Technical Note. Refresh Features for Micron e.mmc Automotive 5.1 Devices. Introduction. TN-FC-60: Refresh Features for e.mmc Automotive 5.

Size: px
Start display at page:

Download "Technical Note. Refresh Features for Micron e.mmc Automotive 5.1 Devices. Introduction. TN-FC-60: Refresh Features for e.mmc Automotive 5."

Transcription

1 Technical Note TN-FC-60: Refresh Features for e.mmc Automotive 5.1 Introduction Refresh Features for Micron e.mmc Automotive 5.1 Devices Introduction This technical note introduces the concept of data retention and its extension through data refresh, reports on a possible algorithm of manual scan and refresh and describes an additional data refresh feature available in Micron e.mmc automotive 5.1 devices built with Micron firmware. This data refresh feature enables further management of the REFRESH operation and is based on the JEDEC command CMD6, available in JESD84-B51. 1 Products and specifications discussed herein are subject to change by Micron without notice.

2 REFRESH Operation Table 1: Manual BKOPS Data retention is the length of time that the NAND storage media inside an e.mmc device retains data, with biased or unbiased conditions. Limited data retention makes memory device scanning and refresh essential. An inverse relationship exists between data retention and the PROGRAM/ERASE (P/E) cycles and temperature that affect a device over time. When either or both P/E cycles and temperature increase, data retention decreases, making a REFRESH operation necessary. A REFRESH operation is executed when a device read shows that the number of flip bits are greater than the ECC threshold for the given NAND technology. ECC is able to correct the errors; the corrected data is then copied into a new destination block. A RE- FRESH operation writes data into a new memory location. The e.mmc device firmware manages REFRESH on virtual blocks, which are a software grouping of physical blocks across the NAND die to take advantage of parallel WRITE operations. Virtual block size varies by device size, and the firmware is able to build a queue of the virtual blocks to be refreshed. Manual refresh is recommended when the e.mmc device provides information as shown in the table below. Manual refresh is managed through CMD6. Function Refresh is Required Prerequisite for e.mmc 5.1 Stimulate refresh via manual BKOPS BKOPS_START [164] TN-FC-60: Refresh Features for e.mmc Automotive 5.1 REFRESH Operation Device status, EXCEPTION_EVENT, bit 6 = 1 BKOPS_STATUS [246] = 3 Host sets BKOPS_EN [163] bit 0 = 1 to be informed about the refresh condition. Device status, EXCEPTION_EVENT (bit 6) becomes set when BKOPS_STATUS [246] >1; see JEDEC specification. Manual Scan and Refresh To extend the data retention of the entire memory, including portions where data not often read are stored, the manual scan and refresh can be directly managed by the host. This section describes the implementation of the manual scan and refresh algorithm, which is tailored to the application-specific requirements. This algorithm includes common e.mmc operations: READ to the e.mmc user area (to scan blocks). Check of the card status and/or BKOPS_STATUS [246] (to verify that refresh is required; see Prerequisite in Table 1). WRITE operations from normal use (or dummy on the user area) to trigger the refresh if needed. In addition, if BKOPS_AUTO is enabled (BKOPS_EN [163] bit 1 =1), the e.mmc performs the booked REFRESH operations while not servicing the host (bus idle times). The designed algorithm is executed periodically, considering as the refresh period the timeframe for the host to complete the user area scanning (for example, one year). The scanning is divided into several steps during this timeframe. Each step targets a range of LBAs and, consequently, affects all virtual blocks correlated to that LBA range. 2

3 REFRESH Operation Consecutive steps target contiguous ranges of LBAs. The host has the burden to save and update addresses. The size of the scan range influences the evolution of the algorithm. The larger the LBA range, the larger the number of virtual blocks involved in the scan that eventually will require the refresh. The queue of blocks booked for refresh is nonvolatile with power cycle when power-off notification is used, so that the refresh can be resumed. Note: Host porting the manual scan and refresh functionality from Micron e.mmc 5.0 to e.mmc 5.1 is required to implement the prerequisite listed in Table 1. Table 2: Manual Scan and Refresh Variables Defined in the Host Software Variable Last_Addr Refresh_Period Scan_Range Description Represents the last LBA checked by the host. Last_Addr is initialized = 0 and varies up to SEC_COUNT (ECSD [215:212]). Timeframe for user area to complete scanning. This value must be based on customer requirements. The complete scan is divided into several scans during Refresh_Period. Range of LBA to be read in each scan step. This range must be submultiples of SEC_COUNT. In this example, a possible value of Scan_Range is 128KB. 3

