Last Time. Making correct concurrent programs. Maintaining invariants Avoiding deadlocks

Size: px
Start display at page:

Download "Last Time. Making correct concurrent programs. Maintaining invariants Avoiding deadlocks"

Transcription

1 Last Time Making correct concurrent programs Maintaining invariants Avoiding deadlocks

2 Today Power management Hardware capabilities Software management strategies

3 Power and Energy Review Energy is power integrated over time 1 Watt == 1 Joule / second Heat depends on power consumption Battery life depends on energy consumption Both power and energy consumption must be bounded

4 The Power Problem Processors are getting faster but using more power Performance / Watt remains low Battery capacities increase slowly Solutions: Use a better VLSI process Have the system do less work Spread work across several smaller, slower processors Push the problem to the user New cell phones often have worse lifetime than the previous generation Most users choose features over lifetime! Use power management techniques

5 Batteries Usable energy density increasing by ~10% / year Dominant rechargeable battery technology where energy density is important: Lithium-ion Wh/KG About 1/3 the energy density of dynamite! In contrast Gasoline: 14,000 Wh/Kg Hydrogen: 38,000 Wh/Kg

6 CMOS Power Consumption Affected by: Voltage Power consumption proportional to V 2 Toggling More activity == more power Leakage Idle components draw power

7 Power Saving Features Voltage Reduce power supply voltage Toggling Reduce activity Use simpler hardware These necessitate clock speed reductions Leakage Disconnect inactive parts from power supply

8 Clock Gating Applicable to processors, memories, etc Not analog components Disconnect parts from clock when not in use Stops signal propagation Pros: Simple Fast Stopping only clock distribution, not clock generation Cons: Clock still runs, using power Does not prevent leakage

9 Supply Shutdown Disconnect parts from power supply when not in use Pros: General Saves the most power Con: Long transition time

10 Example: Intel SA-1100 StrongARM variant for PDA-type devices Small I- and D-caches Runs up to 200 MHz Three power modes Run normal operation Idle stops processor clock, I/O logic still powered Sleep most chip activity shut down

11 SA-1100 Sleep Run Sleep 30 µs Flush CPU state to RAM 30 µs Reset processor state 30 µs Shut down clock Sleep Run 10 ms Ramp up power supply 150 ms Stabilize clock Small Boot CPU

12 SA 1100 Transition Costs P = 400 mw Run 10 us 160 ms 10 u us 90 us ms Idle 90 us Sleep P = 50 mw P = 0.16 mw Power consumption during transition = P run

13 MCF5223x Power Most peripherals can be independently powered down CPU modes: run, wait, doze, stop STOP instruction puts a running processor into one of the three power-saving modes Which one depends on contents of LPCR Interrupt can bring the CPU out of wait, doze, and stop No recovery time to bring CPU, SRAM, and flash out of any power saving mode PLL continues to run in all three modes

14 More MCF5223x Run mode MHz Wait mode 16 ma CPU and memory clocks are stopped Peripherals continue to operate normally Doze mode 16 ma Some peripherals are stopped, others keep running Stop mode ma All clocks stopped peripherals do not operate Only external interrupts can wake the processor

15 Meeting Power Goals What do you look for in a platform? How do you know if a system built on it can meet your goals?

16 Power Management Policies Static power management Does not depend on system activity E.g., user-initiated suspend, hibernate, etc. Dynamic power management Automatically take actions based on system activity E.g. shut down functional units, change CPU frequency

17 Dynamic Power Management Goal Appropriately trade off between performance and power consumption Basic premises Systems have non-uniform workloads It is possible to predict fluctuation in workload with some degree of accuracy E.g., the CPU was very busy for the past 1 ms, so it will probably remain busy for the next 1ms

18 Problem Formulations Need to figure out what the goal is For example: Minimize power under performance constraints E.g. must not skip frames while playing MP3 or DVD Maximize performance under power constraints E.g. battery must last for the entire plane flight

19 Baseline Policy: Greedy Immediately sleep or idle the processor when there s no work to do Works well when transition times are short compared to idle periods Works poorly when transition times are relatively long I.e., Run/Sleep transitions for the SA-1100 Need to do better than this

20 Break-Even Time T BE Minimum idle time needed to make up for the cost of entering a sleep mode Only beneficial to sleep the CPU if the idle time is longer than this Assume for now that No performance penalty is tolerated We know in advance the duration of idle periods

21 Break-Even Time P TR : Power consumption during transition P On : Power consumption when active Assume P TR P On T BE of an inactive state is the total time for entering and leaving the state T BE = T TR = T On,Off + T Off,On Example: T BE = 160 ms + 90 µs for SLEEP in SA-1100

22 How to Save Energy Given an idle period T idle > T BE Saved energy = (T idle - T TR )(P On - P OFF ) + T TR (P On P TR ) Total energy that can be saved depends on distribution and size of idle times

