn in a physical copy at the beginning of the class on 11/15 2. Ensure the top page of the HW has the following information

More information

High-Performance Network Data-Packet Classification Using Embedded Content-Addressable Memory

High-Performance Network Data-Packet Classification Using Embedded Content-Addressable Memory High-Performance Network Data-Packet Classification Using Embedded Content-Addressable Memory Embedding a TCAM block along with the rest of the system in a single device should overcome the disadvantages

More information

Chapter 3 : Topology basics

Chapter 3 : Topology basics 1 Chapter 3 : Topology basics What is the network topology Nomenclature Traffic pattern Performance Packaging cost Case study: the SGI Origin 2000 2 Network topology (1) It corresponds to the static arrangement

More information

COMPARATIVE PERFORMANCE EVALUATION OF WIRELESS AND OPTICAL NOC ARCHITECTURES

COMPARATIVE PERFORMANCE EVALUATION OF WIRELESS AND OPTICAL NOC ARCHITECTURES COMPARATIVE PERFORMANCE EVALUATION OF WIRELESS AND OPTICAL NOC ARCHITECTURES Sujay Deb, Kevin Chang, Amlan Ganguly, Partha Pande School of Electrical Engineering and Computer Science, Washington State

More information

Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, Dennis Abts Sr. Principal Engineer

Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, Dennis Abts Sr. Principal Engineer Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, 2006 Sr. Principal Engineer Panel Questions How do we build scalable networks that balance power, reliability and performance

More information

MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect

MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect Chris Fallin, Greg Nazario, Xiangyao Yu*, Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu Carnegie Mellon University *CMU

More information

Physical Implementation of the DSPIN Network-on-Chip in the FAUST Architecture

Physical Implementation of the DSPIN Network-on-Chip in the FAUST Architecture 1 Physical Implementation of the DSPI etwork-on-chip in the FAUST Architecture Ivan Miro-Panades 1,2,3, Fabien Clermidy 3, Pascal Vivet 3, Alain Greiner 1 1 The University of Pierre et Marie Curie, Paris,

More information

IBM Ethernet Switch J08E and IBM Ethernet Switch J16E

IBM Ethernet Switch J08E and IBM Ethernet Switch J16E High-density, high-performance and highly available modular switches for the most demanding data center core environments. IBM Ethernet Switch J08E and IBM Ethernet Switch J16E The IBM Ethernet Switch

More information

FPGA BASED ADAPTIVE RESOURCE EFFICIENT ERROR CONTROL METHODOLOGY FOR NETWORK ON CHIP

FPGA BASED ADAPTIVE RESOURCE EFFICIENT ERROR CONTROL METHODOLOGY FOR NETWORK ON CHIP FPGA BASED ADAPTIVE RESOURCE EFFICIENT ERROR CONTROL METHODOLOGY FOR NETWORK ON CHIP 1 M.DEIVAKANI, 2 D.SHANTHI 1 Associate Professor, Department of Electronics and Communication Engineering PSNA College

More information

OCP Engineering Workshop - Telco

OCP Engineering Workshop - Telco OCP Engineering Workshop - Telco Low Latency Mobile Edge Computing Trevor Hiatt Product Management, IDT IDT Company Overview Founded 1980 Workforce Approximately 1,800 employees Headquarters San Jose,

More information

Interconnection Network Project EE482 Advanced Computer Organization May 28, 1999

Interconnection Network Project EE482 Advanced Computer Organization May 28, 1999 Interconnection Network Project EE482 Advanced Computer Organization May 28, 1999 Group Members: Overview Tom Fountain (fountain@cs.stanford.edu) T.J. Giuli (giuli@cs.stanford.edu) Paul Lassa (lassa@relgyro.stanford.edu)

More information

Arista 7060X, 7060X2, 7260X and 7260X3 series: Q&A

Arista 7060X, 7060X2, 7260X and 7260X3 series: Q&A Arista 7060X, 7060X2, 7260X and 7260X3 series: Q&A Product Overview What are the 7060X, 7060X2, 7260X & 7260X3 series? The Arista 7060X Series, comprising of the 7060X, 7060X2, 7260X and 7260X3, are purpose-built

More information

NoC Simulation in Heterogeneous Architectures for PGAS Programming Model

NoC Simulation in Heterogeneous Architectures for PGAS Programming Model NoC Simulation in Heterogeneous Architectures for PGAS Programming Model Sascha Roloff, Andreas Weichslgartner, Frank Hannig, Jürgen Teich University of Erlangen-Nuremberg, Germany Jan Heißwolf Karlsruhe