4 REFRESH Operation Figure 1: Manual Scan and Refresh Read Last_Addr from file No File exist? Yes Create file Write to file Last_Addr = 0 CMD18 (addr = Last_Addr, chunk = Scan_Range) READ_MULTIPLE_BLOCK CMD13 SEND_STATUS No Device status EXCEPTION_EVENT (Bit 6) set? Yes CMD8 SEND_EXT_CSD No BKOPS status = 3? Yes Write to File Last_Addr = Last_Addr + Scan_Range Exit No Last_Addr > SECT_COUNT? Yes Write to File Last_Addr = 0 Exit 4

5 Additional e.mmc Automotive 5.1 Refresh Feature An implementation of this algorithm is done with a bash script that is inside the emmcparm package. The script is in the directory "/usr/refresh" named "./read_scan_refre.sh" and accepts as input option the following: 1. Device file to be refreshed ex. /dev/mmcblk0 2. Refresh_Period in hours 3. Debug option 1 print read data to terminal Is also possible to run the script in background as daemon using setsid: sudo setsid./ read_scan_refre.sh /dev/mmcblk1 1 >./log.log 2>&1 < /dev/null & In this case, a log file named log.log is produced; if no log file is needed, change "./ log.log" to "/dev/null". As a prerequisite, the host sets BKOPS_EN[163] bit 0 = 1 by sending # emmcparm -n The host can enable BKOPS_AUTO, BKOPS_EN [163] bit 1=1 by # emmcparm -c bkops_auto_enablement.csv The host can disable BKOPS_AUTO, BKOPS_EN [163] bit 1=0 by # emmcparm -c bkops_auto_disable.csv Additional e.mmc Automotive 5.1 Refresh Feature The additional e.mmc automotive 5.1 refresh feature, called self refresh, fully controls refresh management, even of data that is seldom read, and applies to all e.mmc partitions. It is an alternative to the manual scan and refresh described in the previous section. This feature acts on virtual blocks and requires the adoption of the POWER-OFF NOTIFICATION operation, as described in the JEDEC specification JESD84-B51. After self refresh is enabled and configured (OTP by CMD6), it is automatic and is executed during host idle time; the host can interrupt it through any command with short latency. Configurable Delay 1 is the start-up time during which self refresh is inhibited, the recommended value is 20s. Delay 1 starts from power-up/software reset/hardware reset. Configurable Delay 2 is the idle time (ms), after which the firmware starts the procedure (recommended 100ms). Self refresh is made of two macro operations: NAND array scan (all NAND valid pages) NAND blocks refresh (if a page is found to have an ECC over threshold). Host sets BKOPS_EN [163] bit 0 = 1 to be informed about the refresh condition. Device status, EXCEPTION_EVENT (bit 6) becomes set when BKOPS_STATUS [246] >1; see JEDEC specification. Self refresh is resumed at every power cycle unless real-time clock functionality (RTC) is used. RTC is described in JEDEC specification JESD84-B51. If the time information is provided through CMD49 (SET_TIME), only one complete scan is performed in 24H. If RTC is assumed to be used according to the configuration but the date is not provided within Delay 1, self refresh will not start within the current power cycle. 5