23 On real-world traces Power Saved

24 Dynamic Voltage Scaling Power is proportional to V 2 Reduce power supply voltage Save energy Lower voltage necessitates reduced clock frequency So we can trade off performance and lifetime on a set of batteries Why dynamic? Observation: Often, peak CPU requirement >> average CPU requirement So: Run fast when we have to, run slow otherwise

25 More DVS Changing voltage takes time To stabilize power supply and clock Both continuous and discrete DVS exist

26 DVS Examples SA-1100 takes two voltages 3.3 V and 1.5 V AMD K6-2 8 frequencies MHz 1.4 V and 2.0 V 0.4 ms for voltage change

27 DVS Capability Summary In the general case we have: Some set of voltage choices Some set of frequency choices For each frequency where is a minimum voltage that works Some set of power saving modes Some set of transition costs Between frequencies Between voltages Between running and power saving modes These are all low-level mechanisms A high-level policy is needed

28 Practical Power Saving In real life we don t know the duration of idle times in advance Solutions: Use a fixed timeout go to sleep after some amount of time Predict idle times based on past history Also very important: Disk, display, network interface, memory all use power Need to manage these as well E.g. shut down half the cache for apps with small working sets

29 Power and Energy Reducing energy usage while providing advanced features is a big problem for portable embedded systems Lots of implementation choices Leads to difficult system design problems Clever power management schemes are often Clever power management schemes are often annoying

30 Summary Computing needs are increasing rapidly Battery capacities are increasing slowly Clever power management schemes can help But too much cleverness is bad Long-term solutions Get help from the user HW accelerators for demanding application kernels Better power supplies

19: I/O Devices: Clocks, Power Management

19: I/O Devices: Clocks, Power Management 19: I/O Devices: Clocks, Power Management Mark Handley Clock Hardware: A Programmable Clock Pulses Counter, decremented on each pulse Crystal Oscillator On zero, generate interrupt and reload from holding

More information

CS 525M Mobile and Ubiquitous Computing Seminar. Michael Theriault

CS 525M Mobile and Ubiquitous Computing Seminar. Michael Theriault CS 525M Mobile and Ubiquitous Computing Seminar Michael Theriault Software Strategies for Portable Computer Energy Management Paper by Jacob R. Lorch and Alan J. Smith at the University of California In

More information

APPLICATION NOTE 655 Supervisor ICs Monitor Battery-Powered Equipment

APPLICATION NOTE 655 Supervisor ICs Monitor Battery-Powered Equipment Maxim > Design Support > Technical Documents > Application Notes > Automotive > APP 655 Maxim > Design Support > Technical Documents > Application Notes > Microprocessor Supervisor Circuits > APP 655 Keywords:

More information

Introducing. PolyZen Device Fundamentals

Introducing. PolyZen Device Fundamentals Introducing PolyZen Device Fundamentals PolyZen device is designed to help engineers conserve valuable board space and meet evolving safety and performance standards in the portable electronics, automotive,

More information

Power Management. José Costa. Software for Embedded Systems. Departamento de Engenharia Informática (DEI) Instituto Superior Técnico

Power Management. José Costa. Software for Embedded Systems. Departamento de Engenharia Informática (DEI) Instituto Superior Técnico Power Management José Costa Software for Embedded Systems Departamento de Engenharia Informática (DEI) Instituto Superior Técnico 2015-03-30 José Costa (DEI/IST) Power Management 1 Outline CPU Power Consumption

More information

Multi-threading technology and the challenges of meeting performance and power consumption demands for mobile applications

Multi-threading technology and the challenges of meeting performance and power consumption demands for mobile applications Multi-threading technology and the challenges of meeting performance and power consumption demands for mobile applications September 2013 Navigating between ever-higher performance targets and strict limits

More information

Let s look at each and begin with a view into the software

Let s look at each and begin with a view into the software Power Consumption Overview In this lesson we will Identify the different sources of power consumption in embedded systems. Look at ways to measure power consumption. Study several different methods for

More information

I/O Systems (4): Power Management. CSE 2431: Introduction to Operating Systems

I/O Systems (4): Power Management. CSE 2431: Introduction to Operating Systems I/O Systems (4): Power Management CSE 2431: Introduction to Operating Systems 1 Outline Overview Hardware Issues OS Issues Application Issues 2 Why Power Management? Desktop PCs Battery-powered Computers

More information

POWER MANAGEMENT AND ENERGY EFFICIENCY

POWER MANAGEMENT AND ENERGY EFFICIENCY POWER MANAGEMENT AND ENERGY EFFICIENCY * Adopted Power Management for Embedded Systems, Minsoo Ryu 2017 Operating Systems Design Euiseong Seo (euiseong@skku.edu) Need for Power Management Power consumption

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

Lecture 15. Power Management II Devices and Algorithms CM0256

Lecture 15. Power Management II Devices and Algorithms CM0256 Lecture 15 Power Management II Devices and Algorithms CM0256 Power Management Power Management is a way for the computer or other device to save power by turning off certain features of the computer such

More information

Crusoe Power Management:

Crusoe Power Management: Crusoe Power Management: Cutting x86 Operating Power Through LongRun Marc Fleischmann Director, Low Power Programs Transmeta Corporation Crusoe, LongRun and Code Morphing are trademarks of Transmeta Corp.

