Phase Change Memory An Architecture and Systems Perspective

Size: px
Start display at page:

Download "Phase Change Memory An Architecture and Systems Perspective"

Transcription

1 Phase Change Memory An Architecture and Systems Perspective Benjamin Lee Electrical Engineering Stanford University Stanford EE382 2 December 2009 Benjamin Lee 1 :: PCM :: 2 Dec 09

2 Memory Scaling density, capacity; cost-capability ratio Emerging challenges for prevalent technologies [ITRS07] Benjamin Lee 2 :: PCM :: 2 Dec 09

3 Technology Alternatives Memory Scaling density, capacity; cost Challenges for prevalent technologies Charge Memory Write data by capturing charge Q Read data by detecting voltage V Examples: Flash, DRAM Resistive Memory Write data by pulsing current dq/dt Read data by detecting resistance R Examples: PCM, STT-MRAM, memristor Benjamin Lee 3 :: PCM :: 2 Dec 09

4 Limits of Charge Memory Difficult charge placement and control Flash: floating gate charge DRAM: capacitor charge, transistor leakage Benjamin Lee 4 :: PCM :: 2 Dec 09

5 Towards Resistive Memory Scalable Program cell with scalable mechanisms Map resistance to logical state Non-Volatile Set atomic structure of cell Incur activation cost to alter properties Competitive Achieve viable latency, power, endurance Scale to improve performance metrics Benjamin Lee 5 :: PCM :: 2 Dec 09

6 Technology Benjamin Lee, Engin Ipek, Onur Mutlu, Doug Burger. Architecting phase change memory as a scalable DRAM alternative. ISCA Benjamin Lee 6 :: PCM :: 2 Dec 09

7 Phase Change Memory Store data within phase change material Set phase via current pulse Detect phase via resistance (amorphous/crystalline) Benjamin Lee 7 :: PCM :: 2 Dec 09

8 PCM Scalability Program with current pulses, which scale linearly PCM roadmap to 30nm [Raoux+08] Flash/DRAM roadmap to 40nm [ITRS07] Benjamin Lee 8 :: PCM :: 2 Dec 09

9 PCM Non-Volatility Atomic Structure Program with current pulses Melt material at 650 C Cool material to desired phase Activation Cost Crystallize with high activation energy Isolate thermal effects to target cell Retain data for >10 years at 85 C Benjamin Lee 9 :: PCM :: 2 Dec 09

10 Technology Parameters Survey prototypes from [ISSCC][VLSI][IEDM][ITRS] Derive parameters for F=90nm Size 9-12F 2 using BJT 1.5 DRAM Endurance 1E+08 writes 1E-08 DRAM Latency 50ns Rd, 150ns Wr 4, 12 DRAM Energy 40µA Rd, 150µA Wr 2, 43 DRAM Benjamin Lee 10 :: PCM :: 2 Dec 09

11 Technology Parameters Survey prototypes from [ISSCC][VLSI][IEDM][ITRS] Derive parameters for F=90nm Size 9-12F 2 using BJT 1.5 DRAM Endurance 1E+08 writes 1E-08 DRAM Latency 50ns Rd, 150ns Wr 4, 12 DRAM Energy 40µA Rd, 150µA Wr 2, 43 DRAM Benjamin Lee 10 :: PCM :: 2 Dec 09

12 Technology Parameters Survey prototypes from [ISSCC][VLSI][IEDM][ITRS] Derive parameters for F=90nm Size 9-12F 2 using BJT 1.5 DRAM Endurance 1E+08 writes 1E-08 DRAM Latency 50ns Rd, 150ns Wr 4, 12 DRAM Energy 40µA Rd, 150µA Wr 2, 43 DRAM Benjamin Lee 10 :: PCM :: 2 Dec 09

13 Technology Parameters Survey prototypes from [ISSCC][VLSI][IEDM][ITRS] Derive parameters for F=90nm Size 9-12F 2 using BJT 1.5 DRAM Endurance 1E+08 writes 1E-08 DRAM Latency 50ns Rd, 150ns Wr 4, 12 DRAM Energy 40µA Rd, 150µA Wr 2, 43 DRAM Benjamin Lee 10 :: PCM :: 2 Dec 09

14 PCM Deployment Deploy PCM on memory bus Begin by co-locating PCM, DRAM Benjamin Lee 11 :: PCM :: 2 Dec 09

15 Price of Scalability 1.6 delay, 2.2 energy, 500-hour lifetime Replace DRAM with PCM in present architectures Benjamin Lee 12 :: PCM :: 2 Dec 09

16 Architecture and Scalability Benjamin Lee, Engin Ipek, Onur Mutlu, Doug Burger. Architecting phase change memory as a scalable DRAM alternative. ISCA Benjamin Lee 13 :: PCM :: 2 Dec 09

17 Architecture Objectives DRAM-Competitive Reorganize row buffer to mitigate delay, energy Implement partial writes to mitigate wear mechanism Area-Efficient Minimize disruption to density trends Impacts row buffer organization Complexity-Effective Encourage adoption with modest mechanisms Impacts partial writes Benjamin Lee 14 :: PCM :: 2 Dec 09

18 Buffer Organization On-Chip Buffers Use DRAM-like buffer and interface Evict modified rows into array Narrow Rows Reduce write energy buffer width Reduce peripheral circuitry, associated area Multiple Rows Reduce eviction frequency Improve locality, write coalescing Benjamin Lee 15 :: PCM :: 2 Dec 09