6 Additional e.mmc Automotive 5.1 Refresh Feature Self refresh is disabled in production state awareness (PSA) and suspended if CMD5 (sleep) is received during Delay 1. Self refresh is inhibited if there are commands in the CMD-Q queue. The following figure and table show the self refresh progression scheme and relevant parameters. Figure 2: Self Refresh Progression Scheme Host side Delay 1 Host Idle time Power-up Start-up Idle R/W self refresh If ABKOPS is enabled Device side Init Host operations Delay 2 Scan Refresh Scan 4MB 4MB Scan 4MB ABKOPS delay ABKOPS operations Autostby delay Auto standby Table 3: Self Refresh Dedicated Bytes in EXT_CSD Register Name EXT_CSD Byte Register Description Self refresh status 74 [0], R 0: Ongoing 1: Done Set when self refresh read scan of the whole memory has been completed and the related refresh requests have been satisfied; it is cleared by power cycles. Delay 1 72 [7:0], R/W Start-up time [s] during which the feature is inhibited. MAX value is 60s. Delay 2 73 [7:0], R/W Idle time [ms] after which firmware starts the procedure. MAX value is 10s; recommended 100ms. Self refresh ENA- BLE 71 [0], R/W 0: Self refresh is not enabled ECC THRESHOLD 71 [2:1], R/W Set to 2. 1: Self refresh is enabled RTC ENABLE 71 [3], R/W 0: RTC is not used Refresh status, percentage 0, 1, 3 = Reserved (R/W). Do not use. 1: RTC is used 80 [7:0],81 [7:0], R Percentage status of one loop is {ECSD[81]<<8 ECSD[80]} For example: 23.45% is reported like: EXT_CSD[80] = 0x29 EXT_CSD[81] = 0x09 Percentage value = (EXT_CSD[81]<<8 EXT_CSD[80]) = 0x0929 = Notes: 1. Delay = Base value Base unit. If host sets Delay 1 and Delay 2 >MAX values, firmware will clamp them to their the respective maximum values. Delay 1 can be 0. Firmware forces the value to 1ms. If Delay 2 = 0, then self refresh must be considered disabled. 2. Delay 1 and Delay 2 format Bits Meaning Base value Base unit 6

7 Enabling Guideline Progression Information Base unit field: 0: 1ms 1: 10ms 2: 100ms 3: 1s 4/7: 10s TN-FC-60: Refresh Features for e.mmc Automotive 5.1 Additional e.mmc Automotive 5.1 Refresh Feature Self refresh enablement: RTC not used, CMD06(SWITCH) ARG: RTC used, CMD06(SWITCH) ARG:03470D00 Delay 1 set to 20s (example) CMD06(SWITCH) ARG: Delay 2 set to 100ms (value 100ms are required) CMD06(SWITCH) ARG: Self refresh information (stored in RAM) is flushed in NAND during synch point or when the array scan is completed. This information is available trough the Secure Smart Report (SSR). Refer to Micron technical note TN-FC-42 about how to retrieve and read it. Cumulative self refresh scan counter [0x50-0x51] reports how many self refresh loops have been completed during the life of the e.mmc. Last date saved [0x58-0x5F] is used only when RTC is enabled. Array scan progression [0xD4-0xD7]. The host can check the scan progression, defined as the total number of scanned LBA out of e.mmc size. 7

8 Linux Implementation Linux Implementation Using emmcparm to Enable Self Refresh To enable the self refresh feature with emmcparm, check in the "self_refresh_enablement.csv" csv file to determine whether all argument fields of CMD6 are needed: $ cat self_refresh_enablement.csv //opcode,arg,flags,write_flag,blksz,blocks,filename,is_acmd, data_timeout_ns,cmd_timeout_ms,postsleep_min_us,postsleep_max_ 13,0x010000,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 //RTC not used (commented in this example): //6,0x ,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 13,0x10000,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 //RTC Used (not commented in this example): 6,0x03470D00,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 13,0x10000,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 //Delay 1 (ex set to 20s): 6,0x ,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 13,0x10000,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 //Delay 2 (ex set to 100ms): 6,0x ,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 13,0x10000,-0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0 //,this,is,the,last,line,do,not,press,<enter>,, To enable self refresh, run the command with root access and the "emmcparm" in the path: # emmcparm -c self_refresh_enablement.csv To set BKOPS_EN[163] bit 0 = 1 and be informed about the refresh condition during the self refresh progression, run the command in the path: # emmcparm -n Refresh progress can be monitored by reading EXT_CSD for the above command file: # emmcparm -I grep -i refresh REFRESH_PERCENTAGE[81-80]: 0x00 (equivalent to 0.00%) SELF REFRESH STATUS[74(0)]: 1 SELF REFRESH Delay2[73]: 0x12 SELF REFRESH Delay1[72]: 0x24 SELF REFRESH Enable[71(0)]: 1 SELF REFRESH RTC Enable[71(3)]: 1 8

9 Revision History Revision History Rev. A 05/18 Initial release 8000 S. Federal Way, P.O. Box 6, Boise, ID , Tel: Sales inquiries: Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur. 9

Technical Note. Refresh Features for Micron e.mmc Automotive 5.0 Devices. Introduction. TN-FC-54: Refresh Features for e.mmc Automotive 5.

