The Engine. SRAM & DRAM Endurance and Speed with STT MRAM. Les Crudele / Andrew J. Walker PhD. Santa Clara, CA August

Size: px
Start display at page:

Download "The Engine. SRAM & DRAM Endurance and Speed with STT MRAM. Les Crudele / Andrew J. Walker PhD. Santa Clara, CA August"

Transcription

1 The Engine & DRAM Endurance and Speed with STT MRAM Les Crudele / Andrew J. Walker PhD August

2 Contents The Leaking Creaking Pyramid STT-MRAM: A Compelling Replacement STT-MRAM: A Unique Endurance Conundrum The ENGINE for & DRAM Endurance and Speed The Physics of the ENGINE ENGINE Emulation Data from Emulated ENGINE ENGINE Benefits Takes MRAM Mainstream! The Performance, Energy and Cost Advantage Conclusions August

3 Nonvolatile Volatile The Leaking Creaking Pyramid (1) Leakage Current (ma) CPU Gap DRAM Mind the Gap NAND DISK Cell Area in F 2 FinFET Inefficient Scaling* Planar CMOS Technology Node F (nm) Fundamental Leakage** 1000 Mb 200 Mb 100 Mb 50 Mb 20 Mb 10 Mb * R. de Werdt et al., IEDM87; R.D.J. Verhaar et al., IEDM90; S.H. Kang et al., IEDM17 Temperature ( o C) August 2018 ** Simulations/estimates from 7nm transistor data in IEDM

4 The Leaking Creaking Pyramid (2) Energy per Operation (pj) GigaOperations per Joule CPU On-chip data access Keep Data Local! On-chip data access Operation Off-chip data access * What We Get for a Joule * Gap DRAM Off-chip data access Operation Memory access energy grows as the length of the wire * > 60% of system energy used is in data movements to and from DRAM ** * A. Pedram et al., Dark Memory and Accelerator-Rich System Optimization in the Dark Silicon Era, IEEE Design & Test, vol.34, April 2017 ** A. Boroumand et al., Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks, ASPLOS 18, March 2018 August

5 STT-MRAM : A Compelling Replacement Size : Dramatic bitcell reduction Leakage : No array leakage Persistence : Data retained On-chip : Reduces DRAM accesses Rad-Hard Cell Area in F 2 MRAM FinFET Planar But: Limiting Endurance Conundrum Non-symmetric R/W CMOS Technology Node F (nm) Disturbs with fast read August

6 Write Error Rate STT-MRAM: A Unique Endurance Conundrum Magnetic Tunnel Junction (MTJ) Free layer Tunnel barrier Reference layer CoFeB MgO CoPt The Stochastic Top Hat Pulse width Low Write Error Rate needs large tunnel current Limits endurance due to oxide wear out mechanism High endurance with low Write Error Rate needs reduced tunnel current Make Free Layer magnetically less stiff Reduce MTJ area Use special design techniques - The ENGINE MTJ Voltage (V) August

7 Write Error Rate Log(Write Error Rate) The Physics of the ENGINE The Stochastic Top Hat Pulse width Increased WER Reduced electrical stress MTJ Voltage (V) MTJ Voltage (V) Proprietary Circuit Design allows reduced electrical stress Results in large endurance increase (~ 6 orders of magnitude) Circuit Deals with resultant Write Error Rate increase Managed transparently to the user No change in latency Allows for faster pulses at high endurance August

8 ENGINE Emulation Emulation Board (FPGA emulation of Engine) Front Panel (Control timing, address, patterns, W/R ops etc.) Daughter Board (Contains SPIN s own 4Mb STT-MRAMs) Logic Analyzer (Verify addresses, timing, patterns, W/R etc.) August

9 Write Error Rate Cycles to Breakdown Data from Emulated ENGINE 20ns Engine OFF Engine ON 380 mv Voltage (V) Voltage (V) ~ 6 orders of magnitude endurance boost August

10 ENGINE Benefits Takes MRAM Mainstream! /DRAM-like Endurance ~ 6 orders of magnitude improvement with circuitry alone Symmetric R/W 10ns capable Random R/W Looks and feels like an Corrects Read Disturbs allowing Fast Reads No user visible errors August

11 Macro Area Impact versus (%) The Performance, Energy and Cost Advantage 7nm CMOS node Macro Capacity MRAM Cell Cell 140F 2 560F 2 Dramatic area impact Maximize large on-chip cache and memory capacity Allows persistence on-chip Reduces DRAM accesses ~ Zero array leakage Symmetric Read/Write August

12 Conclusions The ENGINE takes MRAM into the mainstream Provides a path for MRAM as /DRAM replacement Uses evolving ecosystem for embedded NV MRAM as a foundation Combines low Write Error Rates with /DRAM-like endurance resulting in zero user-visible errors Achieves fast and symmetric read and write Makes MRAM the most likely candidate for replacement and, eventually, DRAM August

Unleashing MRAM as Persistent Memory

Unleashing MRAM as Persistent Memory Unleashing MRAM as Persistent Memory Andrew J. Walker PhD Spin Transfer Technologies Contents The Creaking Pyramid Challenges with the Memory Hierarchy What and Where is MRAM? State of the Art pmtj Unleashing