19 Buffer Area Strategy Narrow rows :: fewer expensive S/A s (44T) Multiple rows :: additional inexpensive latches (8T) Benjamin Lee 16 :: PCM :: 2 Dec 09

20 Buffer Design Space Derive DRAM, PCM area model Explore space of area-neutral buffer designs Benjamin Lee 17 :: PCM :: 2 Dec 09

21 Wear Reduction Wear Mechanism Writes induce phase change at 650 C Contacts degrade from thermal expansion/contraction Current injection is less reliable after 1E+08 writes Partial Writes Reduce writes to PCM array Write only stored lines (64B), words (4B) Add cache line state with 0.2%, 3.1% overhead Benjamin Lee 18 :: PCM :: 2 Dec 09

22 Partial Writes Derive PCM lifetime model Quantify eliminated writes during buffer eviction Benjamin Lee 19 :: PCM :: 2 Dec 09

23 Scalable Performance 1.2 delay, 1.0 energy, 5.6-year lifetime Scaling improves energy, endurance Benjamin Lee 20 :: PCM :: 2 Dec 09

24 Systems and Non-Volatility Jeremy Condit, Edmund Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, Derrick Coetzee. Better I/O through byte-addressable, persistent memory. SOSP Benjamin Lee 21 :: PCM :: 2 Dec 09

25 Storage Systems Persistent data in slow, non-volatile memory Buffered data in fast, volatile memory Benjamin Lee 22 :: PCM :: 2 Dec 09

26 Storage System Trade-offs Design Objectives Safety :: secure against crashes Consistency :: correctness in non-volatile memory Performance :: buffering in volatile memory Byte-addressable Persistence (BPRAM) Narrows gap between volatile/non-volatile memory Addressable like DRAM Persistent like disk, flash Benjamin Lee 23 :: PCM :: 2 Dec 09

27 Byte-addressable Persistent File System (BPFS) Safety Use PCM as DRAM alternative Reflect writes to PCM in O(ms), not O(s) Consistency Enforce atomicity, ordering in hardware Support shadow paging, copy-on-write Performance Use short-circuit shadow paging Exploit addressability for small, in-place writes Benjamin Lee 24 :: PCM :: 2 Dec 09

28 Tree-Based File System Benjamin Lee 25 :: PCM :: 2 Dec 09

29 Disks & Journaling Write to journal before write to file system Requires twice the writes Benjamin Lee 26 :: PCM :: 2 Dec 09

30 Disks & Journaling Write to journal before write to file system Requires twice the writes Benjamin Lee 26 :: PCM :: 2 Dec 09

31 Disks & Journaling Write to journal before write to file system Requires twice the writes Benjamin Lee 26 :: PCM :: 2 Dec 09

32 Disks & Shadow Paging Copy-on-write up to file system root Requires recursion up file system tree Benjamin Lee 27 :: PCM :: 2 Dec 09

33 Disks & Shadow Paging Copy-on-write up to file system root Requires recursion up file system tree Benjamin Lee 27 :: PCM :: 2 Dec 09

34 Disks & Shadow Paging Copy-on-write up to file system root Requires recursion up file system tree Benjamin Lee 27 :: PCM :: 2 Dec 09

35 PCM & Short-Circuit Shadow Paging Update in-place for small writes Lowers copying overhead Benjamin Lee 28 :: PCM :: 2 Dec 09

36 Hardware Support Atomicity BPFS assumes atomic 64-bit pointer updates PCM writes atomically into memory array Capacitors guard against power failures Ordering Caches, memory controller reorder writes Epochs define barrier-delimited BPFS writes Enforce ordering across epochs Allow reordering within epochs Benjamin Lee 29 :: PCM :: 2 Dec 09

37 BPFS Evaluation Improved safety, consistency Improved performance Benjamin Lee 30 :: PCM :: 2 Dec 09

38 Conclusions Scaling Challenges Fundamental limits in charge memory Transition towards resistive memory Architecture and Scalability Scalable, non-volatile, DRAM-competitive Efficient buffers mitigate latency, energy Partial writes reduce wear Systems and Non-Volatility BPFS changes storage system trade-offs Short-circuit shadow paging, hardware support Improves durability, performance Benjamin Lee 31 :: PCM :: 2 Dec 09

39 Phase Change Memory An Architecture and Systems Perspective Benjamin Lee Electrical Engineering Stanford University Stanford EE382 2 December 2009 Benjamin Lee 32 :: PCM :: 2 Dec 09

Phase Change Memory An Architecture and Systems Perspective

Phase Change Memory An Architecture and Systems Perspective Phase Change Memory An Architecture and Systems Perspective Benjamin C. Lee Stanford University bcclee@stanford.edu Fall 2010, Assistant Professor @ Duke University Benjamin C. Lee 1 Memory Scaling density,

More information

Scalable Many-Core Memory Systems Lecture 3, Topic 2: Emerging Technologies and Hybrid Memories

Scalable Many-Core Memory Systems Lecture 3, Topic 2: Emerging Technologies and Hybrid Memories Scalable Many-Core Memory Systems Lecture 3, Topic 2: Emerging Technologies and Hybrid Memories Prof. Onur Mutlu http://www.ece.cmu.edu/~omutlu onur@cmu.edu HiPEAC ACACES Summer School 2013 July 17, 2013

