Exercise 4-1. DSP Peripherals EXERCISE OBJECTIVES

Size: px
Start display at page:

Download "Exercise 4-1. DSP Peripherals EXERCISE OBJECTIVES"

Transcription

1 Exercise 4-1 DSP Peripherals EXERCISE OBJECTIVES Upon completion of this exercise, you will be familiar with the specialized peripherals used by DSPs. DISCUSSION The peripherals found on the TMS320C50 ('C50) DSP are good examples of the types used on many existing programmable DSPs. The 'C50 used by the Lab-Volt Digital Signal Processor FACET board, has many of its on-chip peripherals communicating with devices on the circuit board. The 'C50 serial port is used to communicate with the CODEC. The 'C50 parallel port is used to communicate with the ROM memory chip, the 4 I/O INTERFACE displays, and the DIP switch. The 'C50 master clock is externally generated by the oscillator and input to the DSP. Two of the 'C50 external user interrupt lines are each connected to a push-button on the surface of the FACET circuit board. 4-7

2 A DSP serial port is usually divided into two sections: a receive section and a transmit section. The transmit and receive sections may be independent. There will be a: receive data line receive frame synchronization line receive bit clock line transmit data line transmit frame synchronization line transmit bit clock line In other DSPs, independent receive and transmit data pins exist, however, the frame synchronization and bit clock lines are shared between the two sections. The 'C50 serial port operates through three memory-mapped user registers (known as DRR, DXR, and SPC). DRR (Data Receive Register) is where words received through the serial port receive data pin are stored. DRR is memory-mapped to data memory address (dma) 20h. DXR (Data transmit Register) is where words to be transmitted through the serial transmit data pin are stored. Once a word is stored in DXR the serial port transmit circuitry takes charge of transmitting the word. DXR is memory-mapped to dma 21h. SPC (Serial Port Control) is a status and mode control register for the DSP serial port. 4-8

3 Through the memory-mapped Serial Port Control register (SPC) the 'C50 DSP allows the programmer to specify the serial port transmit and receive characteristics. The bit clock line polarity, the shift direction, data word length, and whether the frame synchronization signals are bit-length or word-length are serial port characteristics that certain DSP chips may permit the programmer to configure. A DSP parallel port is usually implemented in one of two ways. The main processor data bus can be used as the parallel port or the parallel port can be made separate from the processor external bus interface. Processors separating the parallel port from the external bus interface simplify interfacing to external devices. 4-9

4 DSPs which use their data bus as a parallel port typically reserve a special section of their address space for access to off-chip devices. In some DSPs, the reserved memory addresses are accessed with specialized instructions. The 'C50 has two such parallel port instructions (IN and OUT). The 'C50 IN and OUT instructions are used to read and write a data word from and to an external I/O port. I/O port accesses are distinguished from program and data accesses by a designated strobe or handshake pin. The pin is asserted when the external read or write is performed. Clock signals are used to sequence DSP operations. A clock signal consists of a square wave at some known frequency. The highest frequency clock signal within a processor is known as the master clock. The master clock signal is typically generated externally. However, a number of DSPs now have phase-locked loops (PLL). These DSPs require only a very lowfrequency input signal to generate using the PLL the master clock signal. The master clock signal can be generated in many different ways. The choice of which way to generate the clock signal can usually be configured by the programmer. A large number of programmable DSPs provide timers. A timer is a peripheral that changes the content of a register at regular intervals in such a manner as to measure time. Some DSPs provide a timer output pin. A square wave at the timer frequency can be output from the pin providing a software-controlled oscillator to a programmer. 4-10

5 The 'C50 timer as used on the FACET circuit board outputs a square wave at a frequency of 10 MHz. The signal is input to the codec as its master clock. Recall that in exercise 2 of Unit 2, we had used the timer of the 'C50 DSP. The timer register (TIM) was read at the beginning and at the end of an algorithm. In this manner the duration of the algorithm was measured. Measuring the duration of an event is a possible timer application, however, on DSPs, timers are usually used as a source of periodic interrupts. A timer in reality consists of a: & clock source & prescaler & counter The clock source usually consists of the DSP master clock signal. A plethora of package pins exist on programmable DSPs, related to some of these pins are additional peripherals that we have not yet covered in this discussion. & External user interrupts & Bit I/O ports The TMS320C50 DSP found on the FACET circuit board uses external user interrupts. In fact, most DSPs provide this type of peripheral. An external interrupt functions exactly the same as an internal interrupt, however, in most cases, external user interrupts are given lower response priority than other interrupts. 4-11

6 The TMS320C50 DSP found on the FACET circuit board uses bit I/O ports (two of them, BIO# and XF), also known in certain DSPs as general-purpose I/O pins, to establish communication between the C5x VDE and the DSP. Bit I/O ports are software controlled. In this particular application (communication between the C5x VDE and the DSP), software control of the BIO# and XF I/O ports is done with a communication program (kernel) held in off-chip ROM. The software is first run by the DSP when communication between the C5x VDE debugger program and the DSP is attempted. CODEC is the abbreviation for CODer-DECoder. It is an electronic circuit that converts analog signals into digital representations, and decodes digital signals into analog form. Though signal processing can be entirely done with digital signals, most often a conversion from analog-to-digital and back again is required. 4-12