More information

Low Power System-on-Chip Design Chapters 3-4

Low Power System-on-Chip Design Chapters 3-4 1 Low Power System-on-Chip Design Chapters 3-4 Tomasz Patyk 2 Chapter 3: Multi-Voltage Design Challenges in Multi-Voltage Designs Voltage Scaling Interfaces Timing Issues in Multi-Voltage Designs Power

More information

Let s first take a look at power consumption and its relationship to voltage and frequency. The equation for power consumption of the MCU as it

Let s first take a look at power consumption and its relationship to voltage and frequency. The equation for power consumption of the MCU as it 1 The C8051F91x/0x product family is designed to dramatically increase battery lifetime which is the number one requirement for most battery powered applications. The C8051F91x has the industry s lowest

More information

COL862 - Low Power Computing

COL862 - Low Power Computing COL862 - Low Power Computing Power Measurements using performance counters and studying the low power computing techniques in IoT development board (PSoC 4 BLE Pioneer Kit) and Arduino Mega 2560 Submitted

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 20

ECE 571 Advanced Microprocessor-Based Design Lecture 20 ECE 571 Advanced Microprocessor-Based Design Lecture 20 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 4 April 2013 Project/HW Reminder Reminder: Homework #4 due on Friday. Progress

More information

Blackfin Optimizations for Performance and Power Consumption

Blackfin Optimizations for Performance and Power Consumption The World Leader in High Performance Signal Processing Solutions Blackfin Optimizations for Performance and Power Consumption Presented by: Merril Weiner Senior DSP Engineer About This Module This module

More information

Embedded Systems Architecture

Embedded Systems Architecture Embedded System Architecture Software and hardware minimizing energy consumption Conscious engineer protects the natur M. Eng. Mariusz Rudnicki 1/47 Software and hardware minimizing energy consumption

More information

Multiprocessor Systems. Chapter 8, 8.1

Multiprocessor Systems. Chapter 8, 8.1 Multiprocessor Systems Chapter 8, 8.1 1 Learning Outcomes An understanding of the structure and limits of multiprocessor hardware. An appreciation of approaches to operating system support for multiprocessor

More information

Mobile Processors. Jose R. Ortiz Ubarri

Mobile Processors. Jose R. Ortiz Ubarri Mobile Processors Jose R. Ortiz Ubarri Electrical and Computer Engineering Department University of Puerto Rico, Mayagüez Campus Mayagüez, Puerto Rico 00681 5000 Jose.Ortiz@hpcf.upr.edu Introduction While

More information

Embedded System Architecture

Embedded System Architecture Embedded System Architecture Software and hardware minimizing energy consumption Conscious engineer protects the natur Embedded Systems Architecture 1/44 Software and hardware minimizing energy consumption

More information

Multi-Core Microprocessor Chips: Motivation & Challenges

Multi-Core Microprocessor Chips: Motivation & Challenges Multi-Core Microprocessor Chips: Motivation & Challenges Dileep Bhandarkar, Ph. D. Architect at Large DEG Architecture & Planning Digital Enterprise Group Intel Corporation October 2005 Copyright 2005

More information

How to get realistic C-states latency and residency? Vincent Guittot

How to get realistic C-states latency and residency? Vincent Guittot How to get realistic C-states latency and residency? Vincent Guittot Agenda Overview Exit latency Enter latency Residency Conclusion Overview Overview PMWG uses hikey960 for testing our dev on b/l system

More information

Power Management in the Sharp Zaurus

Power Management in the Sharp Zaurus Power Management in the Sharp Zaurus Miquel Pericàs Gleim 26th January 2004 1 Introduction Power Management has become an integral part of any portable system or handheld. Battery technology has not evolved

More information

Real-Time Dynamic Voltage Hopping on MPSoCs

Real-Time Dynamic Voltage Hopping on MPSoCs Real-Time Dynamic Voltage Hopping on MPSoCs Tohru Ishihara System LSI Research Center, Kyushu University 2009/08/05 The 9 th International Forum on MPSoC and Multicore 1 Background Low Power / Low Energy

More information

Designing with Siliconix PC Card (PCMCIA) Power Interface Switches

Designing with Siliconix PC Card (PCMCIA) Power Interface Switches Designing with Siliconix PC Card (PCMCIA) Power Interface Switches AN716 Innovation in portable computer design is driven today by the need for smaller, lighter, and more energy-efficient products. This

More information

Views of Memory. Real machines have limited amounts of memory. Programmer doesn t want to be bothered. 640KB? A few GB? (This laptop = 2GB)

Views of Memory. Real machines have limited amounts of memory. Programmer doesn t want to be bothered. 640KB? A few GB? (This laptop = 2GB) CS6290 Memory Views of Memory Real machines have limited amounts of memory 640KB? A few GB? (This laptop = 2GB) Programmer doesn t want to be bothered Do you think, oh, this computer only has 128MB so