More information

PHASE-CHANGE TECHNOLOGY AND THE FUTURE OF MAIN MEMORY

PHASE-CHANGE TECHNOLOGY AND THE FUTURE OF MAIN MEMORY ... PHASE-CHANGE TECHNOLOGY AND THE FUTURE OF MAIN MEMORY... PHASE-CHANGE MEMORY MAY ENABLE CONTINUED SCALING OF MAIN MEMORIES, BUT PCM HAS HIGHER ACCESS LATENCIES, INCURS HIGHER POWER COSTS, AND WEARS

More information

Better I/O Through Byte-Addressable, Persistent Memory

Better I/O Through Byte-Addressable, Persistent Memory Better I/O Through Byte-Addressable, Persistent Memory Jeremy Condit Edmund B. Nightingale Christopher Frost Engin Ipek Benjamin Lee Doug Burger Derrick Coetzee Microsoft Research UCLA ABSTRACT Modern

More information

Energy-Aware Writes to Non-Volatile Main Memory

Energy-Aware Writes to Non-Volatile Main Memory Energy-Aware Writes to Non-Volatile Main Memory Jie Chen Ron C. Chiang H. Howie Huang Guru Venkataramani Department of Electrical and Computer Engineering George Washington University, Washington DC ABSTRACT

More information

Phase Change Memory Architecture and the Quest for Scalability By Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger

Phase Change Memory Architecture and the Quest for Scalability By Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger Phase Change Memory Architecture and the Quest for Scalability By Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger doi:.45/78544.78544 Abstract Memory scaling is in jeopardy as charge storage and

More information

Lecture 8: Virtual Memory. Today: DRAM innovations, virtual memory (Sections )

Lecture 8: Virtual Memory. Today: DRAM innovations, virtual memory (Sections ) Lecture 8: Virtual Memory Today: DRAM innovations, virtual memory (Sections 5.3-5.4) 1 DRAM Technology Trends Improvements in technology (smaller devices) DRAM capacities double every two years, but latency

More information

Lecture 7: PCM, Cache coherence. Topics: handling PCM errors and writes, cache coherence intro

Lecture 7: PCM, Cache coherence. Topics: handling PCM errors and writes, cache coherence intro Lecture 7: M, ache coherence Topics: handling M errors and writes, cache coherence intro 1 hase hange Memory Emerging NVM technology that can replace Flash and DRAM Much higher density; much better scalability;

More information

Is Buffer Cache Still Effective for High Speed PCM (Phase Change Memory) Storage?

Is Buffer Cache Still Effective for High Speed PCM (Phase Change Memory) Storage? 2011 IEEE 17th International Conference on Parallel and Distributed Systems Is Buffer Cache Still Effective for High Speed PCM (Phase Change Memory) Storage? Eunji Lee, Daeha Jin, Kern Koh Dept. of Computer

More information

The Engine. SRAM & DRAM Endurance and Speed with STT MRAM. Les Crudele / Andrew J. Walker PhD. Santa Clara, CA August

The Engine. SRAM & DRAM Endurance and Speed with STT MRAM. Les Crudele / Andrew J. Walker PhD. Santa Clara, CA August The Engine & DRAM Endurance and Speed with STT MRAM Les Crudele / Andrew J. Walker PhD August 2018 1 Contents The Leaking Creaking Pyramid STT-MRAM: A Compelling Replacement STT-MRAM: A Unique Endurance

More information

SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS

SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS Samira Khan MEMORY IN TODAY S SYSTEM Processor DRAM Memory Storage DRAM is critical for performance

More information

Designing a Fast and Adaptive Error Correction Scheme for Increasing the Lifetime of Phase Change Memories

Designing a Fast and Adaptive Error Correction Scheme for Increasing the Lifetime of Phase Change Memories 2011 29th IEEE VLSI Test Symposium Designing a Fast and Adaptive Error Correction Scheme for Increasing the Lifetime of Phase Change Memories Rudrajit Datta and Nur A. Touba Computer Engineering Research

More information

Phase-change RAM (PRAM)- based Main Memory

Phase-change RAM (PRAM)- based Main Memory Phase-change RAM (PRAM)- based Main Memory Sungjoo Yoo April 19, 2011 Embedded System Architecture Lab. POSTECH sungjoo.yoo@gmail.com Agenda Introduction Current status Hybrid PRAM/DRAM main memory Next

More information

Memory technology and optimizations ( 2.3) Main Memory

Memory technology and optimizations ( 2.3) Main Memory Memory technology and optimizations ( 2.3) 47 Main Memory Performance of Main Memory: Latency: affects Cache Miss Penalty» Access Time: time between request and word arrival» Cycle Time: minimum time between

More information

Exploring the Potential of Phase Change Memories as an Alternative to DRAM Technology

Exploring the Potential of Phase Change Memories as an Alternative to DRAM Technology Exploring the Potential of Phase Change Memories as an Alternative to DRAM Technology Venkataraman Krishnaswami, Venkatasubramanian Viswanathan Abstract Scalability poses a severe threat to the existing

More information

Steven Geiger Jackson Lamp

Steven Geiger Jackson Lamp Steven Geiger Jackson Lamp Universal Memory Universal memory is any memory device that has all the benefits from each of the main memory families Density of DRAM Speed of SRAM Non-volatile like Flash MRAM