More information

PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES

PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES Greg Hankins APRICOT 2012 2012 Brocade Communications Systems, Inc. 2012/02/28 Lookup Capacity and Forwarding

More information

Part IV: 3D WiNoC Architectures

Part IV: 3D WiNoC Architectures Wireless NoC as Interconnection Backbone for Multicore Chips: Promises, Challenges, and Recent Developments Part IV: 3D WiNoC Architectures Hiroki Matsutani Keio University, Japan 1 Outline: 3D WiNoC Architectures

More information

Reducing SpaceWire Time-code Jitter

Reducing SpaceWire Time-code Jitter Reducing SpaceWire Time-code Jitter Barry M Cook 4Links Limited The Mansion, Bletchley Park, Milton Keynes, MK3 6ZP, UK Email: barry@4links.co.uk INTRODUCTION Standards ISO/IEC 14575[1] and IEEE 1355[2]

More information

SunFire range of servers

SunFire range of servers TAKE IT TO THE NTH Frederic Vecoven Sun Microsystems SunFire range of servers System Components Fireplane Shared Interconnect Operating Environment Ultra SPARC & compilers Applications & Middleware Clustering

More information

Trade Offs in the Design of a Router with Both Guaranteed and Best-Effort Services for Networks on Chip

Trade Offs in the Design of a Router with Both Guaranteed and Best-Effort Services for Networks on Chip Trade Offs in the Design of a Router with Both Guaranteed and BestEffort Services for Networks on Chip E. Rijpkema, K. Goossens, A. R dulescu, J. Dielissen, J. van Meerbergen, P. Wielage, and E. Waterlander

More information

OASIS Network-on-Chip Prototyping on FPGA

OASIS Network-on-Chip Prototyping on FPGA Master thesis of the University of Aizu, Feb. 20, 2012 OASIS Network-on-Chip Prototyping on FPGA m5141120, Kenichi Mori Supervised by Prof. Ben Abdallah Abderazek Adaptive Systems Laboratory, Master of

More information

Re-Examining Conventional Wisdom for Networks-on-Chip in the Context of FPGAs

Re-Examining Conventional Wisdom for Networks-on-Chip in the Context of FPGAs This work was funded by NSF. We thank Xilinx for their FPGA and tool donations. We thank Bluespec for their tool donations. Re-Examining Conventional Wisdom for Networks-on-Chip in the Context of FPGAs

More information

Benn Thomsen. Microsoft Research

Benn Thomsen. Microsoft Research Benn Thomsen Microsoft Research Operating Optics at scale Data Center 1 km radius 150,000 servers 120,000 100G optical transceivers Regional Network 70km radius 512 fibre pairs 2Pb/s WAN Data centers in

More information

Computer Networking

Computer Networking 15-441 Computer Networking Lecture 17 TCP Performance & Future Eric Anderson Fall 2013 www.cs.cmu.edu/~prs/15-441-f13 Outline TCP modeling TCP details 2 TCP Performance Can TCP saturate a link? Congestion

More information

CSE 123: Computer Networks

CSE 123: Computer Networks CSE 123: Computer Networks Homework 2 Out: 10/18, Due: 10/25 Total points - 50 Question 1 Consider the network shown below, wherein horizontal lines represent transit providers and numbered vertical lines

More information

Scalable Name-Based Packet Forwarding: From Millions to Billions. Tian Song, Beijing Institute of Technology

Scalable Name-Based Packet Forwarding: From Millions to Billions. Tian Song, Beijing Institute of Technology Scalable Name-Based Packet Forwarding: From Millions to Billions Tian Song, songtian@bit.edu.cn, Beijing Institute of Technology Haowei Yuan, Patrick Crowley, Washington University Beichuan Zhang, The

More information

reinventing data center switching

reinventing data center switching reinventing data center switching Arista Data Center Portfolio veos 7048 7100 S 7100 T Manages VMware VSwitches 48-port GigE Data Center Switch 24/48 port 1/10Gb SFP+ Low Latency Data Center Switches 24/48-port

More information

Swizzle Switch: A Self-Arbitrating High-Radix Crossbar for NoC Systems

Swizzle Switch: A Self-Arbitrating High-Radix Crossbar for NoC Systems 1 Swizzle Switch: A Self-Arbitrating High-Radix Crossbar for NoC Systems Ronald Dreslinski, Korey Sewell, Thomas Manville, Sudhir Satpathy, Nathaniel Pinckney, Geoff Blake, Michael Cieslak, Reetuparna

