Homework 5: Theory of Operation and Hardware Design Narrative

Size: px
Start display at page:

Download "Homework 5: Theory of Operation and Hardware Design Narrative"

Transcription

1 ECE 477 Digital Systems Senior Design Project Rev 9/12 Homework 5: Theory of Operation and Hardware Design Narrative Team Code Name: Hackers of Catron Group No. 03 Team Member Completing This Homework: Joshua Hunsberger Address of Team Member: purdue.edu NOTE: This is the second in a series of four design component homework assignments, each of which is to be completed by one team member. The body of the report should be 3-5 pages, not including this cover page, references, attachments or appendices. Evaluation: SEC DESCRIPTION MAX SCORE 1.0 Introduction Theory of Operation Hardware Design Narrative Summary List of References 10 App A System Block Diagram 10 App B Schematic 30 TOTAL 100 Comments:

2 1.0 Introduction Hackers of Catron is an electronically enhanced version of the popular Settlers of Catan board game. Game setup will be automated, placement of physical pieces on the board will be tracked, and resource trading will be handled through handheld devices. These enhancements to the game will make the game easier to set up and play, resulting in a much improved game play experience. The display of board setup requires that each hexagon (hex) be recognizable as one of the five resource types or the desert and must be associated with a rarity that corresponds to a possible sum of two thrown dice. In order to accomplish this, the design utilizes a combination of RGB LEDs to designate resource types and two-digit seven-segment displays to designate the rarities. In order to sense the position of all the pieces the design uses a grid of Hall Effect sensors which indicate when a magnet has been placed above them. 2.0 Theory of Operation The Hackers of Catron circuit comprises three major functional subsections: The Hall Effect sensor array, the RGB LED array, and the seven-segment display array. In addition there are several minor functional subsections including the power supply, the Raspberry Pi interface, and an additional Hall Effect sensor which did not fit in the array. Across all subsections, all ICs are powered by the 3.3V supply rail, chosen primarily to eliminate the need for voltage level translation since the Hall Effect sensors and microcontroller (MCU) both operate at 3.3V [1][2]. The operating mode and conditions for each functional block are summarized at the end of this section. The purpose of the Hall Effect sensor array is to sense the presence and position of pieces placed on the playing surface. The presence of a piece is indicated by the output of a Hall Effect sensor. The position of the piece can be determined by correlating each sensor to a physical position (implemented in MCU code). To save pins, sensors are grouped into 18 columns of 8 rows each. The MCU can access any row of 18 sensors by outputting the correct address on 3 select pins of discrete multiplexers into which each column is fed. The RGB LED array is designed to represent a hex s resource type with unique, distinguishable colors. The array will also be used as feedback during game play to indicate improper piece placement or piece placement confirmation as needed. In order to control the -1-

3 color and brightness of the RGBs, the MCU sends commands via a two-wire interface to 7 ninechannel LED driver chips. The driver chips can communicate at up to 5MHz [3], so there should be no issues with updating the state of the RGBs quickly. The driver chips also have their own data line buffers, echoing the data and clock lines on a pair of output pins, so the chips will be daisy-chained together. The LED control outputs are open-drain, which allows the LEDs themselves to be powered by the 5V rail. This is done because the green and blue LEDs have typical forward voltages of 3.2V and up to 4.0V [4], making it unfeasible to drive them with the 3.3V rail. Furthermore, each channel will control two LED s in parallel in order to increase light coverage on each hex. The seven-segment display array is used to represent the relative rarity of each hex. Since the possible value for each hex can go up to 12, two digits are required for each hex, making a total of 38 digits. To control all these seven-segment displays, the MCU uses SPI to shift control data to 5 eight-digit control chips. Each chip requires a load-enable or slave-select line to be driven low in order to accept control data, but will also shift out control data as long as the loadenable line is not driven high again[5]. This allows the MCU to shift data into all 5 chips at once while only using one load-enable line. The chips are connected to both the anode and cathodes of each digit, and only a single resistor is required to set the current for each segment. In order for players of Hackers of Catron to user their mobile devices to play the game, a Raspberry Pi acts as a server and a wireless access point. To retrieve the status of the game and communicate the state of the economy back to the MCU, several data lines must be used. I 2 C is supported by both the MCU [1] and the Raspberry Pi, so only two lines are required to connect the two devices. However, because the Raspberry Pi already has a 26 pin header, for simplicity the PCB will also feature a 26 pin header, to which any pins not assigned tasks will be routed. The Raspberry Pi is powered by 5V unregulated and uses a USB interface to get this power. The board requires two voltage rails. The RGB LEDs and the Raspberry Pi are powered by 5V unregulated, while everything else is powered by 3.3V regulated power. Therefore, a simple 5V AC adaptor is used to draw power from a typical AC outlet. This is then regulated down to 3.3V to power the more sensitive ICs on the board. In order to protect the rest of the board during construction and testing, several jumpers are used to isolate the power supply and the regulator from everything else. -2-