7 A CODEC is usually made up of the following components: & a programmable input gain & an anti-aliasing filter & an Analog-to-Digital converter & a Digital-to-Analog converter & a post-filter As stated, 'C50 communication with the codec is established through the DSP receive and transmit serial interfaces. The dual serial communication can only be implemented after both the serial DSP peripherals and the codec are initialized. PROCEDURE Timer Initialization In this procedure section, you will initialize the timer of the TMS320C50 DSP. Note: Before using the C5x VDE please make certain the circuit board power source is turned ON, and that the serial connection is present between the host computer and the DIGITAL SIGNAL PROCESSOR circuit block labeled SERIAL PORT. * 1. Open the C5x VDE, and load the ex4_1.dsk program file into the DSP. * 2. Place a breakpoint at the program memory address labeled CODECINIT. Do not place the breakpoint at the CALL CODECINIT source statement. * 3. Place a second breakpoint at the program memory address labeled SERIALINIT. 4-13

8 * 4. Press the C5x VDE RUN command, this will execute the DSP initialization code preceding the CODEC initialization subroutine (CODECINIT). The timer initialization code sets the timer to generate a 10 MHz signal that is output on a DSP package pin (TOUT). Note that the TOUT package pin is part of the second AUXILIARY I/O header. * 5. Connect oscilloscope channel 1 to the TOUT pin on the AUXILIARY I/O circuit block. See HELP Unit 04 shelp5 * 6. Press the C5x VDE RUN command, this will execute the code that initializes the DSP timer to generate a 10 MHz signal. In particular it is the PRD (timer PeRioD register) and TCR (Timer Control Register) that are initialized. As previously stated these two registers control the timer for the C50 DSP. 4-14

9 * 7. Adjust the oscilloscope to trigger on the TOUT waveform. What is the frequency of the TOUT signal? f TOUT = MHz It is the TOUT signal that is sent to the codec. The 10 MHz signal is used by the CODEC as the master clock. The timer can, however, be reconfigured to generate a signal with a different frequency. * 8. Using the C5x VDE, open a View Peripheral Registers window. * 9. Edit the PRD register to 00C7h. * 10. Adjust the oscilloscope to trigger on the TOUT waveform. What is the frequency of the TOUT signal? f TOUT = khz The timer frequency is related to the PRD and TCR registers as follows: 7 ö ì 7 0& #õ7''5øìô#õ35'øìô where f TOUT T M C TDDR PRD is the frequency of the TOUT signal, is the period of the DSP master clock (this value is (1/20 MHz) = 50 ns), is the decimal value of a series of bits within the TCR register, and is the decimal value of the PRD register. 4-15

10 * 11. Using the C5x VDE, edit the PRD peripheral register back to 0001 h. Verify that the TOUT signal now has a frequency of 10 MHz. See HELP Unit 04 shelp6 * 12. Using the C5x VDE, edit the TDDR bits (found in the TCR register) to 3. What is the frequency of the TOUT signal? f TOUT = MHz * 13. Using the C5x VDE, edit the TCR peripheral register back to 0000 h. Verify that the TOUT signal now has a frequency of 10 MHz. See HELP Unit 04 shelp6 The PRD register value is related to the TOUT frequency and the TCR register as follows: 35' ö ì I 7287 #7 0& #õ7''5øìô ì * 14. Holding the TDDR bits constant at zero and using the above equation, what decimal value would the PRD register have to take on for the timer to have a frequency of 1.25 MHz? PRD = d * 15. Using the C5x VDE, edit the PRD register to 000F h (15 d). Verify if the TOUT signal has a 1.25 MHz frequency. * 16. Using the C5x VDE, return the values of the PRD and the TCR registers respectively to 0001 h and 0000 h. The timer will then have a frequency of 10 MHz, this is the required codec master clock frequency to be used in the next section. * 17. Remove the connection between the DSP circuit board and the oscilloscope. 4-16

11 DSP Serial Interface and CODEC Initialization In this procedure section, you will initialize the CODEC using the DSP serial interface. * 18. Using the C5x VDE, set a breakpoint at program memory address labeled RESET. * 19. Press the C5x VDE RUN command, this will initialize the DSP serial port and establish communication between the DSP and the CODEC. Using the SPC (Serial Port Control) register, the DSP transmit and receive serial ports have been enabled and initialized to use 16-bit words. Transmit frame synchronization has also been enabled. 4-17

12 * 20. Using the C5x VDE, set a breakpoint at the program memory address of the instruction labeled LACC #6h,9. * 21. Press the C5x VDE RUN command, this will reset the CODEC. The reset must occur before the control words initializing the codec sampling frequency, filter cut-off frequency and other codec characteristics can be transmitted from the DSP to the codec. * 22. Using the C5x VDE, set a breakpoint at the program memory address labeled RETURN. * 23. Press the C5x VDE RUN command, the DSP will then transmit the codec control words (TA, TB, RA, RB, and AIC_CTR). 4-18

13 It is these words that set the CODEC sampling and cut-off frequencies, and other characteristics. The Voltmeter Program In this procedure section, you will operate the voltmeter program. * 24. Connect the OUTPUT of the DC SOURCE to the ANALOG INPUT of the CODEC circuit block and to a voltmeter (as shown in the figure). * 25. Execute the RUN command, found on the C5x VDE Toolbar. This starts the voltmeter program. Note that the I/O interface displays a value. This is the voltage reading of the signal sent from the DC SOURCE OUTPUT. * 26. Change the voltage level of the DC signal by turning the DC SOURCE potentiometer. The signal sent to the codec is sampled and transmitted via the serial port to the DSP. The DSP then converts the value into its proportional voltage value (the program can only read values between V and 2.99 V) and outputs it to the I/O INTERFACE via the parallel I/O ports. * 27. Note that the value read off of the voltmeter and the value read by the DSP do not always correspond. This is due to imprecisions within the CODEC during voltage signal sampling. 4-19