More information

Power Management as I knew it. Jim Kardach

Power Management as I knew it. Jim Kardach Power Management as I knew it Jim Kardach 1 Agenda Philosophy of power management PM Timeline Era of OS Specific PM (OSSPM) Era of OS independent PM (OSIPM) Era of OS Assisted PM (APM) Era of OS & hardware

More information

Real-Time Dynamic Energy Management on MPSoCs

Real-Time Dynamic Energy Management on MPSoCs Real-Time Dynamic Energy Management on MPSoCs Tohru Ishihara Graduate School of Informatics, Kyoto University 2013/03/27 University of Bristol on Energy-Aware COmputing (EACO) Workshop 1 Background Low

More information

IT Chapter 6: Laptops & Portable Devices Online Study Questions - Key

IT Chapter 6: Laptops & Portable Devices Online Study Questions - Key IT Chapter 6: Laptops & Portable Devices Online Study Questions - Key Test Questions are BLUE CUR Question Answer 6.0 Introduction 1. What established the form factor for all modern s? (graphic) MAC Powerbook

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 21

ECE 571 Advanced Microprocessor-Based Design Lecture 21 ECE 571 Advanced Microprocessor-Based Design Lecture 21 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 9 April 2013 Project/HW Reminder Homework #4 comments Good job finding references,

More information

REAL TIME OPERATING SYSTEMS. Lesson-15:

REAL TIME OPERATING SYSTEMS. Lesson-15: REAL TIME OPERATING SYSTEMS Lesson-15: Power Optimization 1 1. Memory Optimization 2 Power Optimization Saving power and energy requirement for a given set of codes, while finishing instructions in the

More information

Power Management for Embedded Systems

Power Management for Embedded Systems Power Management for Embedded Systems Minsoo Ryu Hanyang University Why Power Management? Battery-operated devices Smartphones, digital cameras, and laptops use batteries Power savings and battery run

More information

AN4749 Application note

AN4749 Application note Application note Managing low-power consumption on STM32F7 Series microcontrollers Introduction The STM32F7 Series microcontrollers embed a smart architecture taking advantage of the ST s ART- accelerator

More information

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory Memory Hierarchy Contents Memory System Overview Cache Memory Internal Memory External Memory Virtual Memory Memory Hierarchy Registers In CPU Internal or Main memory Cache RAM External memory Backing

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 24

ECE 571 Advanced Microprocessor-Based Design Lecture 24 ECE 571 Advanced Microprocessor-Based Design Lecture 24 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 25 April 2013 Project/HW Reminder Project Presentations. 15-20 minutes.

More information

ARM Cortex core microcontrollers 12 th Energy efficient operation

ARM Cortex core microcontrollers 12 th Energy efficient operation ARM Cortex core microcontrollers 12 th Energy efficient operation Balázs Scherer Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2017 The importance

More information

Operating Systems Design 25. Power Management. Paul Krzyzanowski

Operating Systems Design 25. Power Management. Paul Krzyzanowski Operating Systems Design 25. Power Management Paul Krzyzanowski pxk@cs.rutgers.edu 1 Power Management Goal: Improve the battery life of mobile devices 2 CPU Voltage & Frequency Scaling Dynamic CPU Frequency

More information

Lecture 12. Motivation. Designing for Low Power: Approaches. Architectures for Low Power: Transmeta s Crusoe Processor

Lecture 12. Motivation. Designing for Low Power: Approaches. Architectures for Low Power: Transmeta s Crusoe Processor Lecture 12 Architectures for Low Power: Transmeta s Crusoe Processor Motivation Exponential performance increase at a low cost However, for some application areas low power consumption is more important

More information

Low Power System Design

Low Power System Design Low Power System Design Module 18-1 (1.5 hours): Case study: System-Level Power Estimation and Reduction Jan. 2007 Naehyuck Chang EECS/CSE Seoul National University Contents In-house tools for low-power

More information

Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014

Novel Nonvolatile Memory Hierarchies to Realize Normally-Off Mobile Processors ASP-DAC 2014 Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014 Shinobu Fujita, Kumiko Nomura, Hiroki Noguchi, Susumu Takeda, Keiko Abe Toshiba Corporation, R&D Center Advanced

More information

TINY System Ultra-Low Power Sensor Hub for Always-on Context Features

TINY System Ultra-Low Power Sensor Hub for Always-on Context Features TINY System Ultra-Low Power Sensor Hub for Always-on Context Features MediaTek White Paper June 2015 MediaTek s sensor hub solution, powered by the TINY Stem low power architecture, supports always-on

More information

OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions

OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions 04/15/14 1 Introduction: Low Power Technology Process Hardware Architecture Software Multi VTH Low-power circuits Parallelism

More information

Introduction to Energy-Efficient Software 2 nd life talk

Introduction to Energy-Efficient Software 2 nd life talk Introduction to Energy-Efficient Software 2 nd life talk Intel Software and Solutions Group Bob Steigerwald Nov 8, 2007 Taylor Kidd Nov 15, 2007 Agenda Demand for Mobile Computing Devices What is Energy-Efficient