4 Table 1 Operating Mode Summary Subsection Component Function Operation Sensor Hall Effect sensor Detect piece 3.3V, active low, open drain,.47uf bypass cap, 15kΩ Pull up resistor Multiplexer Organize sensors, reduce pin count 3.3V, complemented output, 3 SEL lines, 8:1 RGB RGB LED Distinguish hex resources 5V, 15-20mA, parallel, common anode 9CH LED driver Control RGB color 3.3V, open drain, Input: 1 data, 1 clock line Output: 1 data, 1 clock 7Segment 2digit 7seg display Display resource rarity 3.3V, 20mA/segment 8digit driver Control 7seg display 3.3V, 160mA/digit, SPI Input: 1 data line, 1 loadenable, 1 clock Output: 1 data line 3.0 Hardware Design Narrative To communicate and coordinate all the major subsections of the circuit, the MCU utilizes the SPI, I 2 C, and general purpose subsystems. Port selection was done on a restrictive-first basis, so that subsystems with the least flexibility in pin selection were assigned pins first. I 2 C is used to communicate with the Raspberry Pi. The I 2 C subsystem is a part of the MCU s Two Wire Interface (TWI) subsystem. Since the TWI interface only has one choice for its pin, it was given a pin assignment first. SPI, used to communicate with the seven-segment display array, was the next most restrictive subsystem. This pin assignment was made so that all four pins used are physically close to each other (see Appendix B), which should simplify routing. To drive the select line of all 18 multiplexers present in the sensor array subsection, three of the MCU s four high-drive pins were chosen as address lines. Although the 1mA driving capability of any GPIO pin should be sufficient, having the capability to drive 4mA on the high- -3-

5 drive pins may prove beneficial in the future. The 18 return lines from the multiplexers along with the output of the solitary Hall Effect sensor are assigned to the remaining pins on Port A. Finally, the two pins used to communicate with the nine-channel LED drivers were assigned to two pins next to each other on Port B. There were several pins unavailable for assignment, including PortA pins 0-2 for JTAG programming requirements. Any pin left unassigned will be routed to a header pin for debug or communication with the Raspberry Pi. Furthermore, all communication signals are routed to the header pin for debugging during fabrication. The MCU can be powered with single or dual power supplies. All IO pins and the analog subsection are powered by 3.3V, while the core and PLL are powered by 1.8V. We decided to utilize the MCU s internal voltage regulator to supply the 1.8V from the 3.3V rail. For this to work 3.3V must be attached to the VDDIN pin and the VDDOUT pin must be routed to the VDDCORE and VDDPLL pins. In order to avoid supply rail ripples, bypass capacitors are required on both the 3.3V and 1.8V lines. Because our design does not utilize any analog functions, the ADVREF pin is tied to ground in order to save power, as recommended by the MCU s datasheet. Table 2 Port Assignment Ports Subsystem Function PA09, 10 TWI Raspberry Pi communication PA , 28 SPI Control 7seg display PA GPIO Select address lines for sensor array PA , , , , 30, 31 GPIO Sensor array return lines PB10, 11 GPIO Control RGB display RESET_N, VDDIO, TCK, PA On-Chip Debug Programming via JTAG interface 4.0 Summary The Hackers of Catron circuit must accomplish 4 basic tasks: sense pieces, display a playing board, facilitate trading, and provide enough power to accomplish the first three tasks. The first two tasks are accomplished via arrays of sensors and LEDs controlled by a string of drivers. The third task requires a communication protocol between the Raspberry Pi and the -4-

6 MCU which is fulfilled with I 2 C. All power will be provided by a 5V unregulated supply regulated down to 3.3V for the CMOS devices. The MCU interface is primarily concerned with serial communication to other devices. The only exception is the sensor array, which uses 3 address lines to select the row of 18 sensors the MCU will read. -5-

7 5.0 List of References [1] Atmel, 32-bit ATMEL AVR Microcontroller, [Online]. Available: [Accessed ]. [2] Toshiba, TCS20DLR, [Online]. Available: DLR. [Accessed ] [3] Omron, "LED Control IC W2RF004RM," [Online]. Available: A5D0077B1D2/$file/W2RV004RM_0812.pdf. [Accessed ]. [4] AMS, "AS1116 LED Driver IC," [Online]. Available: [Accessed ]. [5] Cree, Cree PLCC4 3 in 1 SMD LED CLV1L-FKB, [Online]. Available: /Data%20Sheets/CLV1L%20FKB% pdf. [Accessed ] -6-

8 Appendix A: System Block Diagram -7-

9 Microcontroller hub and communications Appendix B: Schematic -8-

10 Hall Effect Sensor Array -9-

11 -10-

12 -11-

13 -12-

14 -13-

15 RGB Display Array -14-

16 -15-

17 -16-

18 -17-

19 7Segment Display Array -18-

20 -19-

21 -20-

22 Power -21-

Homework 6: Printed Circuit Board Layout Design Narrative

Homework 6: Printed Circuit Board Layout Design Narrative Homework 6: Printed Circuit Board Layout Design Narrative Team Code Name: Treasure Chess Group No. 2 Team Member Completing This Homework: Sidharth Malik E-mail Address of Team Member: malik @ purdue.edu

More information

Prototyping Module Datasheet

Prototyping Module Datasheet Prototyping Module Datasheet Part Numbers: MPROTO100 rev 002 Zenseio LLC Updated: September 2016 Table of Contents Table of Contents Functional description PROTOTYPING MODULE OVERVIEW FEATURES BLOCK DIAGRAM

More information

Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, October 3, at NOON

Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, October 3, at NOON Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, October 3, at NOON Team Code Name: ECE Grande Group No. 3 Team Member Completing This Homework: Ashley Callaway e-mail Address

More information

Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, February 15, at NOON

Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, February 15, at NOON Homework 5: Theory of Operation and Hardware Design Narrative Due: Friday, February 15, at NOON Team Code Name: _Agatha Group No. _4 Team Member Completing This Homework: _Eric Yee e-mail Address of Team

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Digilent Cerebot Board Reference Manual Revision: 11/17/2005 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Board is a useful tool for

More information

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front Arduino Uno Arduino Uno R3 Front Arduino Uno R2 Front Arduino Uno SMD Arduino Uno R3 Back Arduino Uno Front Arduino Uno Back Overview The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet).