14 What type of communication is used between the CODEC and the DSP on the Digital Signal Processor circuit board? a. parallel ports b. bit I/O ports c. serial ports d. none of the above How are words transmitted by the DSP to the I/O INTERFACE displays? a. serial ports b. parallel ports c. bit I/O ports d. interrupts * 28. Remove the connection between the DC SOURCE circuit block and the voltmeter. CONCLUSION & A DSP provides many peripherals, which are specialized for signal processing applications. & A DSP serial port is usually divided into two sections: a receive section and a transmit section. & A large number of programmable DSPs provide timers. A timer is a peripheral that changes the content of a register at regular intervals in such a manner as to measure time. & CODEC is the abbreviation for coder-decoder. It is an electronic circuit that converts analog signals into digital representations, and decodes digital signals into analog form. REVIEW QUESTIONS 1. Which of the following is not a DSP peripheral? a. parallel port b. serial port c. central arithmetic logic unit d. bit I/O port 4-20

15 2. Which of the following choices is used by a serial port interface? a. A bit clock line. b. A data line. c. A frame synchronization line. d. All of the above. 3. Which of the following is used in many DSPs as a parallel port? a. the timer output pin b. clock generator c. main processor data bus d. external user interrupt lines 4. The timer found in most DSPs, may be used as which of the following? a. a sine wave generator b. a source of periodic interrupts c. a voltmeter d. a register for storing the accumulator 5. Which of the following serial port characteristics may some DSPs permit the programmer to configure? a. data word length b. bit clock line polarity c. bit clock shift direction d. bit- or word-length frame synchronization signals. 4-21

Exercise 2-3. Addressing EXERCISE OBJECTIVES

Exercise 2-3. Addressing EXERCISE OBJECTIVES Exercise 2-3 Addressing EXERCISE OBJECTIVES Upon completion of this exercise, you will understand the function that of address generation unit within a DSP and the specialized addressing modes that it

More information

Exercise 1-2. The Assembler and Debugger EXERCISE OBJECTIVES

Exercise 1-2. The Assembler and Debugger EXERCISE OBJECTIVES Exercise 1-2 The Assembler and Debugger EXERCISE OBJECTIVES Upon completion of this exercise, you will understand basic DSP source file syntax. You will be able to operate the debugger that accompanies

More information

8254 is a programmable interval timer. Which is widely used in clock driven digital circuits. with out timer there will not be proper synchronization

8254 is a programmable interval timer. Which is widely used in clock driven digital circuits. with out timer there will not be proper synchronization 8254 is a programmable interval timer. Which is widely used in clock driven digital circuits. with out timer there will not be proper synchronization between two devices. So it is very useful chip. The

More information

Exercise 3-1. The Program Controller EXERCISE OBJECTIVES

Exercise 3-1. The Program Controller EXERCISE OBJECTIVES Exercise 3-1 The Program Controller EXERCISE OBJECTIVES Upon completion of this exercise, you will be familiar with the function of the hardware and software features that digital signal processors have

More information

PSIM Tutorial. How to Use SPI in F2833x Target. February Powersim Inc.

PSIM Tutorial. How to Use SPI in F2833x Target. February Powersim Inc. PSIM Tutorial How to Use SPI in F2833x Target February 2013-1 - Powersim Inc. With the SimCoder Module and the F2833x Hardware Target, PSIM can generate ready-to-run codes for DSP boards that use TI F2833x

More information

Tutorial Introduction

Tutorial Introduction Tutorial Introduction PURPOSE: This tutorial describes the key features of the DSP56300 family of processors. OBJECTIVES: Describe the main features of the DSP 24-bit core. Identify the features and functions

More information

University Program Advance Material

University Program Advance Material University Program Advance Material Advance Material Modules Introduction ti to C8051F360 Analog Performance Measurement (ADC and DAC) Detailed overview of system variances, parameters (offset, gain, linearity)

More information

PIC Serial Peripheral Interface (SPI) to Digital Pot

PIC Serial Peripheral Interface (SPI) to Digital Pot Name Lab Section PIC Serial Peripheral Interface (SPI) to Digital Pot Lab 7 Introduction: SPI is a popular synchronous serial communication protocol that allows ICs to communicate over short distances

More information

Digital Signal Processor

Digital Signal Processor Student Workbook 31946-J0 Edition 2 Ê>?~Æ6J0Ä%#]Ë 3031946J00503 SECOND EDITION Second Printing, March 2005 Copyright September, 2003 Lab-Volt Systems, Inc. All rights reserved. No part of this publication

More information

Lab 3: Queued A-D Conversion (eqadc)

Lab 3: Queued A-D Conversion (eqadc) 1 Lab 3: Queued A-D Conversion (eqadc) Queued Analog-to-Digital Conversion 2 Acquire analog input from the potentiometer and observe the result using the debugger Using an oscilloscope, measure the time

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

3. (a) Explain the steps involved in the Interfacing of an I/O device (b) Explain various methods of interfacing of I/O devices.