More information

Scalable High Performance Main Memory System Using PCM Technology

Scalable High Performance Main Memory System Using PCM Technology Scalable High Performance Main Memory System Using PCM Technology Moinuddin K. Qureshi Viji Srinivasan and Jude Rivers IBM T. J. Watson Research Center, Yorktown Heights, NY International Symposium on

More information

Test and Reliability of Emerging Non-Volatile Memories

Test and Reliability of Emerging Non-Volatile Memories Test and Reliability of Emerging Non-Volatile Memories Elena Ioana Vătăjelu, Lorena Anghel TIMA Laboratory, Grenoble, France Outline Emerging Non-Volatile Memories Defects and Fault Models Test Algorithms

More information

Lecture-14 (Memory Hierarchy) CS422-Spring

Lecture-14 (Memory Hierarchy) CS422-Spring Lecture-14 (Memory Hierarchy) CS422-Spring 2018 Biswa@CSE-IITK The Ideal World Instruction Supply Pipeline (Instruction execution) Data Supply - Zero-cycle latency - Infinite capacity - Zero cost - Perfect

More information

Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques

Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, Erich F. Haratsch February 6, 2017

More information

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics Logic and Computer Design Fundamentals Memory Basics Overview Memory definitions Random Access Memory (RAM) Static RAM (SRAM) integrated circuits Arrays of SRAM integrated circuits Dynamic RAM (DRAM) Read

More information

Annual Update on Flash Memory for Non-Technologists

Annual Update on Flash Memory for Non-Technologists Annual Update on Flash Memory for Non-Technologists Jay Kramer, Network Storage Advisors & George Crump, Storage Switzerland August 2017 1 Memory / Storage Hierarchy Flash Memory Summit 2017 2 NAND Flash

More information

Mohsen Imani. University of California San Diego. System Energy Efficiency Lab seelab.ucsd.edu

Mohsen Imani. University of California San Diego. System Energy Efficiency Lab seelab.ucsd.edu Mohsen Imani University of California San Diego Winter 2016 Technology Trend for IoT http://www.flashmemorysummit.com/english/collaterals/proceedi ngs/2014/20140807_304c_hill.pdf 2 Motivation IoT significantly

More information

Couture: Tailoring STT-MRAM for Persistent Main Memory. Mustafa M Shihab Jie Zhang Shuwen Gao Joseph Callenes-Sloan Myoungsoo Jung

Couture: Tailoring STT-MRAM for Persistent Main Memory. Mustafa M Shihab Jie Zhang Shuwen Gao Joseph Callenes-Sloan Myoungsoo Jung Couture: Tailoring STT-MRAM for Persistent Main Memory Mustafa M Shihab Jie Zhang Shuwen Gao Joseph Callenes-Sloan Myoungsoo Jung Executive Summary Motivation: DRAM plays an instrumental role in modern

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative

Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative Emre Kültürsay *, Mahmut Kandemir *, Anand Sivasubramaniam *, and Onur Mutlu * Pennsylvania State University Carnegie Mellon University

More information

Chapter 8 Memory Basics

Chapter 8 Memory Basics Logic and Computer Design Fundamentals Chapter 8 Memory Basics Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Memory definitions Random Access

More information

Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy)

Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy) 2011 NVRAMOS Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy) 2011. 4. 19 Jongmoo Choi http://embedded.dankook.ac.kr/~choijm Contents Overview Motivation Observations Proposal:

More information

ECEN 449 Microprocessor System Design. Memories. Texas A&M University

ECEN 449 Microprocessor System Design. Memories. Texas A&M University ECEN 449 Microprocessor System Design Memories 1 Objectives of this Lecture Unit Learn about different types of memories SRAM/DRAM/CAM Flash 2 SRAM Static Random Access Memory 3 SRAM Static Random Access

More information

Tiered-Latency DRAM: A Low Latency and A Low Cost DRAM Architecture

Tiered-Latency DRAM: A Low Latency and A Low Cost DRAM Architecture Tiered-Latency DRAM: A Low Latency and A Low Cost DRAM Architecture Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, Onur Mutlu Carnegie Mellon University HPCA - 2013 Executive

More information

Onyx: A Prototype Phase-Change Memory Storage Array

Onyx: A Prototype Phase-Change Memory Storage Array Onyx: A Prototype Phase-Change Memory Storage Array Ameen Akel * Adrian Caulfield, Todor Mollov, Rajesh Gupta, Steven Swanson Non-Volatile Systems Laboratory, Department of Computer Science and Engineering

More information

ECE 152 Introduction to Computer Architecture

ECE 152 Introduction to Computer Architecture Introduction to Computer Architecture Main Memory and Virtual Memory Copyright 2009 Daniel J. Sorin Duke University Slides are derived from work by Amir Roth (Penn) Spring 2009 1 Where We Are in This Course

More information

BIBIM: A Prototype Multi-Partition Aware Heterogeneous New Memory

BIBIM: A Prototype Multi-Partition Aware Heterogeneous New Memory HotStorage 18 BIBIM: A Prototype Multi-Partition Aware Heterogeneous New Memory Gyuyoung Park 1, Miryeong Kwon 1, Pratyush Mahapatra 2, Michael Swift 2, and Myoungsoo Jung 1 Yonsei University Computer