More information

IT ESSENTIALS V. 4.1 Module 6 Fundamental Laptops and Portable Devices

IT ESSENTIALS V. 4.1 Module 6 Fundamental Laptops and Portable Devices IT ESSENTIALS V. 4.1 Module 6 Fundamental Laptops and Portable Devices 6.0 Introduction 1. What was the original laptop used by the Grid Compass 1101 astronauts in space missions in the early 80s? 2. What

More information

ARDUINO MEGA INTRODUCTION

ARDUINO MEGA INTRODUCTION ARDUINO MEGA INTRODUCTION The Arduino MEGA 2560 is designed for projects that require more I/O llines, more sketch memory and more RAM. With 54 digital I/O pins, 16 analog inputs so it is suitable for

More information

Reminder. Course project team forming deadline. Course project ideas. Friday 9/8 11:59pm You will be randomly assigned to a team after the deadline

Reminder. Course project team forming deadline. Course project ideas. Friday 9/8 11:59pm You will be randomly assigned to a team after the deadline Reminder Course project team forming deadline Friday 9/8 11:59pm You will be randomly assigned to a team after the deadline Course project ideas If you have difficulty in finding team mates, send your

More information

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI CMPE 655- MULTIPLE PROCESSOR SYSTEMS OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI What is MULTI PROCESSING?? Multiprocessing is the coordinated processing

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

063[[[0LFURFRQWUROOHUV /RZ3RZHU0RGHV &3($GYDQFHG0LFURFRPSXWHU7HFKQLTXHV 'U(PLO-RYDQRY /RZ3RZHU. Power: A First-Class Architectural Design Constraint

063[[[0LFURFRQWUROOHUV /RZ3RZHU0RGHV &3($GYDQFHG0LFURFRPSXWHU7HFKQLTXHV 'U(PLO-RYDQRY /RZ3RZHU. Power: A First-Class Architectural Design Constraint 063[[[0LFURFRQWUROOHUV /RZ3RZHU0RGHV &3($GYDQFHG0LFURFRPSXWHU7HFKQLTXHV 'U(PLO-RYDQRY MSP430 low power concepts 1 /RZ3RZHU Power: A First-Class Architectural Design Constraint Trevor Mudge, IEEE Computer,

More information

Embedded Systems. Octav Chipara. Thursday, September 13, 12

Embedded Systems. Octav Chipara. Thursday, September 13, 12 Embedded Systems Octav Chipara Caught between two worlds Embedded systems PC world 2 What are embedded systems? Any device that includes a computer (but you don t think of it as a computer) iphone digital

More information

Ultra Low Power Microcontroller - Design Criteria - June 2017

Ultra Low Power Microcontroller - Design Criteria - June 2017 Ultra Low Power Microcontroller - Design Criteria - June 2017 Agenda 1. Low power technology features 2. Intelligent Clock Generator 3. Short wake-up times 4. Intelligent memory access 5. Use case scenario

More information

Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be

Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be covered in this presentation. 1 Please note that this

More information

Some Joules Are More Precious Than Others: Managing Renewable Energy in the Datacenter

Some Joules Are More Precious Than Others: Managing Renewable Energy in the Datacenter Some Joules Are More Precious Than Others: Managing Renewable Energy in the Datacenter Christopher Stewart The Ohio State University cstewart@cse.ohio-state.edu Kai Shen University of Rochester kshen@cs.rochester.edu

More information

Charles Lefurgy IBM Research, Austin

Charles Lefurgy IBM Research, Austin Super-Dense Servers: An Energy-efficient Approach to Large-scale Server Clusters Outline Problem Internet data centers use a lot of energy Opportunity Load-varying applications Servers can be power-managed

More information

AVR Microcontrollers Architecture

AVR Microcontrollers Architecture ก ก There are two fundamental architectures to access memory 1. Von Neumann Architecture 2. Harvard Architecture 2 1 Harvard Architecture The term originated from the Harvard Mark 1 relay-based computer,

More information

ECE 1160/2160 Embedded Systems Design. Midterm Review. Wei Gao. ECE 1160/2160 Embedded Systems Design

ECE 1160/2160 Embedded Systems Design. Midterm Review. Wei Gao. ECE 1160/2160 Embedded Systems Design ECE 1160/2160 Embedded Systems Design Midterm Review Wei Gao ECE 1160/2160 Embedded Systems Design 1 Midterm Exam When: next Monday (10/16) 4:30-5:45pm Where: Benedum G26 15% of your final grade What about:

More information

DS1238A MicroManager PIN ASSIGNMENT PIN DESCRIPTION V BAT V CCO V CC

DS1238A MicroManager PIN ASSIGNMENT PIN DESCRIPTION V BAT V CCO V CC MicroManager www.dalsemi.com FEATURES Holds microprocessor in check during power transients Halts and restarts an out-of-control microprocessor Warns microprocessor of an impending power failure Converts