3. (a) Explain the steps involved in the Interfacing of an I/O device (b) Explain various methods of interfacing of I/O devices. Code No: R05320202 Set No. 1 1. (a) Discuss the minimum mode memory control signals of 8086? (b) Explain the write cycle operation of the microprocessor with a neat timing diagram in maximum mode. [8+8]

More information

The Atmel ATmega328P Microcontroller

The Atmel ATmega328P Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory 1 Introduction The Atmel ATmega328P Microcontroller by Allan G. Weber This document is a short introduction

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 14 Ch.6 The 80186, 80188, and 80286 Microprocessors 21-Apr-15 1 Timers The 80186/80188 contain three fully programmable 16-bit timers

More information

PCI to SH-3 AN Hitachi SH3 to PCI bus

PCI to SH-3 AN Hitachi SH3 to PCI bus PCI to SH-3 AN Hitachi SH3 to PCI bus Version 1.0 Application Note FEATURES GENERAL DESCRIPTION Complete Application Note for designing a PCI adapter or embedded system based on the Hitachi SH-3 including:

More information

The Atmel ATmega168A Microcontroller

The Atmel ATmega168A Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory The Atmel ATmega168A Microcontroller by Allan G. Weber 1 Introduction The Atmel ATmega168A is one member of

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

Classification of Semiconductor LSI

Classification of Semiconductor LSI Classification of Semiconductor LSI 1. Logic LSI: ASIC: Application Specific LSI (you have to develop. HIGH COST!) For only mass production. ASSP: Application Specific Standard Product (you can buy. Low

More information

The Freescale MC908JL16 Microcontroller

The Freescale MC908JL16 Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory The Freescale MC908JL16 Microcontroller by Allan G. Weber 1 Introduction The Freescale MC908JL16 (also called

More information

Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad

Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad Objectives To be familiar with microcontrollers, PIC18F4550 microcontroller. Tools PIC18F4550 Microcontroller, MPLAB software,

More information

Question Bank Microprocessor and Microcontroller

Question Bank Microprocessor and Microcontroller QUESTION BANK - 2 PART A 1. What is cycle stealing? (K1-CO3) During any given bus cycle, one of the system components connected to the system bus is given control of the bus. This component is said to

More information

General Purpose Programmable Peripheral Devices. Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar

General Purpose Programmable Peripheral Devices. Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Chapter 15 General Purpose Programmable Peripheral Devices by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Microprocessor & Interfacing (140701) Rahul Patel 1

More information

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform.

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform. Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform www.sierraradio.net www.hamstack.com Topics Introduction Hardware options Software development HamStack project

More information

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1 M68HC08 Microcontroller The MC68HC908GP32 Babak Kia Adjunct Professor Boston University College of Engineering Email: bkia -at- bu.edu ENG SC757 - Advanced Microprocessor Design General Description The

More information

Digital Signal Processor 2010/1/4

Digital Signal Processor 2010/1/4 Digital Signal Processor 1 Analog to Digital Shift 2 Digital Signal Processing Applications FAX Phone Personal Computer Medical Instruments DVD player Air conditioner (controller) Digital Camera MP3 audio

More information

The Embedded computing platform. Four-cycle handshake. Bus protocol. Typical bus signals. Four-cycle example. CPU bus.

The Embedded computing platform. Four-cycle handshake. Bus protocol. Typical bus signals. Four-cycle example. CPU bus. The Embedded computing platform CPU bus. Memory. I/O devices. CPU bus Connects CPU to: memory; devices. Protocol controls communication between entities. Bus protocol Determines who gets to use the bus

More information

Pin Description, Status & Control Signals of 8085 Microprocessor

Pin Description, Status & Control Signals of 8085 Microprocessor Pin Description, Status & Control Signals of 8085 Microprocessor 1 Intel 8085 CPU Block Diagram 2 The 8085 Block Diagram Registers hold temporary data. Instruction register (IR) holds the currently executing

More information

SECTION 5 RESETS AND INTERRUPTS

SECTION 5 RESETS AND INTERRUPTS SECTION RESETS AND INTERRUPTS Resets and interrupt operations load the program counter with a vector that points to a new location from which instructions are to be fetched. A reset immediately stops execution

More information

Pin diagram Common SignalS Architecture: Sub: 8086 HARDWARE

Pin diagram Common SignalS Architecture: Sub: 8086 HARDWARE 1 CHAPTER 6 HARDWARE ARCHITECTURE OF 8086 8086 Architecture: 6.1 8086 Pin diagram 8086 is a 40 pin DIP using CHMOS technology. It has 2 GND s as circuit complexity demands a large amount of current flowing

More information

Fredrick M. Cady. Assembly and С Programming forthefreescalehcs12 Microcontroller. шт.