More information

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9 Cerebot II Board Reference Manual Revision: September 14, 2007 Note: This document applies to REV B of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview

More information

B1DIL. AVR32 USB Module. Rev. 1.0 Documentation Rev. 4. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch

B1DIL. AVR32 USB Module. Rev. 1.0 Documentation Rev. 4. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch AVR32 USB Module Rev. 1.0 Documentation Rev. 4 Reusch Elektronik 2011 Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch www.reusch-elektronik.de http://products.reworld.eu/b1dil.htm File: _Manual Created:

More information

Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 27, at NOON

Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 27, at NOON Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 27, at NOON Team Code Name: _Magic Wand Group No. 5 Team Member Completing This Homework: Michelle Zhang E-mail Address of

More information

Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON

Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON Team Code Name: Motion Tracking Laser Platform Group No.: 9 Team Member Completing This Homework: David Kristof NOTE:

More information

utinkerer v1.1 User s Manual

utinkerer v1.1 User s Manual utinkerer v1.1 User s Manual Last Updated January 6, 2013 2 WARNING READ BEFORE USE!!! 1) DO NOT OVERLOAD OR SHORT POWER RAILS. out of the Box is not responsible for any damage to personal property through

More information

PROGRAMMABLE POWER SUPPLY

PROGRAMMABLE POWER SUPPLY PROGRAMMABLE POWER SUPPLY MATTHIEU L. KIELA HARDWARE DESCRIPTION APRIL 25, 2006 WESTERN WASHINGTON UNIVERSITY ELECTRONICS ENGINEERING TECHNOLOGY ETEC 474, PROFESSOR MORTON INTRODUCTION In laboratory and

More information

REV CHANGE DESCRIPTION NAME DATE. A Release B Increased +1.2V Capacitor Value & VDD12A Cap Requirement

REV CHANGE DESCRIPTION NAME DATE. A Release B Increased +1.2V Capacitor Value & VDD12A Cap Requirement REV CHANGE DESCRIPTION NAME DATE A Release 8-1-16 B Increased +1.2V Capacitor Value & VDD12A Cap Requirement 1-16-17 Any assistance, services, comments, information, or suggestions provided by Microchip

More information

Wireless Sensor Networks. FireFly 2.2 Datasheet

Wireless Sensor Networks. FireFly 2.2 Datasheet 2.2 Datasheet July 6, 2010 This page intentionally left blank. Contents 1. INTRODUCTION...1 Features...1 Applications...2 2. BLOCK DIAGRAM...3 3. HARDWARE CONNECTIONS...4 Power...5 Header 1 ( UARTS, I2C,

More information

Propeller Activity Board (#32910)

Propeller Activity Board (#32910) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

Mercury Baseboard Reference Manual

Mercury Baseboard Reference Manual Mercury Baseboard Reference Manual www.micro-nova.com OVERVIEW The Baseboard is a great addition to the Mercury Module, providing a host of on-board components that can be used to design and test a wide

More information

Four-Channel Universal Analog Input Using the MAX11270

Four-Channel Universal Analog Input Using the MAX11270 Four-Channel Universal Analog Input Using the MAX70 MAXREFDES5 Introduction The MAXREFDES5 is a four-channel universal analog input that measures voltage or current signals. Each channel can be configured

More information

AT91 ARM Thumb-based Microcontroller. Application Note. AT91SAM7X and AT91SAM7XC Microcontroller Series Schematic Check List. 1.

AT91 ARM Thumb-based Microcontroller. Application Note. AT91SAM7X and AT91SAM7XC Microcontroller Series Schematic Check List. 1. AT91SAM7X and AT91SAM7XC Microcontroller Series Schematic Check List 1. Introduction This application note is a schematic review check list for systems embedding Atmel s AT91SAM7X and AT91SAM7XC families

More information

Revision: 05/05/ E Main Suite D Pullman, WA (509) Voice and Fax. Various power connectors. 3.3V regulator

Revision: 05/05/ E Main Suite D Pullman, WA (509) Voice and Fax. Various power connectors. 3.3V regulator Digilent Cerebot Plus Board Reference Manual Revision: 05/05/2008 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Plus Board is a useful

More information

Lab3: I/O Port Expansion

Lab3: I/O Port Expansion Page 1/5 Revision 2 6-Oct-15 OBJECTIVES Explore and understand the implementation of memory-mapped I/O. Add an 8-bit input port and an 8-bit output port. REQUIRED MATERIALS EEL 3744 (upad and upad Proto

More information

CPLD board datasheet EB

CPLD board datasheet EB CPLD board datasheet EB020-00-3 Contents. About this document... 2 2. General information... 3 3. Board layout... 4 4. Testing this product... 5 5. Circuit description... 6 Appendix Circuit diagram Copyright

More information

Doc: page 1 of 8

Doc: page 1 of 8 Minicon Reference Manual Revision: February 9, 2009 Note: This document applies to REV C of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Minicon board is a