More information

The Role of Storage Class Memory in Future Hardware Platforms Challenges and Opportunities

The Role of Storage Class Memory in Future Hardware Platforms Challenges and Opportunities The Role of Storage Class Memory in Future Hardware Platforms Challenges and Opportunities Sudhanva Gurumurthi gurumurthi@cs.virginia.edu Multicore Processors Intel Nehalem AMD Phenom IBM POWER6 Future

More information

Amnesic Cache Management for Non-Volatile Memory

Amnesic Cache Management for Non-Volatile Memory Amnesic Cache Management for Non-Volatile Memory Dongwoo Kang, Seungjae Baek, Jongmoo Choi Dankook University, South Korea {kangdw, baeksj, chiojm}@dankook.ac.kr Donghee Lee University of Seoul, South

More information

Efficient Persist Barriers for Multicores

Efficient Persist Barriers for Multicores fficient Persist Barriers for Multicores Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, Stratis Viglas Summary fficient persist barrier Used to implement persistency models Persistency = when stores become

More information

Memory Systems in the Many-Core Era: Some Challenges and Solution Directions. Onur Mutlu June 5, 2011 ISMM/MSPC

Memory Systems in the Many-Core Era: Some Challenges and Solution Directions. Onur Mutlu   June 5, 2011 ISMM/MSPC Memory Systems in the Many-Core Era: Some Challenges and Solution Directions Onur Mutlu http://www.ece.cmu.edu/~omutlu June 5, 2011 ISMM/MSPC Modern Memory System: A Shared Resource 2 The Memory System

More information

Emerging NVM Memory Technologies

Emerging NVM Memory Technologies Emerging NVM Memory Technologies Yuan Xie Associate Professor The Pennsylvania State University Department of Computer Science & Engineering www.cse.psu.edu/~yuanxie yuanxie@cse.psu.edu Position Statement

More information

Lecture: Memory, Coherence Protocols. Topics: wrap-up of memory systems, multi-thread programming models, snooping-based protocols

Lecture: Memory, Coherence Protocols. Topics: wrap-up of memory systems, multi-thread programming models, snooping-based protocols Lecture: Memory, Coherence Protocols Topics: wrap-up of memory systems, multi-thread programming models, snooping-based protocols 1 Modern Memory System...... PROC.. 4 DDR3 channels 64-bit data channels

More information

15-740/ Computer Architecture Lecture 19: Main Memory. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 19: Main Memory. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 19: Main Memory Prof. Onur Mutlu Carnegie Mellon University Last Time Multi-core issues in caching OS-based cache partitioning (using page coloring) Handling

More information

Unleashing MRAM as Persistent Memory

Unleashing MRAM as Persistent Memory Unleashing MRAM as Persistent Memory Andrew J. Walker PhD Spin Transfer Technologies Contents The Creaking Pyramid Challenges with the Memory Hierarchy What and Where is MRAM? State of the Art pmtj Unleashing

More information

WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems

WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems Se Kwon Lee K. Hyun Lim 1, Hyunsub Song, Beomseok Nam, Sam H. Noh UNIST 1 Hongik University Persistent Memory (PM) Persistent memory

More information

Lecture: Memory, Multiprocessors. Topics: wrap-up of memory systems, intro to multiprocessors and multi-threaded programming models

Lecture: Memory, Multiprocessors. Topics: wrap-up of memory systems, intro to multiprocessors and multi-threaded programming models Lecture: Memory, Multiprocessors Topics: wrap-up of memory systems, intro to multiprocessors and multi-threaded programming models 1 Refresh Every DRAM cell must be refreshed within a 64 ms window A row

More information

A Non-Volatile Microcontroller with Integrated Floating-Gate Transistors

A Non-Volatile Microcontroller with Integrated Floating-Gate Transistors A Non-Volatile Microcontroller with Integrated Floating-Gate Transistors Wing-kei Yu, Shantanu Rajwade, Sung-En Wang, Bob Lian, G. Edward Suh, Edwin Kan Cornell University 2 of 32 Self-Powered Devices

More information

Memory Class Storage. Bill Gervasi Principal Systems Architect Santa Clara, CA August

Memory Class Storage. Bill Gervasi Principal Systems Architect Santa Clara, CA August Memory Class Storage Bill Gervasi Principal Systems Architect bilge@nantero.com August 2018 1 DRAM Treadmill DDR5-3200 DDR5-3600 DDR5-4400 DDR5-4000 DDR5-4800 DDR5-5200 DDR4-1600 DDR5-5600 DDR4-1866 DDR5-6000

More information

Hardware Support for NVM Programming

Hardware Support for NVM Programming Hardware Support for NVM Programming 1 Outline Ordering Transactions Write endurance 2 Volatile Memory Ordering Write-back caching Improves performance Reorders writes to DRAM STORE A STORE B CPU CPU B

More information

Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity. Donghyuk Lee Carnegie Mellon University

Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity. Donghyuk Lee Carnegie Mellon University Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity Donghyuk Lee Carnegie Mellon University Problem: High DRAM Latency processor stalls: waiting for data main memory high latency Major bottleneck

More information

ECEN 449 Microprocessor System Design. Memories

ECEN 449 Microprocessor System Design. Memories ECEN 449 Microprocessor System Design Memories 1 Objectives of this Lecture Unit Learn about different types of memories SRAM/DRAM/CAM /C Flash 2 1 SRAM Static Random Access Memory 3 SRAM Static Random