Fredrick M. Cady. Assembly and С Programming forthefreescalehcs12 Microcontroller. шт. SECOND шт. Assembly and С Programming forthefreescalehcs12 Microcontroller Fredrick M. Cady Department of Electrical and Computer Engineering Montana State University New York Oxford Oxford University

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

2008/12/23. System Arch 2008 (Fire Tom Wada) 1

2008/12/23. System Arch 2008 (Fire Tom Wada) 1 Digital it Signal Processor System Arch 2008 (Fire Tom Wada) 1 Analog to Digital Shift System Arch 2008 (Fire Tom Wada) 2 Digital Signal Processing Applications FAX Phone Personal Computer Medical Instruments

More information

Chapter 1: Basics of Microprocessor [08 M]

Chapter 1: Basics of Microprocessor [08 M] Microprocessor: Chapter 1: Basics of Microprocessor [08 M] It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large scale (LSI) or Very Large Scale (VLSI)

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features:

PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features: PIC16F7X 2/40-pin -Bit CMOS FLASH Microcontrollers Devices Included in this Data Sheet: PIC16F7 PIC16F74 PIC16F76 PIC16F77 Microcontroller Core Features: High-performance RISC CPU Only 5 single word instructions

More information

16-BIT TIMER AND EVENT COUNTER

16-BIT TIMER AND EVENT COUNTER nc. SECTION 7 16-BIT TIMER AND EVENT COUNTER MOTOROLA 16-BIT TIMER AND EVENT COUNTER 7-1 nc. SECTION CONTENTS 7.1 INTRODUCTION............................................7-3 7.2 TIMER ARCHITECTURE.....................................7-3

More information

CompuScope Ultra-fast waveform digitizer card for PCI bus. APPLICATIONS. We offer the widest range of

CompuScope Ultra-fast waveform digitizer card for PCI bus.   APPLICATIONS. We offer the widest range of We offer the widest range of high-speed and high-resolution digitizers available on the market CompuScope 1602 Ultra-fast waveform digitizer card for PCI bus today. Our powerful PC-based instrumentation

More information

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS UNIT 1 - THE 8085 AND 8086

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : MICROPROCESSORS AND INTERFACING Code : AEC021 Class : B.

More information

CPCI-AD32. Intelligent DSP Based 32 Channel Analog Input Card for 3U CompactPCI systems REFERENCE MANUAL Version 1.

CPCI-AD32. Intelligent DSP Based 32 Channel Analog Input Card for 3U CompactPCI systems REFERENCE MANUAL Version 1. CPCI-AD32 Intelligent DSP Based 32 Channel Analog Input Card for 3U CompactPCI systems REFERENCE MANUAL 751-10-000-4000 Version 1.0 September 1998 ALPHI TECHNOLOGY CORPORATION 6202 S. Maple Avenue #120

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 13 Ch.6 The 80186, 80188, and 80286 Microprocessors 21-Apr-15 1 Chapter Objectives Describe the hardware and software enhancements

More information

DS1306. Serial Alarm Real Time Clock (RTC)

DS1306. Serial Alarm Real Time Clock (RTC) www.dalsemi.com FEATURES Real time clock counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap year compensation valid up to 2100 96-byte nonvolatile RAM for data

More information

MC68HC908GR8A MC68HC908GR4A Data Sheet

MC68HC908GR8A MC68HC908GR4A Data Sheet MC68HC908GR8A MC68HC908GRA Data Sheet M68HC08 Microcontrollers MC68HC908GR8A Rev. 5 0/2007 freescale.com MC68HC908GR8A MC68HC908GRA Data Sheet To provide the most up-to-date information, the revision

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

Table of Contents. Table of Contents Microcomputers Microcontroller Technology using the 32-Bit ARM Cortex M3

Table of Contents. Table of Contents Microcomputers Microcontroller Technology using the 32-Bit ARM Cortex M3 Table of Contents Table of Contents Microcomputers Microcontroller Technology using the 32-Bit ARM Cortex M3 1 2 2 Lucas Nülle GmbH Page 1/9 www.lucas-nuelle.com Microcomputers Training systems on microcontroller

More information

PART - B (Answer all five units, 5 X 10 = 50 Marks)

PART - B (Answer all five units, 5 X 10 = 50 Marks) Code: 13A04507 R13 B.Tech III Year I Semester (R13) Supplementary Examinations June 2017 MICROPROCESSS & INTERFACING (Common to CSE & IT) PART - A (a) Mention the function of the instruction ADD M of 8085

More information

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly.

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly. Unit I 8085 and 8086 PROCESSOR Introduction to microprocessor A microprocessor is a clock-driven semiconductor device consisting of electronic logic circuits manufactured by using either a large-scale

More information

Help Volume Agilent Technologies. All rights reserved. Agilent E2485A Memory Expansion Interface

Help Volume Agilent Technologies. All rights reserved. Agilent E2485A Memory Expansion Interface Help Volume 1994-2002 Agilent Technologies. All rights reserved. Agilent E2485A Memory Expansion Interface Agilent E2485A Memory Expansion Interface The E2485A Memory Expansion Interface lets you use the

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine MPLAB SIM MPLAB IDE Software Simulation Engine 2004 Microchip Technology Incorporated MPLAB SIM Software Simulation Engine Slide 1 Welcome to this web seminar on MPLAB SIM, the software simulator that

More information

LUPO TimeStamp Module (Ver. 1.2) Hidetada Baba

LUPO TimeStamp Module (Ver. 1.2) Hidetada Baba LUPO TimeStamp Module (Ver. 1.2) Hidetada Baba November 28, 2009 1 1 General 1 General 1.1 Function This module is a CAMAC/VME LUPO module which including the functions of Time stamp, Output register and

More information

Product Information Sheet PDA14 2 Channel, 14-Bit Waveform Digitizer APPLICATIONS FEATURES OVERVIEW