More information

Architectural Aspects in Design and Analysis of SOTbased

Architectural Aspects in Design and Analysis of SOTbased Architectural Aspects in Design and Analysis of SOTbased Memories Rajendra Bishnoi, Mojtaba Ebrahimi, Fabian Oboril & Mehdi Tahoori INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE NANO COMPUTING

More information

Recent Advancements in Spin-Torque Switching for High-Density MRAM

Recent Advancements in Spin-Torque Switching for High-Density MRAM Recent Advancements in Spin-Torque Switching for High-Density MRAM Jon Slaughter Everspin Technologies 7th International Symposium on Advanced Gate Stack Technology, September 30, 2010 Everspin Technologies,

More information

Phase Change Memory An Architecture and Systems Perspective

Phase Change Memory An Architecture and Systems Perspective Phase Change Memory An Architecture and Systems Perspective Benjamin C. Lee Stanford University bcclee@stanford.edu Fall 2010, Assistant Professor @ Duke University Benjamin C. Lee 1 Memory Scaling density,

More information

Phase Change Memory An Architecture and Systems Perspective

Phase Change Memory An Architecture and Systems Perspective Phase Change Memory An Architecture and Systems Perspective Benjamin Lee Electrical Engineering Stanford University Stanford EE382 2 December 2009 Benjamin Lee 1 :: PCM :: 2 Dec 09 Memory Scaling density,

More information

Can MRAM be a factor for HPC?

Can MRAM be a factor for HPC? IC Power Consumption ITRS roadmap (W/cm2) Can MRAM be a factor for HPC? 1. Introduction 2. Can MRAM help? 3. Which MRAM? Logic is the major issue! Memory Wall High Performance Computing Current HPC! Pétaflops

More information

Spin-Hall Effect MRAM Based Cache Memory: A Feasibility Study

Spin-Hall Effect MRAM Based Cache Memory: A Feasibility Study Spin-Hall Effect MRAM Based Cache Memory: A Feasibility Study Jongyeon Kim, Bill Tuohy, Cong Ma, Won Ho Choi, Ibrahim Ahmed, David Lilja, and Chris H. Kim University of Minnesota Dept. of ECE 1 Overview

More information

An Architecture-level Cache Simulation Framework Supporting Advanced PMA STT-MRAM

An Architecture-level Cache Simulation Framework Supporting Advanced PMA STT-MRAM An Architecture-level Cache Simulation Framework Supporting Advanced PMA STT-MRAM Bi Wu, Yuanqing Cheng,YingWang, Aida Todri-Sanial, Guangyu Sun, Lionel Torres and Weisheng Zhao School of Software Engineering

More information

Couture: Tailoring STT-MRAM for Persistent Main Memory. Mustafa M Shihab Jie Zhang Shuwen Gao Joseph Callenes-Sloan Myoungsoo Jung

Couture: Tailoring STT-MRAM for Persistent Main Memory. Mustafa M Shihab Jie Zhang Shuwen Gao Joseph Callenes-Sloan Myoungsoo Jung Couture: Tailoring STT-MRAM for Persistent Main Memory Mustafa M Shihab Jie Zhang Shuwen Gao Joseph Callenes-Sloan Myoungsoo Jung Executive Summary Motivation: DRAM plays an instrumental role in modern

More information

Area, Power, and Latency Considerations of STT-MRAM to Substitute for Main Memory

Area, Power, and Latency Considerations of STT-MRAM to Substitute for Main Memory Area, Power, and Latency Considerations of STT-MRAM to Substitute for Main Memory Youngbin Jin, Mustafa Shihab, and Myoungsoo Jung Computer Architecture and Memory Systems Laboratory Department of Electrical

More information

AC-DIMM: Associative Computing with STT-MRAM

AC-DIMM: Associative Computing with STT-MRAM AC-DIMM: Associative Computing with STT-MRAM Qing Guo, Xiaochen Guo, Ravi Patel Engin Ipek, Eby G. Friedman University of Rochester Published In: ISCA-2013 Motivation Prevalent Trends in Modern Computing:

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture

MTJ-Based Nonvolatile Logic-in-Memory Architecture 2011 Spintronics Workshop on LSI @ Kyoto, Japan, June 13, 2011 MTJ-Based Nonvolatile Logic-in-Memory Architecture Takahiro Hanyu Center for Spintronics Integrated Systems, Tohoku University, JAPAN Laboratory

More information

Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014

Novel Nonvolatile Memory Hierarchies to Realize Normally-Off Mobile Processors ASP-DAC 2014 Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014 Shinobu Fujita, Kumiko Nomura, Hiroki Noguchi, Susumu Takeda, Keiko Abe Toshiba Corporation, R&D Center Advanced

More information

emram: From Technology to Applications David Eggleston VP Embedded Memory

emram: From Technology to Applications David Eggleston VP Embedded Memory emram: From Technology to Applications David Eggleston VP Embedded Memory 10,000 foot view What are we trying to achieve? 2 Memory is Know Remembering. Think Events 3 Memory is Code Persistence. Data State

More information

Mohsen Imani. University of California San Diego. System Energy Efficiency Lab seelab.ucsd.edu