More information

Chapter 4 : Butterfly Networks

Chapter 4 : Butterfly Networks 1 Chapter 4 : Butterfly Networks Structure of a butterfly network Isomorphism Channel load and throughput Optimization Path diversity Case study: BBN network 2 Structure of a butterfly network A K-ary

More information

Arista 7010 Series: Q&A

Arista 7010 Series: Q&A 7010 Series: Q&A Document Arista 7010 Series: Q&A Product Overview What is the 7010 Series? The Arista 7010 Series are a family of purpose built high performance and power efficient fixed configuration

More information

Lecture 25: Interconnection Networks, Disks. Topics: flow control, router microarchitecture, RAID

Lecture 25: Interconnection Networks, Disks. Topics: flow control, router microarchitecture, RAID Lecture 25: Interconnection Networks, Disks Topics: flow control, router microarchitecture, RAID 1 Virtual Channel Flow Control Each switch has multiple virtual channels per phys. channel Each virtual

More information

Network on Chip Architectures BY JAGAN MURALIDHARAN NIRAJ VASUDEVAN

Network on Chip Architectures BY JAGAN MURALIDHARAN NIRAJ VASUDEVAN Network on Chip Architectures BY JAGAN MURALIDHARAN NIRAJ VASUDEVAN Multi Core Chips No more single processor systems High computational power requirements Increasing clock frequency increases power dissipation

More information

CAD System Lab Graduate Institute of Electronics Engineering National Taiwan University Taipei, Taiwan, ROC

CAD System Lab Graduate Institute of Electronics Engineering National Taiwan University Taipei, Taiwan, ROC QoS Aware BiNoC Architecture Shih-Hsin Lo, Ying-Cherng Lan, Hsin-Hsien Hsien Yeh, Wen-Chung Tsai, Yu-Hen Hu, and Sao-Jie Chen Ying-Cherng Lan CAD System Lab Graduate Institute of Electronics Engineering

More information

Intro to SKARAB for programmers

Intro to SKARAB for programmers Intro to SKARAB for programmers (and how to use HMC!) Jason Manley 2017 CASPER workshop Hardware Hardware Virtex 7, 690T FPGA 4 Mezzanine sites per SKARAB 2 in front, 2 in back 16 SERDES links per site

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 8: IP Router Design Many portions courtesy Nick McKeown Overview Router basics Interconnection architecture Input Queuing Output Queuing Virtual output Queuing

More information

EN2910A: Advanced Computer Architecture Topic 06: Supercomputers & Data Centers Prof. Sherief Reda School of Engineering Brown University

EN2910A: Advanced Computer Architecture Topic 06: Supercomputers & Data Centers Prof. Sherief Reda School of Engineering Brown University EN2910A: Advanced Computer Architecture Topic 06: Supercomputers & Data Centers Prof. Sherief Reda School of Engineering Brown University Material from: The Datacenter as a Computer: An Introduction to

More information

Module 17: "Interconnection Networks" Lecture 37: "Introduction to Routers" Interconnection Networks. Fundamentals. Latency and bandwidth

Module 17: Interconnection Networks Lecture 37: Introduction to Routers Interconnection Networks. Fundamentals. Latency and bandwidth Interconnection Networks Fundamentals Latency and bandwidth Router architecture Coherence protocol and routing [From Chapter 10 of Culler, Singh, Gupta] file:///e /parallel_com_arch/lecture37/37_1.htm[6/13/2012

More information

TOC: Switching & Forwarding

TOC: Switching & Forwarding TOC: Switching & Forwarding Why? Switching Techniques Switch Characteristics Switch Examples Switch Architectures Summary TOC Switching Why? Direct vs. Switched Networks: n links Single link Direct Network

More information

High Performance Memory Opportunities in 2.5D Network Flow Processors

High Performance Memory Opportunities in 2.5D Network Flow Processors High Performance Memory Opportunities in 2.5D Network Flow Processors Jay Seaton, VP Silicon Operations, Netronome Larry Zu, PhD, President, Sarcina Technology LLC August 6, 2013 2013 Netronome 1 Netronome

More information

OPS: Optical Packet Switches

OPS: Optical Packet Switches OPS: Optical Packet Switches Hiroaki Harai (harai@nict.go.jp) National Institute of Information and Communications Technology Sep 8, 2006 Optical Network Testbeds Workshop 3 Why do we Need OPS? Internet