More information

Mohsen Imani. University of California San Diego. System Energy Efficiency Lab seelab.ucsd.edu

Mohsen Imani. University of California San Diego. System Energy Efficiency Lab seelab.ucsd.edu Mohsen Imani University of California San Diego Winter 2016 Technology Trend for IoT http://www.flashmemorysummit.com/english/collaterals/proceedi ngs/2014/20140807_304c_hill.pdf 2 Motivation IoT significantly

More information

Tips and Tricks: Designing low power Native and WebApps. Harita Chilukuri and Abhishek Dhanotia

Tips and Tricks: Designing low power Native and WebApps. Harita Chilukuri and Abhishek Dhanotia Tips and Tricks: Designing low power Native and WebApps Harita Chilukuri and Abhishek Dhanotia Acknowledgements William Baughman for his help with the browser analysis Ross Burton & Thomas Wood for information

More information

Key Points. Rotational delay vs seek delay Disks are slow. Techniques for making disks faster. Flash and SSDs

Key Points. Rotational delay vs seek delay Disks are slow. Techniques for making disks faster. Flash and SSDs IO 1 Today IO 2 Key Points CPU interface and interaction with IO IO devices The basic structure of the IO system (north bridge, south bridge, etc.) The key advantages of high speed serial lines. The benefits

More information

Gigascale Integration Design Challenges & Opportunities. Shekhar Borkar Circuit Research, Intel Labs October 24, 2004

Gigascale Integration Design Challenges & Opportunities. Shekhar Borkar Circuit Research, Intel Labs October 24, 2004 Gigascale Integration Design Challenges & Opportunities Shekhar Borkar Circuit Research, Intel Labs October 24, 2004 Outline CMOS technology challenges Technology, circuit and μarchitecture solutions Integration

More information

SH-Mobile3: Application Processor for 3G Cellular Phones on a Low-Power SoC Design Platform

SH-Mobile3: Application Processor for 3G Cellular Phones on a Low-Power SoC Design Platform SH-Mobile3: Application Processor for 3G Cellular Phones on a Low-Power SoC Design Platform H. Mizuno, N. Irie, K. Uchiyama, Y. Yanagisawa 1, S. Yoshioka 1, I. Kawasaki 1, and T. Hattori 2 Hitachi Ltd.,

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

Age nda. Intel PXA27x Processor Family: An Applications Processor for Phone and PDA applications

Age nda. Intel PXA27x Processor Family: An Applications Processor for Phone and PDA applications Intel PXA27x Processor Family: An Applications Processor for Phone and PDA applications N.C. Paver PhD Architect Intel Corporation Hot Chips 16 August 2004 Age nda Overview of the Intel PXA27X processor

More information

Freescale s Next Generation 8-bit LCD Solutions

Freescale s Next Generation 8-bit LCD Solutions Freescale s Next Generation 8-bit LCD Solutions When most consumers think of LCD, they probably envision a flat panel television or computer monitor. However, there are millions more LCDs out there that

More information

Power Measurement Using Performance Counters

Power Measurement Using Performance Counters Power Measurement Using Performance Counters October 2016 1 Introduction CPU s are based on complementary metal oxide semiconductor technology (CMOS). CMOS technology theoretically only dissipates power

More information

Multi-core microcontroller design with Cortex-M processors and CoreSight SoC

Multi-core microcontroller design with Cortex-M processors and CoreSight SoC Multi-core microcontroller design with Cortex-M processors and CoreSight SoC Joseph Yiu, ARM Ian Johnson, ARM January 2013 Abstract: While the majority of Cortex -M processor-based microcontrollers are

More information

Engineer-to-Engineer Note

Engineer-to-Engineer Note Engineer-to-Engineer Note EE-388 Technical notes on using Analog Devices products and development tools Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or e-mail

More information

CS 140 Introduction to Computing & Computer Technology. Computing Components

CS 140 Introduction to Computing & Computer Technology. Computing Components CS 140 Introduction to Computing & Computer Technology Computing Components We ve looked at the elementary building blocks of computers transistors, gates, and circuits OK, but how do computers really

More information

Using the bq3285/7e in a Green or Portable Environment

Using the bq3285/7e in a Green or Portable Environment in a Green or Portable Environment Introduction The bq3285/7e Real-Time Clock is a PC/AT-compatible real-time clock that incorporates three enhanced features to facilitate power management in Green desktop

More information

Low-Power Technology for Image-Processing LSIs

Low-Power Technology for Image-Processing LSIs Low- Technology for Image-Processing LSIs Yoshimi Asada The conventional LSI design assumed power would be supplied uniformly to all parts of an LSI. For a design with multiple supply voltages and a power

More information

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy.