More information

Adrian Proctor Vice President, Marketing Viking Technology

Adrian Proctor Vice President, Marketing Viking Technology Storage PRESENTATION in the TITLE DIMM GOES HERE Socket Adrian Proctor Vice President, Marketing Viking Technology SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless

More information

Memory Expansion. Lecture Embedded Systems

Memory Expansion. Lecture Embedded Systems Memory Expansion Lecture 22 22-1 In These Notes... Memory Types Memory Expansion Interfacing Parallel Serial Direct Memory Access controllers 22-2 Memory Characteristics and Issues Volatility - Does it

More information

Phase Change Memory and its positive influence on Flash Algorithms Rajagopal Vaideeswaran Principal Software Engineer Symantec

Phase Change Memory and its positive influence on Flash Algorithms Rajagopal Vaideeswaran Principal Software Engineer Symantec Phase Change Memory and its positive influence on Flash Algorithms Rajagopal Vaideeswaran Principal Software Engineer Symantec Agenda Why NAND / NOR? NAND and NOR Electronics Phase Change Memory (PCM)

More information

Improving Energy Efficiency of Write-asymmetric Memories by Log Style Write

Improving Energy Efficiency of Write-asymmetric Memories by Log Style Write Improving Energy Efficiency of Write-asymmetric Memories by Log Style Write Guangyu Sun 1, Yaojun Zhang 2, Yu Wang 3, Yiran Chen 2 1 Center for Energy-efficient Computing and Applications, Peking University

More information

The Memory Hierarchy 1

The Memory Hierarchy 1 The Memory Hierarchy 1 What is a cache? 2 What problem do caches solve? 3 Memory CPU Abstraction: Big array of bytes Memory memory 4 Performance vs 1980 Processor vs Memory Performance Memory is very slow

More information

A Page-Based Storage Framework for Phase Change Memory

A Page-Based Storage Framework for Phase Change Memory A Page-Based Storage Framework for Phase Change Memory Peiquan Jin, Zhangling Wu, Xiaoliang Wang, Xingjun Hao, Lihua Yue University of Science and Technology of China 2017.5.19 Outline Background Related

More information

Area, Power, and Latency Considerations of STT-MRAM to Substitute for Main Memory

Area, Power, and Latency Considerations of STT-MRAM to Substitute for Main Memory Area, Power, and Latency Considerations of STT-MRAM to Substitute for Main Memory Youngbin Jin, Mustafa Shihab, and Myoungsoo Jung Computer Architecture and Memory Systems Laboratory Department of Electrical

More information

Memories. Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu.

Memories. Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu. Memories Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu http://www.syssec.ethz.ch/education/digitaltechnik_17 Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah

More information

AC-DIMM: Associative Computing with STT-MRAM

AC-DIMM: Associative Computing with STT-MRAM AC-DIMM: Associative Computing with STT-MRAM Qing Guo, Xiaochen Guo, Ravi Patel Engin Ipek, Eby G. Friedman University of Rochester Published In: ISCA-2013 Motivation Prevalent Trends in Modern Computing:

More information

Design and Implementation of a Random Access File System for NVRAM

Design and Implementation of a Random Access File System for NVRAM This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Design and Implementation of a Random Access

More information

Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories

Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories HanBin Yoon, Justin Meza, Naveen Muralimanohar*, Onur Mutlu, Norm Jouppi* Carnegie Mellon University * Hewlett-Packard

More information

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types CSCI 4717/5717 Computer Architecture Topic: Internal Memory Details Reading: Stallings, Sections 5.1 & 5.3 Basic Organization Memory Cell Operation Represent two stable/semi-stable states representing

More information

Lecture 18: DRAM Technologies

Lecture 18: DRAM Technologies Lecture 18: DRAM Technologies Last Time: Cache and Virtual Memory Review Today DRAM organization or, why is DRAM so slow??? Lecture 18 1 Main Memory = DRAM Lecture 18 2 Basic DRAM Architecture Lecture

More information

Will Phase Change Memory (PCM) Replace DRAM or NAND Flash?

Will Phase Change Memory (PCM) Replace DRAM or NAND Flash? Will Phase Change Memory (PCM) Replace DRAM or NAND Flash? Dr. Mostafa Abdulla High-Speed Engineering Sr. Manager, Micron Marc Greenberg Product Marketing Director, Cadence August 19, 2010 Flash Memory

More information

Concept of Memory. The memory of computer is broadly categories into two categories:

Concept of Memory. The memory of computer is broadly categories into two categories: Concept of Memory We have already mentioned that digital computer works on stored programmed concept introduced by Von Neumann. We use memory to store the information, which includes both program and data.