Product Information Sheet PDA14 2 Channel, 14-Bit Waveform Digitizer APPLICATIONS FEATURES OVERVIEW Product Information Sheet PDA 2 Channel, -Bit Waveform Digitizer FEATURES 2 Channels at up to 100 MHz Sample Rate Bits of Resolution Bandwidth from DC-50 MHz 512 Megabytes of On-Board Memory 500 MB/s Transfer

More information

Advanced NI-DAQmx Programming Techniques with LabVIEW

Advanced NI-DAQmx Programming Techniques with LabVIEW Advanced NI-DAQmx Programming Techniques with LabVIEW Agenda Understanding Your Hardware Data Acquisition Systems Data Acquisition Device Subsystems Advanced Programming with NI-DAQmx Understanding Your

More information

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers 1. Define microprocessors? UNIT-I A semiconductor device(integrated circuit) manufactured by using the LSI technique. It includes

More information

Topics. Interfacing chips

Topics. Interfacing chips 8086 Interfacing ICs 2 Topics Interfacing chips Programmable Communication Interface PCI (8251) Programmable Interval Timer (8253) Programmable Peripheral Interfacing - PPI (8255) Programmable DMA controller

More information

Chapter Operation Pinout Operation 35

Chapter Operation Pinout Operation 35 68000 Operation 35 Chapter 6 68000 Operation 6-1. 68000 Pinout We will do no construction in this chapter; instead, we will take a detailed look at the individual pins of the 68000 and what they do. Fig.

More information

Unit 3 and Unit 4: Chapter 4 INPUT/OUTPUT ORGANIZATION

Unit 3 and Unit 4: Chapter 4 INPUT/OUTPUT ORGANIZATION Unit 3 and Unit 4: Chapter 4 INPUT/OUTPUT ORGANIZATION Introduction A general purpose computer should have the ability to exchange information with a wide range of devices in varying environments. Computers

More information

Computer Organization and Microprocessors SYLLABUS CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS CHAPTER - 3 : THE MEMORY SYSTEM

Computer Organization and Microprocessors SYLLABUS CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS CHAPTER - 3 : THE MEMORY SYSTEM i SYLLABUS UNIT - 1 CHAPTER - 1 : BASIC STRUCTURE OF COMPUTERS Computer Types, Functional Units, Basic Operational Concepts, Bus Structures, Software, Performance, Multiprocessors and Multicomputers, Historical

More information

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Lecture (4) Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1 Lecture Outline:

More information

EVAL-AD9913 GENERAL DESCRIPTION FEATURES PACKAGE CONTENTS EVALUATION BOARD BLOCK DIAGRAM

EVAL-AD9913 GENERAL DESCRIPTION FEATURES PACKAGE CONTENTS EVALUATION BOARD BLOCK DIAGRAM FEATURES Evaluation board powered solely via the USB port Easy to use Windows graphical user interface allowing software control of all AD9913 features Flexible reference clock input accepts external crystal

More information

Microprocessors and Interfacng. Question bank

Microprocessors and Interfacng. Question bank Microprocessors & Interfacing 8086 ARCHITECTURE: UNIT-I Functional Diagram, Register Organization, Addressing modes, Instructions, Functional schematic, Minimum and Maximum mode operations of 8086, 8086

More information

Tektronix DPO Demo 1 Board Instruction Manual

Tektronix DPO Demo 1 Board Instruction Manual xx ZZZ Tektronix DPO Demo 1 Board Instruction Manual www.tektronix.com *P071253900* 071-2539-00 Copyright Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries

More information

Waveform and Timing Generator Description

Waveform and Timing Generator Description I. Abstract A PC-controlled Waveform and Timing Generator (WTG) Instrument was developed using the Opal Kelly XEM3001 PCB mated with an Optiphase custom adapter PCB. The WTG Instrument was developed to

More information

EB-51 Low-Cost Emulator

EB-51 Low-Cost Emulator EB-51 Low-Cost Emulator Development Tool for 80C51 Microcontrollers FEATURES Emulates 80C51 Microcontrollers and Derivatives Real-Time Operation up to 40 MHz 3.3V or 5V Voltage Operation Source-Level Debugger

More information

ericssonz LBI-38616B MAINTENANCE MANUAL FOR MTD TM SERIES AND DATA RADIO LOGIC BOARD 19D902151G3 DESCRIPTION CIRCUIT ANALYSIS TABLE OF CONTENTS

ericssonz LBI-38616B MAINTENANCE MANUAL FOR MTD TM SERIES AND DATA RADIO LOGIC BOARD 19D902151G3 DESCRIPTION CIRCUIT ANALYSIS TABLE OF CONTENTS MAINTENANCE MANUAL FOR MTD TM SERIES AND DATA RADIO LOGIC BOARD 19D902151G3 TABLE OF CONTENTS Page DESCRIPTION............................................. Front Cover CIRCUIT ANALYSIS..........................................

More information

8051 Microcontroller Interrupts

8051 Microcontroller Interrupts 8051 Microcontroller Interrupts There are five interrupt sources for the 8051, which means that they can recognize 5 different events that can interrupt regular program execution. Each interrupt can be

More information

Mechatronics Laboratory Assignment 4 Parallel Communication Glue Logic, Hardware Interrupts, Analog to Digital Conversions, and Board Fab

Mechatronics Laboratory Assignment 4 Parallel Communication Glue Logic, Hardware Interrupts, Analog to Digital Conversions, and Board Fab Mechatronics Laboratory Assignment 4 Parallel Communication Glue Logic, Hardware Interrupts, Analog to Digital Conversions, and Board Fab Goals for this Lab Assignment: 1. Gain a better understanding of

More information

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 1.