Mohsen Imani. University of California San Diego. System Energy Efficiency Lab seelab.ucsd.edu Mohsen Imani University of California San Diego Winter 2016 Technology Trend for IoT http://www.flashmemorysummit.com/english/collaterals/proceedi ngs/2014/20140807_304c_hill.pdf 2 Motivation IoT significantly

More information

CMP annual meeting, January 23 rd, 2014

CMP annual meeting, January 23 rd, 2014 J.P.Nozières, G.Prenat, B.Dieny and G.Di Pendina Spintec, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble1/Grenoble-INP, Grenoble, France CMP annual meeting, January 23 rd, 2014 ReRAM V wr0 ~-0.9V V wr1 V ~0.9V@5ns

More information

Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative

Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative Emre Kültürsay *, Mahmut Kandemir *, Anand Sivasubramaniam *, and Onur Mutlu * Pennsylvania State University Carnegie Mellon University

More information

Will Phase Change Memory (PCM) Replace DRAM or NAND Flash?

Will Phase Change Memory (PCM) Replace DRAM or NAND Flash? Will Phase Change Memory (PCM) Replace DRAM or NAND Flash? Dr. Mostafa Abdulla High-Speed Engineering Sr. Manager, Micron Marc Greenberg Product Marketing Director, Cadence August 19, 2010 Flash Memory

More information

Loadsa 1 : A Yield-Driven Top-Down Design Method for STT-RAM Array

Loadsa 1 : A Yield-Driven Top-Down Design Method for STT-RAM Array Loadsa 1 : A Yield-Driven Top-Down Design Method for STT-RAM Array Wujie Wen, Yaojun Zhang, Lu Zhang and Yiran Chen University of Pittsburgh Loadsa: a slang language means lots of Outline Introduction

More information

Evaluation of Hybrid Memory Technologies using SOT-MRAM for On-Chip Cache Hierarchy

Evaluation of Hybrid Memory Technologies using SOT-MRAM for On-Chip Cache Hierarchy 1 Evaluation of Hybrid Memory Technologies using SOT-MRAM for On-Chip Cache Hierarchy Fabian Oboril, Rajendra Bishnoi, Mojtaba Ebrahimi and Mehdi B. Tahoori Abstract Magnetic Random Access Memory (MRAM)

More information

MRAM Developer Day 2018 MRAM Update

MRAM Developer Day 2018 MRAM Update MRAM Developer Day 2018 MRAM Update Barry Hoberman August 2018 1 Disclaimer Observations and opinions >35 years experience in wide variety of memory >12 years experience in MRAM 2012-2017 CEO/Chairman

More information

SOLVING MANUFACTURING CHALLENGES AND BRINGING SPIN TORQUE MRAM TO THE MAINSTREAM

SOLVING MANUFACTURING CHALLENGES AND BRINGING SPIN TORQUE MRAM TO THE MAINSTREAM SEMICON Taipei SOLVING MANUFACTURING CHALLENGES AND BRINGING SPIN TORQUE MRAM TO THE MAINSTREAM Joe O Hare, Marketing Director Sanjeev Aggarwal, Ph.D., VP Manufacturing & Process Everspin Company Highlights

More information

Annual Update on Flash Memory for Non-Technologists

Annual Update on Flash Memory for Non-Technologists Annual Update on Flash Memory for Non-Technologists Jay Kramer, Network Storage Advisors & George Crump, Storage Switzerland August 2017 1 Memory / Storage Hierarchy Flash Memory Summit 2017 2 NAND Flash

More information

Emerging NV Storage and Memory Technologies --Development, Manufacturing and

Emerging NV Storage and Memory Technologies --Development, Manufacturing and Emerging NV Storage and Memory Technologies --Development, Manufacturing and Applications-- Tom Coughlin, Coughlin Associates Ed Grochowski, Computer Storage Consultant 2014 Coughlin Associates 1 Outline

More information

Toward a Memory-centric Architecture

Toward a Memory-centric Architecture Toward a Memory-centric Architecture Martin Fink EVP & Chief Technology Officer Western Digital Corporation August 8, 2017 1 SAFE HARBOR DISCLAIMERS Forward-Looking Statements This presentation contains

More information

Improving Energy Efficiency of Write-asymmetric Memories by Log Style Write

Improving Energy Efficiency of Write-asymmetric Memories by Log Style Write Improving Energy Efficiency of Write-asymmetric Memories by Log Style Write Guangyu Sun 1, Yaojun Zhang 2, Yu Wang 3, Yiran Chen 2 1 Center for Energy-efficient Computing and Applications, Peking University

More information

SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS

SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS Samira Khan MEMORY IN TODAY S SYSTEM Processor DRAM Memory Storage DRAM is critical for performance

More information

Technology, Manufacturing and Markets of Magnetoresistive Random Access Memory (MRAM) Brad Engel, VP- Product Development & Quality

Technology, Manufacturing and Markets of Magnetoresistive Random Access Memory (MRAM) Brad Engel, VP- Product Development & Quality Technology, Manufacturing and Markets of Magnetoresistive Random Access Memory (MRAM) Brad Engel, VP- Product Development & Quality Everspin Electron Spin is Forever Industry-first and leading MRAM supplier

More information

This material is based upon work supported in part by Intel Corporation /DATE13/ c 2013 EDAA