More information

Lecture: Coherence Protocols. Topics: wrap-up of memory systems, multi-thread programming models, snooping-based protocols

Lecture: Coherence Protocols. Topics: wrap-up of memory systems, multi-thread programming models, snooping-based protocols Lecture: Coherence Protocols Topics: wrap-up of memory systems, multi-thread programming models, snooping-based protocols 1 Future Memory Trends pin count is not increasing High memory bandwidth requires

More information

Persistent Memory in Mission-Critical Architecture (How and Why) Adam Roberts Engineering Fellow, Western Digital Corporation

Persistent Memory in Mission-Critical Architecture (How and Why) Adam Roberts Engineering Fellow, Western Digital Corporation Persistent Memory in Mission-Critical Architecture (How and Why) Adam Roberts Engineering Fellow, Western Digital Corporation Forward-Looking Statements Safe Harbor Disclaimers This presentation contains

More information

Power Reduction Techniques in the Memory System. Typical Memory Hierarchy

Power Reduction Techniques in the Memory System. Typical Memory Hierarchy Power Reduction Techniques in the Memory System Low Power Design for SoCs ASIC Tutorial Memories.1 Typical Memory Hierarchy On-Chip Components Control edram Datapath RegFile ITLB DTLB Instr Data Cache

More information

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory The basic element of a semiconductor memory is the memory cell. Although a variety of

More information

P2FS: supporting atomic writes for reliable file system design in PCM storage

P2FS: supporting atomic writes for reliable file system design in PCM storage LETTER IEICE Electronics Express, Vol.11, No.13, 1 6 P2FS: supporting atomic writes for reliable file system design in PCM storage Eunji Lee 1, Kern Koh 2, and Hyokyung Bahn 2a) 1 Department of Software,

More information

Facilitating IP Development for the OpenCAPI Memory Interface Kevin McIlvain, Memory Development Engineer IBM. Join the Conversation #OpenPOWERSummit

Facilitating IP Development for the OpenCAPI Memory Interface Kevin McIlvain, Memory Development Engineer IBM. Join the Conversation #OpenPOWERSummit Facilitating IP Development for the OpenCAPI Memory Interface Kevin McIlvain, Memory Development Engineer IBM Join the Conversation #OpenPOWERSummit Moral of the Story OpenPOWER is the best platform to

More information

Design-Induced Latency Variation in Modern DRAM Chips:

Design-Induced Latency Variation in Modern DRAM Chips: Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms Donghyuk Lee 1,2 Samira Khan 3 Lavanya Subramanian 2 Saugata Ghose 2 Rachata Ausavarungnirun

More information

Computer Architecture: Main Memory (Part II) Prof. Onur Mutlu Carnegie Mellon University

Computer Architecture: Main Memory (Part II) Prof. Onur Mutlu Carnegie Mellon University Computer Architecture: Main Memory (Part II) Prof. Onur Mutlu Carnegie Mellon University Main Memory Lectures These slides are from the Scalable Memory Systems course taught at ACACES 2013 (July 15-19,

More information

Alternative Non-Volatile Memory Adoption Timeline

Alternative Non-Volatile Memory Adoption Timeline Alternative Non-Volatile Memory Adoption Timeline Mark Webb MKW Ventures, LLC Flash Memory Summit 2015 Santa Clara, CA 1 Technologies Many NVM technologies exist today. NOR: low density, low growth, incredibly

More information

ECE 341. Lecture # 16

ECE 341. Lecture # 16 ECE 341 Lecture # 16 Instructor: Zeshan Chishti zeshan@ece.pdx.edu November 24, 2014 Portland State University Lecture Topics The Memory System Basic Concepts Semiconductor RAM Memories Organization of

More information

Persistent Memory. High Speed and Low Latency. White Paper M-WP006

Persistent Memory. High Speed and Low Latency. White Paper M-WP006 Persistent Memory High Speed and Low Latency White Paper M-WP6 Corporate Headquarters: 3987 Eureka Dr., Newark, CA 9456, USA Tel: (51) 623-1231 Fax: (51) 623-1434 E-mail: info@smartm.com Customer Service:

More information

SLC vs. MLC: An Analysis of Flash Memory

SLC vs. MLC: An Analysis of Flash Memory SLC vs. MLC: An Analysis of Flash Memory Examining the Quality of Memory: Understanding the Differences between Flash Grades Table of Contents Abstract... 3 Introduction... 4 Flash Memory Explained...

More information

The Memory Hierarchy. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1

The Memory Hierarchy. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1 The Memory Hierarchy Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1 Memory Technologies Technologies have vastly different tradeoffs between capacity, latency,

More information

Improving DRAM Performance by Parallelizing Refreshes with Accesses

Improving DRAM Performance by Parallelizing Refreshes with Accesses Improving DRAM Performance by Parallelizing Refreshes with Accesses Kevin Chang Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, Yoongu Kim, Onur Mutlu Executive Summary DRAM refresh interferes

More information

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

CREATED BY M BILAL & Arslan Ahmad Shaad Visit: CREATED BY M BILAL & Arslan Ahmad Shaad Visit: www.techo786.wordpress.com Q1: Define microprocessor? Short Questions Chapter No 01 Fundamental Concepts Microprocessor is a program-controlled and semiconductor

More information

! Memory Overview. ! ROM Memories. ! RAM Memory " SRAM " DRAM. ! This is done because we can build. " large, slow memories OR

! Memory Overview. ! ROM Memories. ! RAM Memory  SRAM  DRAM. ! This is done because we can build.  large, slow memories OR ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 2: April 5, 26 Memory Overview, Memory Core Cells Lecture Outline! Memory Overview! ROM Memories! RAM Memory " SRAM " DRAM 2 Memory Overview

More information

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy.