More information

Adafruit Metro Mini. Created by lady ada. Last updated on :12:28 PM UTC

Adafruit Metro Mini. Created by lady ada. Last updated on :12:28 PM UTC Adafruit Metro Mini Created by lady ada Last updated on 2018-01-24 08:12:28 PM UTC Guide Contents Guide Contents Overview Pinouts USB & Serial converter Microcontroller & Crystal LEDs Power Pins & Regulators

More information

CSE 466 Exam 1 Winter, 2010

CSE 466 Exam 1 Winter, 2010 This take-home exam has 100 points and is due at the beginning of class on Friday, Feb. 13. (!!!) Please submit printed output if possible. Otherwise, write legibly. Both the Word document and the PDF

More information

Hardware Manual - SM2251 Evaluation Kit Board

Hardware Manual - SM2251 Evaluation Kit Board Hardware Manual - SM2251 Evaluation Kit Board Release 1.0.0 SonMicro Elektronik Oct 08, 2017 CONTENTS 1 INTRODUCTION 1 1.1 FEATURES............................................... 1 1.2 SUPPORTED MODULES.......................................

More information

DSP240-LPI Inverter Controller Card. Technical Brief

DSP240-LPI Inverter Controller Card. Technical Brief DSP240-LPI Inverter Controller Card Technical Brief September 2006 Manual Release 3.0 Card Revision 3.0 Copyright 2001-2006 Creative Power Technologies P.O. Box 714 MULGRAVE Victoria, 3170 Tel: +61-3-9543-8802

More information

ARDUINO UNO REV3 SMD Code: A The board everybody gets started with, based on the ATmega328 (SMD).

ARDUINO UNO REV3 SMD Code: A The board everybody gets started with, based on the ATmega328 (SMD). ARDUINO UNO REV3 SMD Code: A000073 The board everybody gets started with, based on the ATmega328 (SMD). The Arduino Uno SMD R3 is a microcontroller board based on the ATmega328. It has 14 digital input/output

More information

XC2000 Family AP Application Note. Microcontrollers. XC2236N Drive Card Description V1.0,

XC2000 Family AP Application Note. Microcontrollers. XC2236N Drive Card Description V1.0, XC2000 Family AP16179 Application Note V1.0, 2010-07 Microcontrollers Edition 2010-07 Published by Infineon Technologies AG 81726 Munich, Germany 2010 Infineon Technologies AG All Rights Reserved. LEGAL

More information

isppac-powr1208 Evaluation Board PAC-POWR1208-EV

isppac-powr1208 Evaluation Board PAC-POWR1208-EV January 2005 Introduction Application Note AN6040 The Lattice Semiconductor isppac -POWR1208 In-System-Programmable Analog Circuit allows designers to implement both the analog and digital functions of

More information

LED Matrix Scrolling using ATmega32 microcontroller

LED Matrix Scrolling using ATmega32 microcontroller LED Matrix Scrolling using ATmega32 microcontroller Deepti Rawat 1, Gunjan Aggarwal 2, Dinesh Kumar Yadav 3, S.K. Mahajan 4 Department of Electronics and Communication Engineering IIMT college of Engineering,

More information

ESPino - Specifications

ESPino - Specifications ESPino - Specifications Summary Microcontroller ESP8266 (32-bit RISC) WiFi 802.11 (station, access point, P2P) Operating Voltage 3.3V Input Voltage 4.4-15V Digital I/O Pins 9 Analog Input Pins 1 (10-bit

More information

Product Overview: DWM1001-DEV DWM1001 Module Development Board. Key Features and Benefits

Product Overview: DWM1001-DEV DWM1001 Module Development Board. Key Features and Benefits Product Overview: DWM1001-DEV DWM1001 Module Development Board Plug-and-Play Development Board for evaluating the performance of the Decawave DWM1001 module Easily assemble a fully wireless RTLS system,

More information

The Beer Grid. Edgar Alastre, Jonathan Chang, Colton Myers, and Ashish Naik

The Beer Grid. Edgar Alastre, Jonathan Chang, Colton Myers, and Ashish Naik The Beer Grid Edgar Alastre, Jonathan Chang, Colton Myers, and Ashish Naik Dept. of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816-245 Abstract This

More information

APPLICATION NOTE. AT07216: SAM G55 Schematic Checklist. Atmel SMART SAM G55. Introduction

APPLICATION NOTE. AT07216: SAM G55 Schematic Checklist. Atmel SMART SAM G55. Introduction APPLICATION NOTE AT07216: SAM G55 Schematic Checklist Atmel SMART SAM G55 Introduction A good hardware design comes from a proper schematic. Since SAM G55 devices have a fair number of pins and functions,

More information

I2C-AO112DIx I2C-Bus 4-20mA Analog Output Boards Din-Rail supports

I2C-AO112DIx I2C-Bus 4-20mA Analog Output Boards Din-Rail supports I2C-AO2DIx I2C-Bus 4-2mA Analog Output Boards Din-Rail supports Features ingle Channel Analog Output 2-wire Current Loop 4-2 ma 2 Bits Digital to Analog Converter MCP4725 I2C-Bus Interfacing Khz, 4Khz

More information

Homework 6: Printed Circuit Board Layout Design Narrative

Homework 6: Printed Circuit Board Layout Design Narrative Homework 6: Printed Circuit Board Layout Design Narrative Team Code Name: Home Kinection Group No. 1 Team Member Completing This Homework: Stephen Larew E-mail Address of Team Member: sglarew @ purdue.edu