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 1. Laboratory: Introduction to Mechatronics Instructor TA: Edgar Martinez Soberanes (eem370@mail.usask.ca) 2017-01-12 Lab 1. Introduction Lab Sessions Lab 1. Introduction to the equipment and tools to be

More information

Product Information Sheet PX Channel, 14-Bit Waveform Digitizer

Product Information Sheet PX Channel, 14-Bit Waveform Digitizer Product Information Sheet PX14400 2 Channel, 14-Bit Waveform Digitizer FEATURES 2 Analog Channels at up to 400 MHz Sample Rate per Channel 14 Bits of Resolution Bandwidth from 100 KHz to 400 MHz 1 Gigabyte

More information

1 The Attractions of Soft Modems

1 The Attractions of Soft Modems Application Note AN2451/D Rev. 0, 1/2003 Interfacing a Low Data Rate Soft Modem to the MCF5407 Microprocessor The traditional modem has been a box or an add-on card with a phone connection on one end and

More information

MP Assignment III. 1. An 8255A installed in a system has system base address E0D0H.

MP Assignment III. 1. An 8255A installed in a system has system base address E0D0H. MP Assignment III 1. An 8255A installed in a system has system base address E0D0H. i) Calculate the system addresses for the three ports and control register for this 8255A. System base address = E0D0H

More information

DEV-1 HamStack Development Board

DEV-1 HamStack Development Board Sierra Radio Systems DEV-1 HamStack Development Board Reference Manual Version 1.0 Contents Introduction Hardware Compiler overview Program structure Code examples Sample projects For more information,

More information

EE4390 Microprocessors. Lessons 2, 3 68HC12 Hardware Overview, Subsystems, and memory System

EE4390 Microprocessors. Lessons 2, 3 68HC12 Hardware Overview, Subsystems, and memory System EE4390 Microprocessors Lessons 2, 3 68HC12 Hardware Overview, Subsystems, and memory System 1 Overview 68HC12 hardware overview Subsystems Memory System 2 68HC12 Hardware Overview "Copyright of Motorola,

More information

Engineer-to-Engineer Note

Engineer-to-Engineer Note Engineer-to-Engineer Note a EE-227 Technical notes on using Analog Devices DSPs, processors and development tools Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com

More information

Application Note for EVP

Application Note for EVP Sundance Multiprocessor Technology Limited Application Note Form : QCF32 Date : 11 Februay 2009 Unit / Module Description: SMT111-SMT372T-SMT946 Unit / Module Number: Document Issue Number: 1.0 Issue Date:

More information

A 3-SPEED STEPPER MOTOR

A 3-SPEED STEPPER MOTOR ECE 36 Projects; Stepper Motor 1 of 5 A 3-SPEED STEPPER MOTOR 1. Design a microprocessing system to implement a 3-speed stepper motor. Your design is constrained to use the parts shown in Fig. 1 and described

More information

PCI-4IPM Revision C. Second Generation Intelligent IP Carrier for PCI Systems Up to Four IndustryPack Modules Dual Ported SRAM, Bus Master DMA

PCI-4IPM Revision C. Second Generation Intelligent IP Carrier for PCI Systems Up to Four IndustryPack Modules Dual Ported SRAM, Bus Master DMA PCI-4IPM Revision C Second Generation Intelligent IP Carrier for PCI Systems Up to Four IndustryPack Modules Dual Ported SRAM, Bus Master DMA REFERENCE MANUAL 781-21-000-4000 Version 2.1 April 2003 ALPHI

More information

This Part-B course discusses design techniques that are used to reduce noise problems in large-scale integration (LSI) devices.

This Part-B course discusses design techniques that are used to reduce noise problems in large-scale integration (LSI) devices. Course Introduction Purpose This Part-B course discusses design techniques that are used to reduce noise problems in large-scale integration (LSI) devices. Objectives Learn approaches and design methods

More information

Microcontroller & Interfacing

Microcontroller & Interfacing Course Title Course Code Microcontroller & Interfacing EC406 Lecture : 3 Course Credit Practical : 1 Tutorial : 0 Total : 4 Course Objective At the end of the course the students will be able to Understand

More information

SPART. SPART Design. A Special Purpose Asynchronous Receiver/Transmitter. The objectives of this miniproject are to:

SPART. SPART Design. A Special Purpose Asynchronous Receiver/Transmitter. The objectives of this miniproject are to: SPART A Special Purpose Asynchronous Receiver/Transmitter Introduction In this miniproject you are to implement a Special Purpose Asynchronous Receiver/Transmitter (SPART). The SPART can be integrated

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information

A variety of ECONseries modules provide economical yet flexible solutions. Waveform Generation

A variety of ECONseries modules provide economical yet flexible solutions. Waveform Generation ECONseries BUS: USB Type: Economy, Mini-Instruments ECONseries Economy USB Mini-Instruments Flexible Yet Economical A variety of low-cost ECONseries modules are available to provide flexible yet economical