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 4, 7 Memory Overview, Memory Core Cells Today! Memory " Classification " ROM Memories " RAM Memory " Architecture " Memory core " SRAM

More information

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 1 Multilevel Memories Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Based on the material prepared by Krste Asanovic and Arvind CPU-Memory Bottleneck 6.823

More information

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Chao Sun 1, Asuka Arakawa 1, Ayumi Soga 1, Chihiro Matsui 1 and Ken Takeuchi 1 1 Chuo University Santa Clara,

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: November 28, 2017 at 14:31 CS429 Slideset 18: 1 Random-Access Memory

More information

Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014

Novel Nonvolatile Memory Hierarchies to Realize Normally-Off Mobile Processors ASP-DAC 2014 Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014 Shinobu Fujita, Kumiko Nomura, Hiroki Noguchi, Susumu Takeda, Keiko Abe Toshiba Corporation, R&D Center Advanced

More information

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory 5.1 Semiconductor Main Memory 5.2 Error Correction 5.3 Advanced DRAM Organization 5.1 Semiconductor Main Memory

More information

CS311 Lecture 21: SRAM/DRAM/FLASH

CS311 Lecture 21: SRAM/DRAM/FLASH S 14 L21-1 2014 CS311 Lecture 21: SRAM/DRAM/FLASH DARM part based on ISCA 2002 tutorial DRAM: Architectures, Interfaces, and Systems by Bruce Jacob and David Wang Jangwoo Kim (POSTECH) Thomas Wenisch (University

More information

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory Semiconductor Memory Types Semiconductor Memory RAM Misnamed as all semiconductor memory is random access

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: April 9, 2018 at 12:16 CS429 Slideset 17: 1 Random-Access Memory

More information

15-740/ Computer Architecture Lecture 5: Project Example. Jus%n Meza Yoongu Kim Fall 2011, 9/21/2011

15-740/ Computer Architecture Lecture 5: Project Example. Jus%n Meza Yoongu Kim Fall 2011, 9/21/2011 15-740/18-740 Computer Architecture Lecture 5: Project Example Jus%n Meza Yoongu Kim Fall 2011, 9/21/2011 Reminder: Project Proposals Project proposals due NOON on Monday 9/26 Two to three pages consisang

More information

Row Buffer Locality Aware Caching Policies for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu

Row Buffer Locality Aware Caching Policies for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Row Buffer Locality Aware Caching Policies for Hybrid Memories HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Executive Summary Different memory technologies have different

More information

Block Device Scheduling. Don Porter CSE 506

Block Device Scheduling. Don Porter CSE 506 Block Device Scheduling Don Porter CSE 506 Logical Diagram Binary Formats Memory Allocators System Calls Threads User Kernel RCU File System Networking Sync Memory Management Device Drivers CPU Scheduler

More information

Block Device Scheduling

Block Device Scheduling Logical Diagram Block Device Scheduling Don Porter CSE 506 Binary Formats RCU Memory Management File System Memory Allocators System Calls Device Drivers Interrupts Net Networking Threads Sync User Kernel

More information

Where Have We Been? Ch. 6 Memory Technology

Where Have We Been? Ch. 6 Memory Technology Where Have We Been? Combinational and Sequential Logic Finite State Machines Computer Architecture Instruction Set Architecture Tracing Instructions at the Register Level Building a CPU Pipelining Where

More information

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I)

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I) COMP3221: Microprocessors and Embedded Systems Lecture 23: Memory Systems (I) Overview Memory System Hierarchy RAM, ROM, EPROM, EEPROM and FLASH http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session

More information

Chapter 5 Internal Memory

Chapter 5 Internal Memory Chapter 5 Internal Memory Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM) Read-write memory Electrically, byte-level Electrically Volatile Read-only memory (ROM) Read-only

More information

A Prototype Storage Subsystem based on PCM

A Prototype Storage Subsystem based on PCM PSS A Prototype Storage Subsystem based on IBM Research Zurich Ioannis Koltsidas, Roman Pletka, Peter Mueller, Thomas Weigold, Evangelos Eleftheriou University of Patras Maria Varsamou, Athina Ntalla,

More information

Architectural Aspects in Design and Analysis of SOTbased

Architectural Aspects in Design and Analysis of SOTbased Architectural Aspects in Design and Analysis of SOTbased Memories Rajendra Bishnoi, Mojtaba Ebrahimi, Fabian Oboril & Mehdi Tahoori INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE NANO COMPUTING

More information

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week)

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week) + (Advanced) Computer Organization & Architechture Prof. Dr. Hasan Hüseyin BALIK (5 th Week) + Outline 2. The computer system 2.1 A Top-Level View of Computer Function and Interconnection 2.2 Cache Memory

More information

Block Device Scheduling. Don Porter CSE 506

Block Device Scheduling. Don Porter CSE 506 Block Device Scheduling Don Porter CSE 506 Quick Recap CPU Scheduling Balance competing concerns with heuristics What were some goals? No perfect solution Today: Block device scheduling How different from

More information

Dynamically Replicated Memory: Building Reliable Systems from Nanoscale Resistive Memories

Dynamically Replicated Memory: Building Reliable Systems from Nanoscale Resistive Memories Dynamically Replicated Memory: Building Reliable Systems from Nanoscale Resistive Memories Engin İpek Jeremy Condit Edmund B. Nightingale Doug Burger Thomas Moscibroda University of Rochester, Rochester,

More information