This material is based upon work supported in part by Intel Corporation /DATE13/ c 2013 EDAA DWM-TAPESTRI - An Energy Efficient All-Spin Cache using Domain wall Shift based Writes Rangharajan Venkatesan, Mrigank Sharad, Kaushik Roy, and Anand Raghunathan School of Electrical and Computer Engineering,

More information

Memory technology and optimizations ( 2.3) Main Memory

Memory technology and optimizations ( 2.3) Main Memory Memory technology and optimizations ( 2.3) 47 Main Memory Performance of Main Memory: Latency: affects Cache Miss Penalty» Access Time: time between request and word arrival» Cycle Time: minimum time between

More information

OAP: An Obstruction-Aware Cache Management Policy for STT-RAM Last-Level Caches

OAP: An Obstruction-Aware Cache Management Policy for STT-RAM Last-Level Caches OAP: An Obstruction-Aware Cache Management Policy for STT-RAM Last-Level Caches Jue Wang, Xiangyu Dong, Yuan Xie Department of Computer Science and Engineering, Pennsylvania State University Qualcomm Technology,

More information

Embedded 28-nm Charge-Trap NVM Technology

Embedded 28-nm Charge-Trap NVM Technology Embedded 28-nm Charge-Trap NVM Technology Igor Kouznetsov Santa Clara, CA 1 Outline Embedded NVM applications Charge-trap NVM at Cypress Scaling Key Flash macro specs 28-nm Flash memory reliability Conclusions

More information

Don t Forget the Memory. Dean Klein, VP Advanced Memory Solutions Micron Technology, Inc.

Don t Forget the Memory. Dean Klein, VP Advanced Memory Solutions Micron Technology, Inc. Don t Forget the Memory Dean Klein, VP Advanced Memory Solutions Micron Technology, Inc. Memory is Everywhere 2 One size DOES NOT fit all 3 Question: How many different memories does your computer use?

More information

MRAM - present state-of and future challenges

MRAM - present state-of and future challenges MRAM - present state-of of-the-art and future challenges Dr G. Pan CRIST School of Computing, Communication & Electronics Faculty of Technology, University of Plymouth, Plymouth, PL4 8AA, UK Outline The

More information

ODESY: A novel 3T-3MTJ cell design with Optimized area DEnsity, Scalability and latency

ODESY: A novel 3T-3MTJ cell design with Optimized area DEnsity, Scalability and latency ODESY: A novel cell design with Optimized area DEnsity, Scalability and latency Linuo Xue 1, Yuanqing Cheng 1, Jianlei Yang 2, Peiyuan Wang 3 and Yuan Xie 1 Department of Electrical and Computer Engineering,

More information

Test and Reliability of Emerging Non-Volatile Memories

Test and Reliability of Emerging Non-Volatile Memories Test and Reliability of Emerging Non-Volatile Memories Elena Ioana Vătăjelu, Lorena Anghel TIMA Laboratory, Grenoble, France Outline Emerging Non-Volatile Memories Defects and Fault Models Test Algorithms

More information

STT-RAM has recently attracted much attention, and it is

STT-RAM has recently attracted much attention, and it is 2346 IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 8, AUGUST 2012 Architectural Exploration to Enable Sufficient MTJ Device Write Margin for STT-RAM Based Cache Hongbin Sun, Chuanyin Liu,TaiMin, Nanning

More information

Cascaded Channel Model, Analysis, and Hybrid Decoding for Spin-Torque Transfer Magnetic Random Access Memory (STT-MRAM)

Cascaded Channel Model, Analysis, and Hybrid Decoding for Spin-Torque Transfer Magnetic Random Access Memory (STT-MRAM) 1/16 Cascaded Channel Model, Analysis, and Hybrid Decoding for Spin-Torque Transfer Magnetic Random Access Memory (STT-MRAM) Kui Cai 1, K.A.S Immink 2, and Zhen Mei 1 Advanced Coding and Signal Processing

More information

Steven Geiger Jackson Lamp

Steven Geiger Jackson Lamp Steven Geiger Jackson Lamp Universal Memory Universal memory is any memory device that has all the benefits from each of the main memory families Density of DRAM Speed of SRAM Non-volatile like Flash MRAM

More information

Design Method of Stacked Type MRAM. with NAND Structured Cell

Design Method of Stacked Type MRAM. with NAND Structured Cell Contemporary Engineering Sciences, Vol. 6, 2013, no. 2, 69-86 HIKARI Ltd, www.m-hikari.com Design Method of Stacked Type MRAM with NAND Structured Cell Shoto Tamai Oi Electric Co. LTd. Kohoku-ku, Yokohama,

More information

NAND Flash Memory: Basics, Key Scaling Challenges and Future Outlook. Pranav Kalavade Intel Corporation

NAND Flash Memory: Basics, Key Scaling Challenges and Future Outlook. Pranav Kalavade Intel Corporation NAND Flash Memory: Basics, Key Scaling Challenges and Future Outlook Pranav Kalavade Intel Corporation pranav.kalavade@intel.com October 2012 Outline Flash Memory Product Trends Flash Memory Device Primer

More information

Energy-Efficient Spin-Transfer Torque RAM Cache Exploiting Additional All-Zero-Data Flags