Technical Note. Refresh Features for Micron e.mmc Automotive 5.0 Devices. Introduction. TN-FC-54: Refresh Features for e.mmc Automotive 5. Technical te TN-FC-54: Refresh Features for e.mmc Automotive 5.0 Introduction Refresh Features for Micron e.mmc Automotive 5.0 Devices Introduction This technical note describes additional data refresh

More information

Command Register Settings Description Notes

Command Register Settings Description Notes Technical Note e.mmc Automotive 5.0 Cache Features TN-FC-50: e.mmc Automotive 5.0 Cache Features Introduction Introduction This technical note introduces an optional cache feature defined in the e.mmc

More information

Enabled (both during preconditioning and measurement) 4KB for random writes, 2MB for sequential writes

Enabled (both during preconditioning and measurement) 4KB for random writes, 2MB for sequential writes Technical Note Introduction e.mmc Validation and Use Model Performance Introduction This technical note describes performance measurement of the Micron automotive e.mmc 5.0 device during validation and

More information

Technical Note. Booting from Embedded MMC (e.mmc) Introduction. TN-FC-06: Booting from Embedded MMC. Introduction

Technical Note. Booting from Embedded MMC (e.mmc) Introduction. TN-FC-06: Booting from Embedded MMC. Introduction Technical Note Booting from Embedded MMC (e.mmc) Introduction Introduction This technical note describes the features of booting a system (such as a wireless or embedded platform) from an embedded MultiMediaCard

More information

Micron part numbers e MMC registers Multilevel cell (MLC) to single-level cell (pslc) setting flow

Micron part numbers e MMC registers Multilevel cell (MLC) to single-level cell (pslc) setting flow Technical Note Introduction Migrating from e MMC Version 4.4 to 4.41 Devices Introduction This technical note describes the changes to the JEDEC e MMC specification from version 4.4 to version 4.41. It

More information

Maximum Monolithic Density Density Number of Stacks N25Q512Axxx. 512Mb 2 256Mb N25Q00AAxxx 1Gb 4 MT25Qxs01Gxxx. 1Gb 2 512Mb MT25Qxs02Gxxx 2Gb 4

Maximum Monolithic Density Density Number of Stacks N25Q512Axxx. 512Mb 2 256Mb N25Q00AAxxx 1Gb 4 MT25Qxs01Gxxx. 1Gb 2 512Mb MT25Qxs02Gxxx 2Gb 4 Technical te N25Q and MT25Q Serial Flash Stacked Devices Introduction Introduction This technical note describes the features of stacked devices for N25Q and MT25Q. These devices are memory with two or

More information

Technical Note. SMART Command Feature Set for the M500DC. Introduction. TN-FD-26: M500DC SSD SMART Implimentation. Introduction

Technical Note. SMART Command Feature Set for the M500DC. Introduction. TN-FD-26: M500DC SSD SMART Implimentation. Introduction Technical Note SMART Command Feature Set for the M500DC Introduction Introduction This technical note provides the self-monitoring, analysis, and reporting technology (SMART) command (B0h) feature set

More information

Technical Note. SMART Command Feature Set for the Introduction. TN-FD-34: 5100 SSD SMART Implementation. Introduction

Technical Note. SMART Command Feature Set for the Introduction. TN-FD-34: 5100 SSD SMART Implementation. Introduction Technical Note SMART Command Feature Set for the 5100 Introduction Introduction This technical note provides the self-monitoring, analysis, and reporting technology (SMART) command (B0h) feature set for

More information

Technical Note. SMART Command Feature Set for the M510DC. Introduction. TN-FD-33: M510DC SSD SMART Implementation. Introduction

Technical Note. SMART Command Feature Set for the M510DC. Introduction. TN-FD-33: M510DC SSD SMART Implementation. Introduction Technical Note SMART Command Feature Set for the M510DC Introduction Introduction This technical note provides the self-monitoring, analysis, and reporting technology (SMART) command (B0h) feature set

More information

Technical Note. Reset Configurations for MT25Q, MT25T, and N25Q Flash Memory Devices. Introduction

Technical Note. Reset Configurations for MT25Q, MT25T, and N25Q Flash Memory Devices. Introduction Technical Note Reset onfigurations for MT25Q, MT25T, and N25Q Flash Memory Devices Introduction This technical note provides a list of the reset configurations available for the MT25Q, MT25T, and N25Q

More information

Product Brief LPDDR2-PCM and Mobile LPDDR2 121-Ball MCP

Product Brief LPDDR2-PCM and Mobile LPDDR2 121-Ball MCP Features Product Brief LPDDR2-PCM and Mobile LPDDR2 121-Ball MCP MT66R7072A10AB5ZZW.ZCA, MT66R7072A10ACUXZW.ZCA MT66R5072A10ACUXZW.ZFA Features Micron LPDDR2-PCM and LPDDR2 components RoHS-compliant, green

More information

Technical Note. Improving Random Read Performance Using Micron's SNAP READ Operation. Introduction. TN-2993: SNAP READ Operation.