More information

Arduino Uno R3 INTRODUCTION

Arduino Uno R3 INTRODUCTION Arduino Uno R3 INTRODUCTION Arduino is used for building different types of electronic circuits easily using of both a physical programmable circuit board usually microcontroller and piece of code running

More information

EE 390 Lab Manual, EE Department, KFUPM. Experiment #7. Introduction to Flight86 Microprocessor Trainer and Application Board

EE 390 Lab Manual, EE Department, KFUPM. Experiment #7. Introduction to Flight86 Microprocessor Trainer and Application Board Experiment #7 Introduction to Flight86 Microprocessor Trainer and Application Board 7.0 Objectives: The objective of this experiment is to introduce the Flight86 Microprocessor training kit and application

More information

EC6504 MICROPROCESSOR AND MICROCONTROLLER

EC6504 MICROPROCESSOR AND MICROCONTROLLER UNIT I THE 8086 MICROPROCESSOR 1. What do you mean by Addressing modes? (May/June 2014) The different ways that a microprocessor can access data are referred to as addressing modes. 2. What is meant by

More information

Variations on a Theme

Variations on a Theme Variations on a Theme Shlomo Engelberg December 27, 2013 1 Chapter 6 of ADuC841 Microcontroller Design Manual: From Microcontroller Theory to Design Projects No variations in this chapter are planned for

More information

CEIBO FE-5111 Development System

CEIBO FE-5111 Development System CEIBO FE-5111 Development System Development System for Atmel W&M T89C5111 Microcontrollers FEATURES Emulates Atmel W&M T89C5111 4K Code Memory Real-Time Emulation and Trace Frequency up to 33MHz/5V ISP

More information

EE251: Thursday November 30

EE251: Thursday November 30 EE251: Thursday November 30 Course Evaluation Forms-fill out Memory Subsystem continued Timing requirements Adding memory beyond 4 Gbyte Time Allowing: Begin Review for Final Exam Homework due next Tuesday,

More information

ATC-AD8100K. 8 Channel 100 khz Simultaneous Burst A/D in 16 bits IndustryPack Module REFERENCE MANUAL Version 1.

ATC-AD8100K. 8 Channel 100 khz Simultaneous Burst A/D in 16 bits IndustryPack Module REFERENCE MANUAL Version 1. ATC-AD8100K 8 Channel 100 khz Simultaneous Burst A/D in 16 bits IndustryPack Module REFERENCE MANUAL 791-16-000-4000 Version 1.6 May 2003 ALPHI TECHNOLOGY CORPORATION 6202 S. Maple Avenue #120 Tempe, AZ

More information

MN101E50 Series. 8-bit Single-chip Microcontroller

MN101E50 Series. 8-bit Single-chip Microcontroller 8-bit Single-chip Microcontroller Overview The MN101E series of 8-bit single-chip microcomputers (the memory expansion version of MN101C series) incorporate multiple types of peripheral functions. This

More information

Hello, and welcome to this presentation of the STM32 Real- Time Clock. It covers the main features of this peripheral, which is used to provide a

Hello, and welcome to this presentation of the STM32 Real- Time Clock. It covers the main features of this peripheral, which is used to provide a Hello, and welcome to this presentation of the STM32 Real- Time Clock. It covers the main features of this peripheral, which is used to provide a very accurate time base. 1 The RTC peripheral features

More information

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013)

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) BHARATHIDASAN ENGINEERING COLLEGE III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) FREQUENTLY ASKED QUESTIONS IN UNIVERSITY EXAMINATION PART A UNIT 1-8085 PROCESSOR 1. Draw the

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Microcontroller It is essentially a small computer on a chip Like any computer, it has memory,

More information

Table of Contents COMPANY PROFILE 1-1 SECTION 1. INTRODUCTION 1-1

Table of Contents COMPANY PROFILE 1-1 SECTION 1. INTRODUCTION 1-1 COMPANY PROFILE 1-1 SECTION 1. INTRODUCTION 1-1 Introduction... 1-2 Manual Objective... 1-3 Device Structure... 1-4 Development Support... 1-6 Device Varieties... 1-7 Style and Symbol Conventions... 1-12

More information

SRAM SRAM SRAM SCLK khz

SRAM SRAM SRAM SCLK khz MOTOROLA nc. SEMICONDUCTOR PRODUCT INFORMATION Advance Information Evaluation Module Order this document by: P/D The DSP56603 Evaluation Module () is designed as a low-cost platform for developing real-time

More information

ECONseries Low Cost USB DAQ

ECONseries Low Cost USB DAQ ECONseries Low Cost USB Data Acquisition Modules ECONseries Low Cost USB DAQ The ECONseries is a flexible yet economical series of multifunction data acquisition modules. You choose the number of analog

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

SWTPC MODIFICATION - APPLICATION NOTICE AN #124

SWTPC MODIFICATION - APPLICATION NOTICE AN #124 SWTPC MODIFICATION - APPLICATION NOTICE AN #124 Product: S/09 Computer Date: Oct. 21, 1980 J.D. Operating the SWTPC S/09 Computer at 2 MHz The following information is supplied to assist competent technical

More information

Chapter 9 External Memory Interface (Port A)

Chapter 9 External Memory Interface (Port A) Chapter 9 External Memory Interface (Port A) The external memory expansion port, Port A, can be used either for memory expansion or for memory-mapped I/O. External memory is easily and quickly retrieved

More information