Energy-Efficient Spin-Transfer Torque RAM Cache Exploiting Additional All-Zero-Data Flags Energy-Efficient Spin-Transfer Torque RAM Cache Exploiting Additional All-Zero-Data Flags Jinwook Jung, Yohei Nakata, Masahiko Yoshimoto, and Hiroshi Kawaguchi Graduate School of System Informatics, Kobe

More information

NAND Flash Memory. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

NAND Flash Memory. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University NAND Flash Memory Jinkyu Jeong (Jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ICE3028: Embedded Systems Design, Fall 2018, Jinkyu Jeong (jinkyu@skku.edu) Flash

More information

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics Logic and Computer Design Fundamentals Memory Basics Overview Memory definitions Random Access Memory (RAM) Static RAM (SRAM) integrated circuits Arrays of SRAM integrated circuits Dynamic RAM (DRAM) Read

More information

Don t Forget the Memory: Automatic Block RAM Modelling, Optimization, and Architecture Exploration

Don t Forget the Memory: Automatic Block RAM Modelling, Optimization, and Architecture Exploration Don t Forget the : Automatic Block RAM Modelling, Optimization, and Architecture Exploration S. Yazdanshenas, K. Tatsumura *, and V. Betz University of Toronto, Canada * Toshiba Corporation, Japan : An

More information

! Memory Overview. ! ROM Memories. ! RAM Memory " SRAM " DRAM. ! This is done because we can build. " large, slow memories OR

! Memory Overview. ! ROM Memories. ! RAM Memory  SRAM  DRAM. ! This is done because we can build.  large, slow memories OR ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 2: April 5, 26 Memory Overview, Memory Core Cells Lecture Outline! Memory Overview! ROM Memories! RAM Memory " SRAM " DRAM 2 Memory Overview

More information

Embedded System Application

Embedded System Application Laboratory Embedded System Application 4190.303C 2010 Spring Semester ROMs, Non-volatile and Flash Memories ELPL Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@snu.ac.kr Revisit Previous

More information

Emerging NVM Enabled Storage Architecture:

Emerging NVM Enabled Storage Architecture: Emerging NVM Enabled Storage Architecture: From Evolution to Revolution. Yiran Chen Electrical and Computer Engineering University of Pittsburgh Sponsors: NSF, DARPA, AFRL, and HP Labs 1 Outline Introduction

More information

Don t Forget the Memory. Dean Klein, VP Memory System Development Micron Technology, Inc.

Don t Forget the Memory. Dean Klein, VP Memory System Development Micron Technology, Inc. Don t Forget the Memory Dean Klein, VP Memory System Development Micron Technology, Inc. Memory is Everywhere 2 One size DOES NOT fit all 3 Question: How many different memories does your computer use?

More information

From Silicon to Solutions: Getting the Right Memory Mix for the Application

From Silicon to Solutions: Getting the Right Memory Mix for the Application From Silicon to Solutions: Getting the Right Memory Mix for the Application Ed Doller Numonyx CTO Flash Memory Summit 2008 Legal Notices and Important Information Regarding this Presentation Numonyx may

More information

SLC vs MLC: Considering the Most Optimal Storage Capacity

SLC vs MLC: Considering the Most Optimal Storage Capacity White Paper SLC vs MLC: Considering the Most Optimal Storage Capacity SLC vs MLC: Considering the Most Optimal Storage Capacity P. 1 Introduction Proficiency should be a priority for the storage in computers.

More information

Concept of Memory. The memory of computer is broadly categories into two categories:

Concept of Memory. The memory of computer is broadly categories into two categories: Concept of Memory We have already mentioned that digital computer works on stored programmed concept introduced by Von Neumann. We use memory to store the information, which includes both program and data.

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: April 9, 2018 at 12:16 CS429 Slideset 17: 1 Random-Access Memory

More information

Magnetoresistive RAM (MRAM) Jacob Lauzon, Ryan McLaughlin

Magnetoresistive RAM (MRAM) Jacob Lauzon, Ryan McLaughlin Magnetoresistive RAM (MRAM) Jacob Lauzon, Ryan McLaughlin Agenda Current solutions Why MRAM? What is MRAM? History How it works Comparisons Outlook Current Memory Types Memory Market primarily consists

More information

Computing with Spintronics: Circuits and architectures

Computing with Spintronics: Circuits and architectures Purdue University Purdue e-pubs Open Access Dissertations Theses and Dissertations Fall 2014 Computing with Spintronics: Circuits and architectures Rangharajan Venkatesan Purdue University Follow this

More information

Chapter 8 Memory Basics

Chapter 8 Memory Basics Logic and Computer Design Fundamentals Chapter 8 Memory Basics Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Memory definitions Random Access

More information

Driving the MRAM Revolution. Kevin Conley CEO, Everspin Technologies

Driving the MRAM Revolution. Kevin Conley CEO, Everspin Technologies Driving the MRAM Revolution Kevin Conley CEO, Everspin Technologies MRAM In Datacenter Core Enables Data Persistence At Speed Enterprise SSD Network Accelerator RAID Storage Accelerator 2 MRAM Enables

More information

Technical Notes. Considerations for Choosing SLC versus MLC Flash P/N REV A01. January 27, 2012

Technical Notes. Considerations for Choosing SLC versus MLC Flash P/N REV A01. January 27, 2012 Considerations for Choosing SLC versus MLC Flash Technical Notes P/N 300-013-740 REV A01 January 27, 2012 This technical notes document contains information on these topics:...2 Appendix A: MLC vs SLC...6