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 4, 7 Memory Overview, Memory Core Cells Today! Memory " Classification " ROM Memories " RAM Memory " Architecture " Memory core " SRAM

More information

Micro transductors 08

Micro transductors 08 Micro transductors 08 Low Power VLSI Design 2 Dr.-Ing. Frank Sill Department of Electrical Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-010, Belo Horizonte (MG),

More information

Section 10. Power-Saving Features

Section 10. Power-Saving Features Section 10. Power-Saving Features HIGHLIGHTS This section of the manual contains the following major topics: 10.1 Introduction... 10-2 10.2 Microcontroller Clock Manipulation... 10-2 10.3 Instruction-Based

More information

Introduction to the Personal Computer

Introduction to the Personal Computer Introduction to the Personal Computer 2.1 Describe a computer system A computer system consists of hardware and software components. Hardware is the physical equipment such as the case, storage drives,

More information

Information Processing. Peter Marwedel Informatik 12 Univ. Dortmund Germany

Information Processing. Peter Marwedel Informatik 12 Univ. Dortmund Germany Information Processing Peter Marwedel Informatik 12 Univ. Dortmund Germany Embedded System Hardware Embedded system hardware is frequently used in a loop ( hardware in a loop ): actuators - 2 - Processing

More information

Remote Keyless Entry In a Body Controller Unit Application

Remote Keyless Entry In a Body Controller Unit Application 38 Petr Cholasta Remote Keyless Entry In a Body Controller Unit Application Many of us know this situation. When we leave the car, with a single click of a remote control we lock and secure it until we

More information

PACKAGE AND PLATFORM VIEW OF INTEL S FULLY INTEGRATED VOLTAGE REGULATORS (FIVR) Edward (Ted) Burton

PACKAGE AND PLATFORM VIEW OF INTEL S FULLY INTEGRATED VOLTAGE REGULATORS (FIVR) Edward (Ted) Burton PACKAGE AND PLATFORM VIEW OF INTEL S FULLY INTEGRATED VOLTAGE REGULATORS (FIVR) Edward (Ted) Burton Ivy Bridge Platform Haswell Platform Core VR 0V-1.2V Graphics VR 0V-1.2V PLL VR 1.8V I/O VR 1.0V System

More information

Characteristics of Memory Location wrt Motherboard. CSCI 4717 Computer Architecture. Characteristics of Memory Capacity Addressable Units

Characteristics of Memory Location wrt Motherboard. CSCI 4717 Computer Architecture. Characteristics of Memory Capacity Addressable Units CSCI 4717/5717 Computer Architecture Topic: Cache Memory Reading: Stallings, Chapter 4 Characteristics of Memory Location wrt Motherboard Inside CPU temporary memory or registers Motherboard main memory

More information

Maximize energy efficiency in a normally-off system using NVRAM. Stéphane Gros Yeter Akgul

Maximize energy efficiency in a normally-off system using NVRAM. Stéphane Gros Yeter Akgul Maximize energy efficiency in a normally-off system using NVRAM Stéphane Gros Yeter Akgul Summary THE COMPANY THE CONTEXT THE TECHNOLOGY THE SYSTEM THE CO-DEVELOPMENT CONCLUSION May 31, 2017 2 Summary

More information

M4-ATX-HV 6-34V Intelligent ATX Power Supply

M4-ATX-HV 6-34V Intelligent ATX Power Supply M4-ATX-HV 6-34V Intelligent ATX Power Supply Installation Guide Version 1.0e P/N M4-ATX-HV-01 Before you start Please take a moment and read this manual before you install the M4-ATX-HV in your vehicle.

More information

Benchmarking of Dynamic Power Management Solutions. Frank Dols CELF Embedded Linux Conference Santa Clara, California (USA) April 19, 2007

Benchmarking of Dynamic Power Management Solutions. Frank Dols CELF Embedded Linux Conference Santa Clara, California (USA) April 19, 2007 Benchmarking of Dynamic Power Management Solutions Frank Dols CELF Embedded Linux Conference Santa Clara, California (USA) April 19, 2007 Why Benchmarking?! From Here to There, 2000whatever Vendor NXP

More information

416 Distributed Systems. Distributed File Systems 4 Jan 23, 2017

416 Distributed Systems. Distributed File Systems 4 Jan 23, 2017 416 Distributed Systems Distributed File Systems 4 Jan 23, 2017 1 Today's Lecture Wrap up NFS/AFS This lecture: other types of DFS Coda disconnected operation 2 Key Lessons Distributed filesystems almost

More information

Dynamic Power Management (DPM)

Dynamic Power Management (DPM) Dynamic Power Management (DPM) 1 What is DPM? A design methodology aiming at controlling performance and power levels of digital circuits and systems with the goal of extending the autonomous operation

More information

System Architecture Directions for Networked Sensors[1]

System Architecture Directions for Networked Sensors[1] System Architecture Directions for Networked Sensors[1] Secure Sensor Networks Seminar presentation Eric Anderson System Architecture Directions for Networked Sensors[1] p. 1 Outline Sensor Network Characteristics

More information

Performance of Variant Memory Configurations for Cray XT Systems

Performance of Variant Memory Configurations for Cray XT Systems Performance of Variant Memory Configurations for Cray XT Systems presented by Wayne Joubert Motivation Design trends are leading to non-power of 2 core counts for multicore processors, due to layout constraints