Technical Note. Improving Random Read Performance Using Micron's SNAP READ Operation. Introduction. TN-2993: SNAP READ Operation. Introduction Technical Note Improving Random Read Performance Using Micron's SNAP READ Operation Introduction NAND flash devices are designed for applications that require nonvolatile, high-density, fast

More information

User Guide. Storage Executive Command Line Interface. Introduction. Storage Executive Command Line Interface User Guide Introduction

User Guide. Storage Executive Command Line Interface. Introduction. Storage Executive Command Line Interface User Guide Introduction User Guide Storage Executive Command Line Interface Introduction Introduction This guide describes how to use Micron's Storage Executive command line interface (CLI) to monitor, manage, and configure Micron

More information

Power-Up, Power-Down, and Brownout Considerations on MT25Q, MT25T, and MT35X NOR Flash Memory

Power-Up, Power-Down, and Brownout Considerations on MT25Q, MT25T, and MT35X NOR Flash Memory Technical Note TN-25-38: Power Supply Considerations for NOR Flash Devices Introduction Power-Up, Power-Down, and Brownout Considerations on MT25Q, MT25T, and MT35X NOR Flash Memory Introduction This technical

More information

SMART Self-Test Reference for P400e SATA SSDs

SMART Self-Test Reference for P400e SATA SSDs Introduction SMART Self-Test Reference for P400e SATA SSDs Introduction This technical note describes the self-test modes, commands, values, and result checks for the self-monitoring, analysis, and reporting

More information

Technical Note. SMART Command Feature Set for the eu500. Introduction. TN-FD-35: eu500 eusb SMART Commands. Introduction

Technical Note. SMART Command Feature Set for the eu500. Introduction. TN-FD-35: eu500 eusb SMART Commands. Introduction Technical Note SMART Command Feature Set for the eu500 Introduction Introduction This technical note provides the self-monitoring, analysis, and reporting technology (SMART) command (B0h) feature set for

More information

User Guide. Storage Executive. Introduction. Storage Executive User Guide. Introduction

User Guide. Storage Executive. Introduction. Storage Executive User Guide. Introduction Introduction User Guide Storage Executive Introduction This guide describes how to install and use Storage Executive to monitor and manage Micron solid state drives (SSDs). Storage Executive provides the

More information

Technical Note. Client SATA SSD SMART Attribute Reference. Introduction. TN-FD-22: Client SATA SSD SMART Attribute Reference.

Technical Note. Client SATA SSD SMART Attribute Reference. Introduction. TN-FD-22: Client SATA SSD SMART Attribute Reference. Technical Note Client SATA SSD SMART Attribute Reference Introduction Introduction This technical note describes the self-monitoring, analysis, and reporting technology (SMART) feature set available for

More information

How to Power On and Power Off the M29F Flash Memory Device

How to Power On and Power Off the M29F Flash Memory Device Technical Note TN-13-23: M29F Flash Memory Power Guidelines Introduction How to Power On and Power Off the M29F Flash Memory Device Introduction This technical note provides guidelines for providing power

More information

(Altera ) SoC FPGA Platforms

(Altera ) SoC FPGA Platforms Optimizing e.mmc Memory on Intel (Altera ) SoC FPGA Platforms Justin Hunter, Application Engineer Micron Technology Embedded Business Unit 1 Objective Managed NAND devices, like e.mmc, provide not only

More information

Technical Note. Migrating from S29GL-S Devices to MT28FW NOR Flash Devices. Introduction. TN-13-41: Migrating S29GL-S to MT28FW NOR Flash Devices

Technical Note. Migrating from S29GL-S Devices to MT28FW NOR Flash Devices. Introduction. TN-13-41: Migrating S29GL-S to MT28FW NOR Flash Devices Technical Note Migrating from S29GL-S Devices to MT28FW NOR Flash Devices TN-3-: Migrating S29GL-S to MT28FW NOR Flash Devices Introduction Introduction This technical note describes the process for converting