More information

General-Purpose Microcontroller Module 12a Hardware Reference Release 1.4a (October 11, 2017)

General-Purpose Microcontroller Module 12a Hardware Reference Release 1.4a (October 11, 2017) General-Purpose Microcontroller Module 12a Hardware Reference 1 General-Purpose Microcontroller Module 12a Hardware Reference Release 1.4a (October 11, 2017) Purpose: General-purpose platform to accommodate

More information

BIG8051. Development system. User manual

BIG8051. Development system. User manual BIG8051 User manual All s development systems represent irreplaceable tools for programming and developing microcontroller-based devices. Carefully chosen components and the use of machines of the last

More information

Pmod modules are powered by the host via the interface s power and ground pins.

Pmod modules are powered by the host via the interface s power and ground pins. 1300 Henley Court Pullman, WA 99163 509.334.6306 www.store. digilent.com Digilent Pmod Interface Specification 1.2.0 Revised October 5, 2017 1 Introduction The Digilent Pmod interface is used to connect

More information

Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 22, at NOON

Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 22, at NOON Homework 6: Printed Circuit Board Layout Design Narrative Due: Friday, February 22, at NOON Team Code Name: RoboRubik Group No. _11 Team Member Completing This Homework: Erik Carron e-mail Address of Team

More information

Variable Power Supply Digital Control Circuit Diagram Using Lm317

Variable Power Supply Digital Control Circuit Diagram Using Lm317 Variable Power Supply Digital Control Circuit Diagram Using Lm317 DIGITAL POWER SUPPLY USING LM317 A Major Project Report Submitted partial fulfillment of the requirement for the award of the Degree of

More information

2. Hardware Connectivity

2. Hardware Connectivity 2. Hardware Connectivity 2.3 Project Connectivity 2.3.1 Test Program for STK500-to-Host Serial Communication The purpose for the hardware setup accomplished from this section is to allow the user to be

More information

Sidewinder Development Board rev 1.0

Sidewinder Development Board rev 1.0 33 Sidewinder Development Board rev 1.0 Features Altera MAX V CPLD 5M160ZT100C5 JTAG programmable USB programmable USB powered 12 On board LEDs 10 on board switches 3 RGB LEDs One 40 pin expansion headers

More information

ECE 372 Microcontroller Design

ECE 372 Microcontroller Design !! "! E.g. Port A, Port B "! Used to interface with many devices!! Switches!! LEDs!! LCD!! Keypads!! Relays!! Stepper Motors "! Interface with digital IO requires us to connect the devices correctly and

More information

VLSI AppNote: VSx053 Simple DSP Board

VLSI AppNote: VSx053 Simple DSP Board : VSx053 Simple DSP Board Description This document describes the VS1053 / VS8053 Simple DPS Board and the VSx053 Simple DSP Host Board. Schematics, layouts and pinouts of both cards are included. The

More information

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The Mega128-Development board is designed for

More information

ARDUINO MEGA 2560 REV3 Code: A000067

ARDUINO MEGA 2560 REV3 Code: A000067 ARDUINO MEGA 2560 REV3 Code: A000067 The MEGA 2560 is designed for more complex projects. With 54 digital I/O pins, 16 analog inputs and a larger space for your sketch it is the recommended board for 3D

More information

Arduino ADK Rev.3 Board A000069

Arduino ADK Rev.3 Board A000069 Arduino ADK Rev.3 Board A000069 Overview The Arduino ADK is a microcontroller board based on the ATmega2560 (datasheet). It has a USB host interface to connect with Android based phones, based on the MAX3421e

More information

Atmel AVR datasheet. Matrix Multimedia Atmel AVR Board EB Contents

Atmel AVR datasheet. Matrix Multimedia Atmel AVR Board EB Contents Atmel AVR datasheet Contents 1. About this document 2. General information 3. Board overview 4. Getting Started 5. Block schematic and description Appendix A. Circuit diagram B. Compatible AVR device C.

More information

Basic Express, BasicX, BX-01, BX-24 and BX-35 are trademarks of NetMedia, Inc.

Basic Express, BasicX, BX-01, BX-24 and BX-35 are trademarks of NetMedia, Inc. 1997-2002 by NetMedia, Inc. All rights reserved. Basic Express, BasicX, BX-01, BX-24 and BX-35 are trademarks of NetMedia, Inc. Microsoft, Windows and Visual Basic are either registered trademarks or trademarks

More information

ARDUINO UNO REV3 Code: A000066

ARDUINO UNO REV3 Code: A000066 ARDUINO UNO REV3 Code: A000066 The UNO is the best board to get started with electronics and coding. If this is your first experience tinkering with the platform, the UNO is the most robust board you can

More information

Doc: page 1 of 6

Doc: page 1 of 6 Nanocon Reference Manual Revision: February 9, 2009 Note: This document applies to REV A-B of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Nanocon board is

More information

Lab3: I/O Port Expansion

Lab3: I/O Port Expansion Page 1/6 Revision 0 26-Jan-16 OBJECTIVES Explore and understand the implementation of memory-mapped I/O. Add an 8-bit input port and an 8-bit output port. REQUIRED MATERIALS EEL 3744 (upad and upad Proto

More information

ARDUINO LEONARDO ETH Code: A000022

ARDUINO LEONARDO ETH Code: A000022 ARDUINO LEONARDO ETH Code: A000022 All the fun of a Leonardo, plus an Ethernet port to extend your project to the IoT world. You can control sensors and actuators via the internet as a client or server.