More information

CS 201 The Memory Hierarchy. Gerson Robboy Portland State University

CS 201 The Memory Hierarchy. Gerson Robboy Portland State University CS 201 The Memory Hierarchy Gerson Robboy Portland State University memory hierarchy overview (traditional) CPU registers main memory (RAM) secondary memory (DISK) why? what is different between these

More information

Intel s s Memory Strategy for the Wireless Phone

Intel s s Memory Strategy for the Wireless Phone Intel s s Memory Strategy for the Wireless Phone Stefan Lai VP and Co-Director, CTM Intel Corporation Nikkei Microdevices Memory Symposium January 26 th, 2005 Agenda Evolution of Memory Requirements Evolution

More information

ECE 152 Introduction to Computer Architecture

ECE 152 Introduction to Computer Architecture Introduction to Computer Architecture Main Memory and Virtual Memory Copyright 2009 Daniel J. Sorin Duke University Slides are derived from work by Amir Roth (Penn) Spring 2009 1 Where We Are in This Course

More information

Architecture for Carbon Nanotube Based Memory (NRAM)

Architecture for Carbon Nanotube Based Memory (NRAM) Architecture for Carbon Nanotube Based Memory () Bill Gervasi Principal Systems Architect 18 August 2018 Agenda 2 Carbon nanotube basics Making & breaking connections Resistive measurements Write endurance,

More information

Cache Memory Configurations and Their Respective Energy Consumption

Cache Memory Configurations and Their Respective Energy Consumption Cache Memory Configurations and Their Respective Energy Consumption Dylan Petrae Department of Electrical and Computer Engineering University of Central Florida Orlando, FL 32816-2362 Abstract When it

More information

A Better Storage Solution

A Better Storage Solution A Better Storage Solution Presented by: Richard Goss Presentation to The Problem with Hard Disks Processors have increased in speed by orders of magnitude over the years. But spinning hard disk drives

More information

Lecture 14. Advanced Technologies on SRAM. Fundamentals of SRAM State-of-the-Art SRAM Performance FinFET-based SRAM Issues SRAM Alternatives

Lecture 14. Advanced Technologies on SRAM. Fundamentals of SRAM State-of-the-Art SRAM Performance FinFET-based SRAM Issues SRAM Alternatives Source: Intel the area ratio of SRAM over logic increases Lecture 14 Advanced Technologies on SRAM Fundamentals of SRAM State-of-the-Art SRAM Performance FinFET-based SRAM Issues SRAM Alternatives Reading:

More information

Fault Injection Attacks on Emerging Non-Volatile Memories

Fault Injection Attacks on Emerging Non-Volatile Memories Lab of Green and Secure Integrated Circuit Systems (LOGICS) Fault Injection Attacks on Emerging Non-Volatile Memories Mohammad Nasim Imtiaz Khan and Swaroop Ghosh School of Electrical Engineering and Computer

More information

Scalable Many-Core Memory Systems Lecture 3, Topic 2: Emerging Technologies and Hybrid Memories

Scalable Many-Core Memory Systems Lecture 3, Topic 2: Emerging Technologies and Hybrid Memories Scalable Many-Core Memory Systems Lecture 3, Topic 2: Emerging Technologies and Hybrid Memories Prof. Onur Mutlu http://www.ece.cmu.edu/~omutlu onur@cmu.edu HiPEAC ACACES Summer School 2013 July 17, 2013

More information

Respin: Rethinking Near- Threshold Multiprocessor Design with Non-Volatile Memory

Respin: Rethinking Near- Threshold Multiprocessor Design with Non-Volatile Memory Respin: Rethinking Near- Threshold Multiprocessor Design with Non-Volatile Memory Computer Architecture Research Lab h"p://arch.cse.ohio-state.edu Universal Demand for Low Power Mobility Ba"ery life Performance

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: November 28, 2017 at 14:31 CS429 Slideset 18: 1 Random-Access Memory

More information

Designing Giga-scale Memory Systems with STT-RAM

Designing Giga-scale Memory Systems with STT-RAM Designing Giga-scale Memory Systems with STT-RAM A Dissertation Presented to the Faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements

More information

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Chao Sun 1, Asuka Arakawa 1, Ayumi Soga 1, Chihiro Matsui 1 and Ken Takeuchi 1 1 Chuo University Santa Clara,

More information

ABSTRACT. Mu-Tien Chang Doctor of Philosophy, 2013

ABSTRACT. Mu-Tien Chang Doctor of Philosophy, 2013 ABSTRACT Title of dissertation: TECHNOLOGY IMPLICATIONS FOR LARGE LAST-LEVEL CACHES Mu-Tien Chang Doctor of Philosophy, 3 Dissertation directed by: Professor Bruce Jacob Department of Electrical and Computer

More information

CIRCUIT AND ARCHITECTURE CO-DESIGN OF STT-RAM FOR HIGH PERFORMANCE AND LOW ENERGY. by Xiuyuan Bi Master of Science, New York University, 2010