More information

Energy Management Issue in Ad Hoc Networks

Energy Management Issue in Ad Hoc Networks Wireless Ad Hoc and Sensor Networks - Energy Management Outline Energy Management Issue in ad hoc networks WS 2010/2011 Main Reasons for Energy Management in ad hoc networks Classification of Energy Management

More information

! Memory Overview. ! ROM Memories. ! RAM Memory " SRAM " DRAM. ! This is done because we can build. " large, slow memories OR

! Memory Overview. ! ROM Memories. ! RAM Memory  SRAM  DRAM. ! This is done because we can build.  large, slow memories OR ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 2: April 5, 26 Memory Overview, Memory Core Cells Lecture Outline! Memory Overview! ROM Memories! RAM Memory " SRAM " DRAM 2 Memory Overview

More information

Design and Implementation of High Performance DDR3 SDRAM controller

Design and Implementation of High Performance DDR3 SDRAM controller Design and Implementation of High Performance DDR3 SDRAM controller Mrs. Komala M 1 Suvarna D 2 Dr K. R. Nataraj 3 Research Scholar PG Student(M.Tech) HOD, Dept. of ECE Jain University, Bangalore SJBIT,Bangalore

More information

NETWORKS on CHIP A NEW PARADIGM for SYSTEMS on CHIPS DESIGN

NETWORKS on CHIP A NEW PARADIGM for SYSTEMS on CHIPS DESIGN NETWORKS on CHIP A NEW PARADIGM for SYSTEMS on CHIPS DESIGN Giovanni De Micheli Luca Benini CSL - Stanford University DEIS - Bologna University Electronic systems Systems on chip are everywhere Technology

More information

Integrating Concurrency Control and Energy Management in Device Drivers. Chenyang Lu

Integrating Concurrency Control and Energy Management in Device Drivers. Chenyang Lu Integrating Concurrency Control and Energy Management in Device Drivers Chenyang Lu Overview Ø Concurrency Control: q Concurrency of I/O operations alone, not of threads in general q Synchronous vs. Asynchronous

More information

Energy Management Issue in Ad Hoc Networks

Energy Management Issue in Ad Hoc Networks Wireless Ad Hoc and Sensor Networks (Energy Management) Outline Energy Management Issue in ad hoc networks WS 2009/2010 Main Reasons for Energy Management in ad hoc networks Classification of Energy Management

More information

A 167-processor Computational Array for Highly-Efficient DSP and Embedded Application Processing

A 167-processor Computational Array for Highly-Efficient DSP and Embedded Application Processing A 167-processor Computational Array for Highly-Efficient DSP and Embedded Application Processing Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri Landge, Michael Meeuwsen, Christine

More information

SmartSaver: Turning Flash Drive into a Disk Energy Saver for Mobile Computers

SmartSaver: Turning Flash Drive into a Disk Energy Saver for Mobile Computers SmartSaver: Turning Flash Drive into a Disk Energy Saver for Mobile Computers Feng Chen 1 Song Jiang 2 Xiaodong Zhang 1 The Ohio State University, USA Wayne State University, USA Disks Cost High Energy

More information

Power and Energy Management. Advanced Operating Systems, Semester 2, 2011, UNSW Etienne Le Sueur

Power and Energy Management. Advanced Operating Systems, Semester 2, 2011, UNSW Etienne Le Sueur Power and Energy Management Advanced Operating Systems, Semester 2, 2011, UNSW Etienne Le Sueur etienne.lesueur@nicta.com.au Outline Introduction, Hardware mechanisms, Some interesting research, Linux,

More information

Embedded Systems: Architecture

Embedded Systems: Architecture Embedded Systems: Architecture Jinkyu Jeong (Jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ICE3028: Embedded Systems Design, Fall 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Power and Energy Management

Power and Energy Management Power and Energy Management Advanced Operating Systems, Semester 2, 2011, UNSW Etienne Le Sueur etienne.lesueur@nicta.com.au Outline Introduction, Hardware mechanisms, Some interesting research, Linux,

More information

ASI. Switched-Capacitor Boost Converter 3.3V-5.0V 100mA GENERAL DESCRIPTION FEATURES APPLICATIONS

ASI. Switched-Capacitor Boost Converter 3.3V-5.0V 100mA GENERAL DESCRIPTION FEATURES APPLICATIONS ASI Technical Data Sheet Switched-Capacitor Boost Converter 3.3V-5.0V 100mA FEATURES Switched-Capacitor Step-Up Operation Input Range: 2.7V to 5.0V Output Voltage: 3.3V-5.0V (programmable) Output Current:

More information

ARM Processors for Embedded Applications

ARM Processors for Embedded Applications ARM Processors for Embedded Applications Roadmap for ARM Processors ARM Architecture Basics ARM Families AMBA Architecture 1 Current ARM Core Families ARM7: Hard cores and Soft cores Cache with MPU or

More information