More information

Cubro Packetmaster EX32100

Cubro Packetmaster EX32100 Cubro Packetmaster EX32100 PRODUCT OVERVIEW Network Packet Broker (NPB) At a glance The Packetmaster EX32100 is a network packet broker and network controller switch that aggregates, filters and load balances

More information

DesignCon SerDes Architectures and Applications. Dave Lewis, National Semiconductor Corporation

DesignCon SerDes Architectures and Applications. Dave Lewis, National Semiconductor Corporation DesignCon 2004 SerDes Architectures and Applications Dave Lewis, National Semiconductor Corporation Abstract When most system designers look at serializer/deserializer (SerDes) devices, they often compare

More information

Add an AT&T Switched Ethernet Service port to your site

Add an AT&T Switched Ethernet Service port to your site AT&T Business Center Add an AT&T Switched Ethernet Service port to your site We ll walk through how to add an AT&T Switched Ethernet Service SM port to your site. Get started Specify service details Complete

More information

Cisco Nexus 9300 Series Leaf Switches for Cisco ACI. Application Centric Infrastructure

Cisco Nexus 9300 Series Leaf Switches for Cisco ACI. Application Centric Infrastructure Data Sheet Cisco Nexus 9300 Series Leaf Switches for Cisco Application Centric Infrastructure Product Overview Cisco Application Centric Infrastructure (ACI) in the data center is a holistic architecture

More information

HPE Altoline QSFP28 x86 ONIE AC Front-to-Back Switch HPE Altoline QSFP28 x86 ONIE AC Back-to-Front Switch

HPE Altoline QSFP28 x86 ONIE AC Front-to-Back Switch HPE Altoline QSFP28 x86 ONIE AC Back-to-Front Switch Overview Models HPE Altoline 6960 32QSFP28 x86 ONIE AC Front-to-Back Switch HPE Altoline 6960 32QSFP28 x86 ONIE AC Back-to-Front Switch JL279A JL280A Key features High 100GbE port density and low latency

More information

A Design and Implementation of Custom Communication Protocol Based on Aurora

A Design and Implementation of Custom Communication Protocol Based on Aurora A Design and Implementation of Custom Communication Protocol Based on Aurora BING LI School of Integrated Circuits Southeast University Sipailou No.2, Nanjing, Jiangsu Province, China Southeast University

More information

Interconnection Networks

Interconnection Networks Lecture 18: Interconnection Networks Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Credit: many of these slides were created by Michael Papamichael This lecture is partially

More information

Multicomputer distributed system LECTURE 8

Multicomputer distributed system LECTURE 8 Multicomputer distributed system LECTURE 8 DR. SAMMAN H. AMEEN 1 Wide area network (WAN); A WAN connects a large number of computers that are spread over large geographic distances. It can span sites in

More information

Interconnect Technology and Computational Speed

Interconnect Technology and Computational Speed Interconnect Technology and Computational Speed From Chapter 1 of B. Wilkinson et al., PARAL- LEL PROGRAMMING. Techniques and Applications Using Networked Workstations and Parallel Computers, augmented

More information

IV. PACKET SWITCH ARCHITECTURES

IV. PACKET SWITCH ARCHITECTURES IV. PACKET SWITCH ARCHITECTURES (a) General Concept - as packet arrives at switch, destination (and possibly source) field in packet header is used as index into routing tables specifying next switch in

More information

LAN design. Chapter 1

LAN design. Chapter 1 LAN design Chapter 1 1 Topics Networks and business needs The 3-level hierarchical network design model Including voice and video over IP in the design Devices at each layer of the hierarchy Cisco switches

More information

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts School of Electrical and Computer Engineering Cornell University revision: 2017-10-17-12-26 1 Network/Roadway Analogy 3 1.1. Running

More information

IBM PowerPRS TM. A Scalable Switch Fabric to Multi- Terabit: Architecture and Challenges. July, Speaker: François Le Maut. IBM Microelectronics

IBM PowerPRS TM. A Scalable Switch Fabric to Multi- Terabit: Architecture and Challenges. July, Speaker: François Le Maut. IBM Microelectronics IBM PowerPRS TM A Scalable Switch Fabric to Multi- Terabit: Architecture and Challenges July, 2002 Speaker: François Le Maut IBM Microelectronics Outline Introduction General Architecture Flow Control

More information

Datacenter Network Design: Performance/Power Comparison of Large-Scale Network Configurations and a Way to Avoid it!