CIRCUIT AND ARCHITECTURE CO-DESIGN OF STT-RAM FOR HIGH PERFORMANCE AND LOW ENERGY. by Xiuyuan Bi Master of Science, New York University, 2010 CIRCUIT AND ARCHITECTURE CO-DESIGN OF STT-RAM FOR HIGH PERFORMANCE AND LOW ENERGY by Xiuyuan Bi Master of Science, New York University, 2010 Submitted to the Graduate Faculty of the Swanson School of Engineering

More information

Microprocessor Trends and Implications for the Future

Microprocessor Trends and Implications for the Future Microprocessor Trends and Implications for the Future John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 522 Lecture 4 1 September 2016 Context Last two classes: from

More information

A Low Power 1Mbit MRAM based based on 1T1MTJ Bit Cell Integrated with Copper Interconnects

A Low Power 1Mbit MRAM based based on 1T1MTJ Bit Cell Integrated with Copper Interconnects A Low Power 1Mbit MRAM based based on 1T1MTJ Bit Cell Integrated with Copper Interconnects M. Durlam, P. Naji, A. Omair, M. DeHerrera, J. Calder, J. M. Slaughter, B. Engel, N. Rizzo, G. Grynkewich, B.

More information

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University Memory Overview Curtis Nelson Walla Walla University Overview - Memory Types n n n Magnetic tape (used primarily for long term archive) Magnetic disk n Hard disk (File, Directory, Folder) n Floppy disks

More information

Semiconductor Memory Types Microprocessor Design & Organisation HCA2102

Semiconductor Memory Types Microprocessor Design & Organisation HCA2102 Semiconductor Memory Types Microprocessor Design & Organisation HCA2102 Internal & External Memory Semiconductor Memory RAM Misnamed as all semiconductor memory is random access Read/Write Volatile Temporary

More information

The Memory Hierarchy. Computer Organization 2/12/2015. CSC252 - Spring Memory. Conventional DRAM Organization. Reading DRAM Supercell (2,1)

The Memory Hierarchy. Computer Organization 2/12/2015. CSC252 - Spring Memory. Conventional DRAM Organization. Reading DRAM Supercell (2,1) Computer Organization 115 The Hierarch Kai Shen Random access memor (RM) RM is traditionall packaged as a chip. Basic storage unit is normall a cell (one bit per cell). Multiple RM chips form a memor.

More information

DESIGN AND PERFORMANCE ANALYSIS OF A NONVOLATILE MEMORY CELL

DESIGN AND PERFORMANCE ANALYSIS OF A NONVOLATILE MEMORY CELL DESIGN AND PERFORMANCE ANALYSIS OF A NONVOLATILE MEMORY CELL 1 M. Vasudha, 2 B. Sri Pravallika, 3 Ch. Sai Kiran, 4 P. Subhani, 5 G. Rakesh Chowdary, 6 M Durga Prakash, 7 K Hari Kishore, 8 T.V. Ramakrishna

More information

Evolving Solid State Storage. Bob Beauchamp EMC Distinguished Engineer

Evolving Solid State Storage. Bob Beauchamp EMC Distinguished Engineer Evolving Solid State Storage Bob Beauchamp EMC Distinguished Engineer Macro trends Scale-out and multi-core processors Flash hitting its stride but at a cliff? Looming DRAM challenge The rise of low-latency

More information

Computing-in-Memory with Spintronics

Computing-in-Memory with Spintronics Computing-in-Memory with Spintronics Shubham Jain 1, Sachin Sapatnekar 2, Jian-Ping Wang 2, Kaushik Roy 1, Anand Raghunathan 1 1 School of Electrical and Computer Engineering, Purdue University 2 Department

More information

The Evolving NAND Flash Business Model for SSD. Steffen Hellmold VP BD, SandForce

The Evolving NAND Flash Business Model for SSD. Steffen Hellmold VP BD, SandForce The Evolving NAND Flash Business Model for SSD Steffen Hellmold VP BD, SandForce Solid State Storage - Vision Solid State Storage in future Enterprise Compute Anything performance sensitive goes solid

More information

YEILD, AREA AND ENERGY OPTIMIZATION IN STT-MRAMS USING FAILURE- AWARE ECC

YEILD, AREA AND ENERGY OPTIMIZATION IN STT-MRAMS USING FAILURE- AWARE ECC YEILD, AREA AND ENERGY OPTIMIZATION IN STT-MRAMS USING FAILURE- AWARE ECC 39 ZOHA PAJOUHI, XUANYAO FONG, ANAND RAGHUNATHAN, KAUSHIK ROY, Purdue University Spin-Transfer Torque MRAMs are attractive due

More information

CS 33. Memory Hierarchy I. CS33 Intro to Computer Systems XVI 1 Copyright 2016 Thomas W. Doeppner. All rights reserved.

CS 33. Memory Hierarchy I. CS33 Intro to Computer Systems XVI 1 Copyright 2016 Thomas W. Doeppner. All rights reserved. CS 33 Memory Hierarchy I CS33 Intro to Computer Systems XVI 1 Copyright 2016 Thomas W. Doeppner. All rights reserved. Random-Access Memory (RAM) Key features RAM is traditionally packaged as a chip basic

More information

Semiconductor Memory II Future Memory Trend

Semiconductor Memory II Future Memory Trend Semiconductor Memory II Future Memory Trend Seong-Ook Jung 2010. 4. 2. sjung@yonsei.ac.kr VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Contents 1. Future memory trend

More information

Maximize energy efficiency in a normally-off system using NVRAM. Stéphane Gros Yeter Akgul

Maximize energy efficiency in a normally-off system using NVRAM. Stéphane Gros Yeter Akgul Maximize energy efficiency in a normally-off system using NVRAM Stéphane Gros Yeter Akgul Summary THE COMPANY THE CONTEXT THE TECHNOLOGY THE SYSTEM THE CO-DEVELOPMENT CONCLUSION May 31, 2017 2 Summary

More information

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy.