More information

CPLD board datasheet EB

CPLD board datasheet EB CPLD board datasheet EB020-00- Contents. About this document... 2 2. General information... 3 3. Board layout... 4 4. Testing this product... 5 5. Circuit description... 6 Appendix Circuit diagram Copyright

More information

SIXTEEN UNIVERSE CONTROLLER

SIXTEEN UNIVERSE CONTROLLER Application Block Diagrams Welcome to one of the most versatile pixel controller available. This controller supports the conversion of multi-cast E1.31 Ethernet to many pixel formats, Renard and DMX. Now

More information

BMS: Installation Manual v2.x - Documentation

BMS: Installation Manual v2.x - Documentation Page 1 of 7 BMS: Installation Manual v2.x From Documentation This section describes how external peripheral devices are connected and additional functions of the BMS are used. I you have not done so already,

More information

KNJN I2C bus development boards

KNJN I2C bus development boards KNJN I2C bus development boards 2005, 2006, 2007, 2008 fpga4fun.com & KNJN LLC http://www.knjn.com/ Document last revision on January 1, 2008 R12 KNJN I2C bus development boards Page 1 Table of Contents

More information

ARDUINO LEONARDO WITH HEADERS Code: A000057

ARDUINO LEONARDO WITH HEADERS Code: A000057 ARDUINO LEONARDO WITH HEADERS Code: A000057 Similar to an Arduino UNO, can be recognized by computer as a mouse or keyboard. The Arduino Leonardo is a microcontroller board based on the ATmega32u4 (datasheet).

More information

ARDUINO MICRO WITHOUT HEADERS Code: A000093

ARDUINO MICRO WITHOUT HEADERS Code: A000093 ARDUINO MICRO WITHOUT HEADERS Code: A000093 Arduino Micro is the smallest board of the family, easy to integrate it in everyday objects to make them interactive. The Micro is based on the ATmega32U4 microcontroller

More information

ARDUINO MEGA ADK REV3 Code: A000069

ARDUINO MEGA ADK REV3 Code: A000069 ARDUINO MEGA ADK REV3 Code: A000069 OVERVIEW The Arduino MEGA ADK is a microcontroller board based on the ATmega2560. It has a USB host interface to connect with Android based phones, based on the MAX3421e

More information

HAND HELD PROGRAMMER QUICK START GUIDE

HAND HELD PROGRAMMER QUICK START GUIDE HAND HELD PROGRAMMER QUICK START GUIDE IMPORTANT INFORMATION 1) Do not leave the programmer connected to the PC, adapters or a target system, as this will drain the battery. Installing Software 1) Run

More information

MIDI CPU Hardware Rev K. User Manual

MIDI CPU Hardware Rev K. User Manual MIDI CPU Hardware Revision K User Manual Updated 2010-09-08 Additional documentation available at: http://highlyliquid.com/support/ Page 1 / 18 Table of Contents 1.0 Important Safety Information...2 2.0

More information

Evaluates: EV Kits Requiring SPI/ Parallel to USB Interface. INTF3000 Interface Board. General Description. Quick Start. Benefits and Features

Evaluates: EV Kits Requiring SPI/ Parallel to USB Interface. INTF3000 Interface Board. General Description. Quick Start. Benefits and Features INTF3000 Interface Board Evaluates: EV Kits Requiring SPI/ Parallel to USB Interface General Description The INTF3000 interface board is designed to facilitate the interfacing of Maxim s evaluation kit

More information

LED Pacman. Final Project Report December 4, 2017 E155. Kai Kaneshina and Gabriel Quiroz. Abstract :

LED Pacman. Final Project Report December 4, 2017 E155. Kai Kaneshina and Gabriel Quiroz. Abstract : LED Pacman Final Project Report December 4, 2017 E155 Kai Kaneshina and Gabriel Quiroz Abstract : Pacman is a classic arcade game from the 1980s. Our goal was to implement a modified version of this game

More information

Opal Kelly. XEM3001v2 User s Manual. A business-card sized (3.5 x 2.0 ) experimentation board featuring the Xilinx Spartan 3 FPGA.

Opal Kelly. XEM3001v2 User s Manual. A business-card sized (3.5 x 2.0 ) experimentation board featuring the Xilinx Spartan 3 FPGA. Opal Kelly XEM3001v2 User s Manual A business-card sized (3.5 x 2.0 ) experimentation board featuring the Xilinx Spartan 3 FPGA. The XEM3001 is a small, business-card sized FPGA board featuring the Xilinx

More information

Product Datasheet: DWM1001-DEV DWM1001 Module Development Board. Key Features and Benefits

Product Datasheet: DWM1001-DEV DWM1001 Module Development Board. Key Features and Benefits Product Datasheet: DWM1001-DEV DWM1001 Module Development Board Plug-and-Play Development Board for evaluating the performance of the Decawave DWM1001 module Easily assemble a fully wireless RTLS system,

More information

um-fpu64 Floating Point Coprocessor 28-pin Breakout Board Introduction Bare um-fpu64 28-pin Breakout Board

um-fpu64 Floating Point Coprocessor 28-pin Breakout Board Introduction Bare um-fpu64 28-pin Breakout Board Floating Point Coprocessor Breakout Board Introduction The breakout board has all of the required connections, and provides access to all um- FPU64 pins. It can be used as a development board or for permanently