More information

Parallel NOR and PSRAM 88-Ball MCP Combination Memory

Parallel NOR and PSRAM 88-Ball MCP Combination Memory Features Parallel NOR and PSRAM 88-Ball MCP Combination Memory MT38W2021A902ZQXZI.X69, MT38W2021A502ZQXZI.X69 Features Micron Parallel NOR Flash and PSRAM components RoHS-compliant, green package Space-saving

More information

Technical Note. Migrating from Cypress's FL-S and FS-S to Micron's MT25Q. Introduction

Technical Note. Migrating from Cypress's FL-S and FS-S to Micron's MT25Q. Introduction Technical Note TN-25-37: Migrating from Cypress's FL-S and FS-S to Micron's Introduction Migrating from Cypress's FL-S and FS-S to Micron's Introduction This technical note describes the process for converting

More information

Technical Note. Software Driver for M29EW NOR Flash Memory. Introduction. TN-13-12: Software Driver for M29EW NOR Flash Memory.

Technical Note. Software Driver for M29EW NOR Flash Memory. Introduction. TN-13-12: Software Driver for M29EW NOR Flash Memory. Technical Note TN-13-12: Software Driver for M29EW NOR Flash Memory Introduction Software Driver for M29EW NOR Flash Memory Introduction This technical note describes the C library source code for the

More information

Parallel NOR and PSRAM 56-Ball MCP Combination Memory

Parallel NOR and PSRAM 56-Ball MCP Combination Memory Parallel NOR and PSRAM 56-Ball MCP Combination Memory MT38L3031AA03JVZZI.X7A 56-Ball MCP: 128Mb Parallel NOR and 64Mb PSRAM Features Features Micron Parallel NOR Flash and PSRAM components RoHS-compliant,

More information

Technical Note. Migrating from Micron M25PE to Micron MT25Q 128Mb. Introduction. TN-25-36: Migrating from M25PE to MT25Q 128Mb.

Technical Note. Migrating from Micron M25PE to Micron MT25Q 128Mb. Introduction. TN-25-36: Migrating from M25PE to MT25Q 128Mb. Technical Note TN-25-36: Migrating from to MT25Q 128Mb Introduction Migrating from Micron to Micron MT25Q 128Mb Introduction The purpose of this technical note is to compare the features of Micron Flash

More information

Monitoring Ready/Busy Using the READ STATUS (70h) Command

Monitoring Ready/Busy Using the READ STATUS (70h) Command Introduction Technical Note Monitoring Ready/Busy Status in 2Gb, 4Gb, and 8Gb Micron NAND Flash Devices For detailed NAND Flash device information, refer to www.micron.com/products/nand/. Introduction

More information

Technical Note. Migrating from Micron M25P to Micron MT25Q 128Mb. Introduction. TN-25-34: Migrating from M25P to MT25Q 128Mb.

Technical Note. Migrating from Micron M25P to Micron MT25Q 128Mb. Introduction. TN-25-34: Migrating from M25P to MT25Q 128Mb. Technical Note TN-25-34: Migrating from to MT25Q 128Mb Introduction Migrating from Micron to Micron MT25Q 128Mb Introduction The purpose of this technical note is to compare the features of Micron Flash

More information

Technical Note. Enabling SD/uSD Card Lock/Unlock Feature in Linux. Introduction. TN-SD-01: Enabling SD/uSD Card Lock/Unlock in Linux.

Technical Note. Enabling SD/uSD Card Lock/Unlock Feature in Linux. Introduction. TN-SD-01: Enabling SD/uSD Card Lock/Unlock in Linux. Technical Note TN-SD-: Enabling SD/uSD Card Lock/Unlock in Linux Introduction Enabling SD/uSD Card Lock/Unlock Feature in Linux Introduction The lock/unlock feature of SD/uSD cards enables the host system,

More information

Technical Note. Adding ECC to a Data Bus with DDR4 x16 Components. Introduction. TN-40-41: Adding ECC With DDR4 x16 Components.

Technical Note. Adding ECC to a Data Bus with DDR4 x16 Components. Introduction. TN-40-41: Adding ECC With DDR4 x16 Components. Technical Note TN-40-41: Adding ECC With DDR4 Components Introduction Adding ECC to a Data Bus with DDR4 Components Introduction Systems with lower density memory requirements use DRAM components to save

More information

Technical Note. Enabling On-Die ECC NAND with JFFS2. Introduction. TN-29-75: Enabling On-Die ECC NAND with JFFS2. Introduction.