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 4, 7 Memory Overview, Memory Core Cells Today! Memory " Classification " ROM Memories " RAM Memory " Architecture " Memory core " SRAM

More information

Versatile RRAM Technology and Applications

Versatile RRAM Technology and Applications Versatile RRAM Technology and Applications Hagop Nazarian Co-Founder and VP of Engineering, Crossbar Inc. Santa Clara, CA 1 Agenda Overview of RRAM Technology RRAM for Embedded Memory Mass Storage Memory

More information

VM Futures Panel: Are We Near the Beginning of a New Solid State Epoch, or Is That Just a Big Firebal in the Sky?

VM Futures Panel: Are We Near the Beginning of a New Solid State Epoch, or Is That Just a Big Firebal in the Sky? VM Futures Panel: Are We Near the Beginning of a New Solid State Epoch, or Is That Just a Big Fireball in the Sky? Moderator: Tom Coughlin, Coughlin Associates Panelists: Dave Eggleston, Intuitive Cognition

More information

Could We Make SSDs Self-Healing?

Could We Make SSDs Self-Healing? Could We Make SSDs Self-Healing? Tong Zhang Electrical, Computer and Systems Engineering Department Rensselaer Polytechnic Institute Google/Bing: tong rpi Santa Clara, CA 1 Introduction and Motivation

More information

The Memory Hierarchy 1

The Memory Hierarchy 1 The Memory Hierarchy 1 What is a cache? 2 What problem do caches solve? 3 Memory CPU Abstraction: Big array of bytes Memory memory 4 Performance vs 1980 Processor vs Memory Performance Memory is very slow

More information

Programming Characteristics on Three-Dimensional NAND Flash Structure Using Edge Fringing Field Effect

Programming Characteristics on Three-Dimensional NAND Flash Structure Using Edge Fringing Field Effect JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.5, OCTOBER, 2014 http://dx.doi.org/10.5573/jsts.2014.14.5.537 Programming Characteristics on Three-Dimensional NAND Flash Structure Using Edge

More information

Developing a Prototyping Board for Emerging Memory

Developing a Prototyping Board for Emerging Memory Developing a Prototyping Board for Emerging Memory 2013. 10. 25 Sungjoo Yoo Embedded System Architecture Lab. POSTECH Introduction scaling problem [ITRS, 2012] Year 2012 2013 2014 2015 2016 2017 2018 2019

More information

Reconfigurable RRAM-based computing: A Case study for reliability enhancement

Reconfigurable RRAM-based computing: A Case study for reliability enhancement Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 8-1-2012 Reconfigurable RRAM-based computing: A Case study for reliability enhancement Matthew Catanzaro Follow

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2017 Lecture 13

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2017 Lecture 13 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2017 Lecture 13 COMPUTER MEMORY So far, have viewed computer memory in a very simple way Two memory areas in our computer: The register file Small number

More information

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST TA-LRW: A Replacement Policy for Error Rate Reduction in STT-MRAM Caches

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST TA-LRW: A Replacement Policy for Error Rate Reduction in STT-MRAM Caches IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 2018 1 : A Replacement Policy for Error Rate Reduction in STT-MRAM Caches Elham Cheshmikhani, Hamed Farbeh, Seyed Ghassem Miremadi, Senior Member,

More information

Flash Trends: Challenges and Future

Flash Trends: Challenges and Future Flash Trends: Challenges and Future John D. Davis work done at Microsoft Researcher- Silicon Valley in collaboration with Laura Caulfield*, Steve Swanson*, UCSD* 1 My Research Areas of Interest Flash characteristics

More information

Adapting Controllers for STT-MRAM

Adapting Controllers for STT-MRAM Adapting Controllers for STT-MRAM Joe O Hare Everspin Technologies, Inc. CTRL 301-1 Flash Controller Design Options Room: GAMR2 8:30 10:50AM August 9, 2018 Flash Memory Summit 2018 Santa Clara, CA 1 Adapting

More information

Computer Systems Research in the Post-Dennard Scaling Era. Emilio G. Cota Candidacy Exam April 30, 2013

Computer Systems Research in the Post-Dennard Scaling Era. Emilio G. Cota Candidacy Exam April 30, 2013 Computer Systems Research in the Post-Dennard Scaling Era Emilio G. Cota Candidacy Exam April 30, 2013 Intel 4004, 1971 1 core, no cache 23K 10um transistors Intel Nehalem EX, 2009 8c, 24MB cache 2.3B

More information

UNIT 2 Data Center Environment

UNIT 2 Data Center Environment UNIT 2 Data Center Environment This chapter provides an understanding of various logical components of hosts such as file systems, volume managers, and operating systems, and their role in the storage

More information