More information

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help AVR Intermediate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

Gooligum Electronics 2015

Gooligum Electronics 2015 The Wombat Prototyping Board for Raspberry Pi Operation and Software Guide This prototyping board is intended to make it easy to experiment and try out ideas for building electronic devices that connect

More information

XNUCLEO-F030R8, Improved STM32 NUCLEO Board

XNUCLEO-F030R8, Improved STM32 NUCLEO Board XNUCLEO-F030R8, Improved STM32 NUCLEO Board STM32 Development Board, Supports Arduino, Compatible with NUCLEO-F030R8 XNUCLEO-F030R8 Features Compatible with NUCLEO-F030R8, onboard Cortex-M0 microcontroller

More information

The FED PIC Flex 2 Development Boards

The FED PIC Flex 2 Development Boards The FED PIC Flex 2 Development Boards THE FED PIC Flex Development board offers a host for 28 or 40 pin devices and includes LED's, switches, transistor switches, USB interface, serial port, support circuitry,

More information

KNJN I2C bus development boards

KNJN I2C bus development boards KNJN I2C bus development boards 2005, 2006, 2007, 2008 KNJN LLC http://www.knjn.com/ Document last revision on December 5, 2008 R22 KNJN I2C bus development boards Page 1 Table of Contents 1 The I2C bus...4

More information

CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6

CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 Switches 7 Jumpers 8 MCU Sockets 9 Power Supply 11 On-board USB 2.0 Programmer 12 Oscillator 14 LEDs 15 Reset Circuit 17 Push-buttons

More information

isppac-powr1208p1 Evaluation Board PAC-POWR1208P1-EV

isppac-powr1208p1 Evaluation Board PAC-POWR1208P1-EV March 2007 Introduction Application Note AN6059 The Lattice Semiconductor isppac -POWR1208P1 In-System-Programmable Analog Circuit allows designers to implement both the analog and digital functions of

More information

MicroBolt. Microcomputer/Controller Featuring the Philips LPC2106 FEATURES

MicroBolt. Microcomputer/Controller Featuring the Philips LPC2106 FEATURES Microcomputer/Controller Featuring the Philips LPC2106 FEATURES Powerful 60 MHz, 32-bit ARM processing core. Pin compatible with 24 pin Stamp-like controllers. Small size complete computer/controller with

More information

ASSISTIVE CHESSBOARD TEAM 37 ROBERT KAUFMAN, RUSHI PATEL, WILLIAM SUN TA: JOHN CAPOZZO

ASSISTIVE CHESSBOARD TEAM 37 ROBERT KAUFMAN, RUSHI PATEL, WILLIAM SUN TA: JOHN CAPOZZO ASSISTIVE CHESSBOARD TEAM 37 ROBERT KAUFMAN, RUSHI PATEL, WILLIAM SUN TA: JOHN CAPOZZO INTRODUCTION Chess is popular, but complicated Problem: Hard to learn Solution: Assistive Chessboard Physical Board

More information

The Atmel-ICE Debugger

The Atmel-ICE Debugger Programmers and Debuggers Atmel-ICE USER GUIDE The Atmel-ICE Debugger Atmel-ICE is a powerful development tool for debugging and programming ARM Cortex -M based Atmel SAM and Atmel AVR microcontrollers

More information

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 8051 Intermidiate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

CEIBO FE-51RD2 Development System

CEIBO FE-51RD2 Development System CEIBO FE-51RD2 Development System Development System for Atmel AT89C51RD2 Microcontrollers FEATURES Emulates Atmel AT89C51RD2 60K Code Memory Real-Time Emulation Frequency up to 40MHz / 3V, 5V ISP and

More information

ic-pv EVAL PV1D EVALUATION BOARD DESCRIPTION

ic-pv EVAL PV1D EVALUATION BOARD DESCRIPTION Rev A1, Page 1/10 ORDERING INFORMATION Type Order Designation Description Options Evaluation Board ic-pv EVAL PV1D ic-pv Evaluation Board Ready-to-operate, supplied with magnet, accessible by GUI using

More information

User Manual Rev. 0. Freescale Semiconductor Inc. FRDMKL02ZUM

User Manual Rev. 0. Freescale Semiconductor Inc. FRDMKL02ZUM FRDM-KL02Z User Manual Rev. 0 Freescale Semiconductor Inc. FRDMKL02ZUM 1. Overview The Freescale Freedom development platform is an evaluation and development tool ideal for rapid prototyping of microcontroller-based

More information

ECE 270 Lab Verification / Evaluation Form. Experiment 1

ECE 270 Lab Verification / Evaluation Form. Experiment 1 ECE 70 Lab Verification / Evaluation Form Experiment Evaluation: IMPORTANT! You must complete this experiment during your scheduled lab period. All work for this experiment must be demonstrated to and

More information

RASPBERRY PI MEGA-IO EXPANSION CARD USER'S GUIDE VERSION 2.3

RASPBERRY PI MEGA-IO EXPANSION CARD  USER'S GUIDE VERSION 2.3 RASPBERRY PI MEGA-IO EXPANSION CARD www.sequentmicrosystems.com USER'S GUIDE VERSION 2.3 GENERAL DESCRIPTION... 2 BOARD LAYOUT... 3 BLOCK DIAGRAM... 4 COMPONENT DESCRIPTION... 5 CONFIGURATION JUMPERS...