Datacenter Network Design: Performance/Power Comparison of Large-Scale Network Configurations and a Way to Avoid it! Datacenter Network Design: Performance/Power Comparison of Large-Scale Network Configurations and a Way to Avoid it! Christina Delimitrou Electrical Engineering Department Stanford University Stanford,

More information

1 Copyright 2013 Oracle and/or its affiliates. All rights reserved.

1 Copyright 2013 Oracle and/or its affiliates. All rights reserved. 1 Copyright 2013 Oracle and/or its affiliates. All rights reserved. Bixby: the Scalability and Coherence Directory ASIC in Oracle's Highly Scalable Enterprise Systems Thomas Wicki and Jürgen Schulz Senior

More information

Homework Assignment #1: Topology Kelly Shaw

Homework Assignment #1: Topology Kelly Shaw EE482 Advanced Computer Organization Spring 2001 Professor W. J. Dally Homework Assignment #1: Topology Kelly Shaw As we have not discussed routing or flow control yet, throughout this problem set assume

More information

Objective To examine the throughput of a TCP connection as the flow control window size is varied.

Objective To examine the throughput of a TCP connection as the flow control window size is varied. Lab 7 TCP Throughput Overview TCP uses a sliding window mechanism to provide flow control. The destination advertises how much space it has available in its buffers, and the source restricts its transmissions

More information

Lecture 7: Flow Control - I

Lecture 7: Flow Control - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 7: Flow Control - I Tushar Krishna Assistant Professor School of Electrical

More information

Iteration Bound. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Iteration Bound. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Iteration Bound ( 范倫達 ) Ph. D. Department of Computer Science National Chiao Tung University Taiwan R.O.C. Fall 2 ldvan@cs.nctu.edu.tw http://www.cs.nctu.tw/~ldvan/ Outline Introduction Data Flow Graph

More information

Lecture: Interconnection Networks

Lecture: Interconnection Networks Lecture: Interconnection Networks Topics: Router microarchitecture, topologies Final exam next Tuesday: same rules as the first midterm 1 Packets/Flits A message is broken into multiple packets (each packet

More information

Interconnection Networks: Topology. Prof. Natalie Enright Jerger

Interconnection Networks: Topology. Prof. Natalie Enright Jerger Interconnection Networks: Topology Prof. Natalie Enright Jerger Topology Overview Definition: determines arrangement of channels and nodes in network Analogous to road map Often first step in network design

More information

QuickSpecs. HPE Altoline 6921 Switch Series. Overview. HPE Altoline 6921 Switch Series

QuickSpecs. HPE Altoline 6921 Switch Series. Overview. HPE Altoline 6921 Switch Series Overview Models HPE Altoline 6921 48SFP+ 6QSFP+ x86 ONIE AC Front-to-Back Switch HPE Altoline 6921 48SFP+ 6QSFP+ x86 ONIE AC Back-to-Front Switch HPE Altoline 6921 48XGT 6QSFP+ x86 ONIE AC Front-to-Back

More information

15-744: Computer Networking. Routers

15-744: Computer Networking. Routers 15-744: Computer Networking outers Forwarding and outers Forwarding IP lookup High-speed router architecture eadings [McK97] A Fast Switched Backplane for a Gigabit Switched outer Optional [D+97] Small

More information

The Tofu Interconnect D

The Tofu Interconnect D The Tofu Interconnect D 11 September 2018 Yuichiro Ajima, Takahiro Kawashima, Takayuki Okamoto, Naoyuki Shida, Kouichi Hirai, Toshiyuki Shimizu, Shinya Hiramoto, Yoshiro Ikeda, Takahide Yoshikawa, Kenji

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction In a packet-switched network, packets are buffered when they cannot be processed or transmitted at the rate they arrive. There are three main reasons that a router, with generic

More information

Retired. Models HPE Altoline QSFP+ x86 ONIE AC Front-to-Back Switch HPE Altoline QSFP+ x86 ONIE AC Back-to-Front Switch

Retired. Models HPE Altoline QSFP+ x86 ONIE AC Front-to-Back Switch HPE Altoline QSFP+ x86 ONIE AC Back-to-Front Switch Overview Models HPE Altoline 6940 32QSFP+ PPC ONIE AC Front-to-Back Switch HPE Altoline 6940 32QSFP+ PPC ONIE AC Back-to-Front Switch HPE Altoline 6940 32QSFP+ x86 ONIE AC Front-to-Back Switch HPE Altoline

More information

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Performance COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals What is Performance? How do we measure the performance of

More information