More information

SiliconBlue. SiliconBlue Technologies iceman65 Board. Programmable Solutions for Consumer Handheld. 7-MAY-2008 (v1.

SiliconBlue. SiliconBlue Technologies iceman65 Board. Programmable Solutions for Consumer Handheld. 7-MAY-2008 (v1. February 2008 1 SiliconBlue SiliconBlue Technologies iceman65 Board Programmable Solutions for Consumer Handheld 7-MAY-2008 (v1.1) February 2008 2 Agenda iceman65 Kit Programming Options More Information

More information

PICado Alpha Development Board V1.0

PICado Alpha Development Board V1.0 V1.0 Bluetooth Transceiver Module HC-05 Four onboard FET power output stage 34 freely assignable I/O pins ICSP interface 2015 Jan Ritschard, All rights reserved. V1.0 Table of Contents 1. Introduction...

More information

MP3 Boombox ECE 511 PROJECT GROUP 11 12/03/2013 CARLOS R ARAUJO BRIAN D JARVIS SHAWN WILKINSON DIVYA CHINTHALAPURI LEEGIA S JACOB

MP3 Boombox ECE 511 PROJECT GROUP 11 12/03/2013 CARLOS R ARAUJO BRIAN D JARVIS SHAWN WILKINSON DIVYA CHINTHALAPURI LEEGIA S JACOB MP3 Boombox ECE 511 PROJECT GROUP 11 12/03/2013 CARLOS R ARAUJO BRIAN D JARVIS SHAWN WILKINSON DIVYA CHINTHALAPURI LEEGIA S JACOB Abstract For this project, the motivation was to create a product which

More information

Symphony SoundBite Reference Manual

Symphony SoundBite Reference Manual Symphony SoundBite Reference Manual Document Number: SNDBITERM Rev. 2.0 09/2008 Contents Section 1, Introduction page 2 Section 2, Functional Blocks page 3 Section 3, Configuration and Connections page

More information

DBAT90USB162 Atmel. DBAT90USB162 Enhanced Development Board User s Manual

DBAT90USB162 Atmel. DBAT90USB162 Enhanced Development Board User s Manual DBAT90USB162 Atmel AT90USB162 Enhanced Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the DBAT90USB162 Atmel AT90USB162 enhanced development board. This board is designed to give

More information

Evaluation Board User Guide UG-035

Evaluation Board User Guide UG-035 Evaluation Board User Guide UG-035 One Technology Way P.O. Box 9106 Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com Evaluating the AD9552 Oscillator Frequency Upconverter

More information

USER GUIDE. Atmel QT1 Xplained Pro. Preface

USER GUIDE. Atmel QT1 Xplained Pro. Preface USER GUIDE Atmel QT1 Xplained Pro Preface Atmel QT1 Xplained Pro kit is an extension board that enables evaluation of self- and mutual capacitance mode using the Peripheral Touch Controller (PTC) module.

More information

CPT-DA Texas Instruments TMS320F28377D controlcard compatible. DA Series Interface Card. Technical Brief

CPT-DA Texas Instruments TMS320F28377D controlcard compatible. DA Series Interface Card. Technical Brief CPT-DA28377 Texas Instruments TMS320F28377D controlcard compatible DA Series Interface Card Technical Brief May 2015 Manual Release 1 Card Version 1.0 Copyright 2015 Creative Power Technologies P/L P.O.

More information

8051 Basic Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

8051 Basic Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 8051 Basic Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

Goal: We want to build an autonomous vehicle (robot)

Goal: We want to build an autonomous vehicle (robot) Goal: We want to build an autonomous vehicle (robot) This means it will have to think for itself, its going to need a brain Our robot s brain will be a tiny computer called a microcontroller Specifically

More information

Home Security System with Remote Home Automation Control

Home Security System with Remote Home Automation Control Home Security System with Remote Home Automation Control Justin Klumpp Senior Project Hardware Description Western Washington University April 24 2005 Professor Todd Morton Introduction: This document

More information

Propeller Project Board USB (#32810)

Propeller Project Board USB (#32810) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

REV CHANGE DESCRIPTION NAME DATE. A Release

REV CHANGE DESCRIPTION NAME DATE. A Release REV CHANGE DESCRIPTION NAME DATE A Release 5-29-08 Any assistance, services, comments, information, or suggestions provided by SMSC (including without limitation any comments to the effect that the Company

More information

GRAVITECH GROUP

GRAVITECH GROUP GRAVITECH.US uresearch GRAVITECH GROUP Description The I2C-ADC board is a 14-pin CMOS device that provides 8-CH, 12-bit of Analog to Digital Converter (ADC) using I 2 C bus. There are no external components

More information

1/Build a Mintronics: MintDuino

1/Build a Mintronics: MintDuino 1/Build a Mintronics: The is perfect for anyone interested in learning (or teaching) the fundamentals of how micro controllers work. It will have you building your own micro controller from scratch on

More information

EasyAVR6 Development System

EasyAVR6 Development System EasyAVR6 Development System Part No.: MPMICRO-AVR-Devel-EasyAVR6 Overview EasyAVR6 is a development system that supports a wide range of 8-, 14-, 20-, 28- and 40-pin AVR MCUs. EasyAVR6 allows AVR microcontrollers

More information