Technical Note. Enabling On-Die ECC NAND with JFFS2. Introduction. TN-29-75: Enabling On-Die ECC NAND with JFFS2. Introduction. Technical Note Enabling On-Die ECC NAND with JFFS2 Introduction Introduction Terminology The Micron NAND Flash memory with on-die ECC is specifically designed to work with application processors that have

More information

Technical Note NAND Flash Performance Increase with PROGRAM PAGE CACHE MODE Command

Technical Note NAND Flash Performance Increase with PROGRAM PAGE CACHE MODE Command Technical Note NAND Flash Performance Increase with PROGRAM PAGE CACHE MODE Command TN-29-14: Increasing NAND Flash Performance Overview Overview NAND Flash devices are designed for applications requiring

More information

Migrating from Spansion S25FL512S to Micron N25Q 512Mb Flash Device

Migrating from Spansion S25FL512S to Micron N25Q 512Mb Flash Device Technical Note TN-12-21: Migrating to Micron 512Mb Flash Device Introduction Migrating from Spansion 512S to Micron 512Mb Flash Device Introduction The purpose of this technical note is to compare features

More information

Migrating from Macronix MX29GL-G/F and MX68GL-G Devices to MT28EW NOR Flash Devices

Migrating from Macronix MX29GL-G/F and MX68GL-G Devices to MT28EW NOR Flash Devices Technical Note TN-13-38: Migrating MX29GL-G/F and MX68GL-G to MT28EW Introduction Migrating from Macronix MX29GL-G/F and MX68GL-G Devices to MT28EW Introduction This technical note describes the process

More information

Migrating from Spansion Am29F to Micron M29F NOR Flash Memories

Migrating from Spansion Am29F to Micron M29F NOR Flash Memories Technical Note Introduction Migrating from Spansion Am29F to Micron M29F Memories Introduction This technical note explains the process for migrating an application based on Spansion Am29F200B, Am29F400B,

More information

Technical Note. Migrating from Micron M29W Devices to MT28EW NOR Flash Devices. Introduction. TN-13-50: Migrating M29W to MT28EW NOR Flash Devices

Technical Note. Migrating from Micron M29W Devices to MT28EW NOR Flash Devices. Introduction. TN-13-50: Migrating M29W to MT28EW NOR Flash Devices Technical Note Migrating from Micron Devices to NOR Flash Devices TN-13-50: Migrating to NOR Flash Devices Introduction Introduction This technical note describes the process for converting a system design

More information

Technical Note. Micron N25Q to Micron MT25Q Migration. Introduction. TN-25-01: Micron N25Q to Micron MT25Q Migration. Introduction

Technical Note. Micron N25Q to Micron MT25Q Migration. Introduction. TN-25-01: Micron N25Q to Micron MT25Q Migration. Introduction Technical Note Micron to Micron Migration TN-25-01: Micron to Micron Migration Introduction Introduction This technical note provides information to help convert a system design from the Micron Flash memory

More information

Technical Note. Maximize SPI Flash Memory Design Flexibility With a Single Package. Introduction

Technical Note. Maximize SPI Flash Memory Design Flexibility With a Single Package. Introduction Technical Note Maximize SPI Flash Memory Design Flexibility With a Single Package TN-25-08: Maximize SPI Flash Memory Design Flexibility Introduction Introduction This technical note discusses how a single

More information

Technical Note Designing for High-Density DDR2 Memory

Technical Note Designing for High-Density DDR2 Memory Technical Note Designing for High-Density DDR2 Memory TN-47-16: Designing for High-Density DDR2 Memory Introduction Introduction DDR2 memory supports an extensive assortment of options for the system-level

More information

Technical Note. One-Time Programmable (OTP) Operations. Introduction. TN-29-68: 2Gb: x8, x16 NAND Flash Memory. Introduction

Technical Note. One-Time Programmable (OTP) Operations. Introduction. TN-29-68: 2Gb: x8, x16 NAND Flash Memory. Introduction Technical Note Introduction Introduction This technical note describes one-time programmable () operations in the following Micron NAND Flash devices: MT29F2G08ABAEAH4 MT29F2G08ABAEAWP MT29F2G08ABBEAH4

More information

MT51J256M32 16 Meg x 32 I/O x 16 banks, 32 Meg x 16 I/O x 16 banks. Options 1. Note:

MT51J256M32 16 Meg x 32 I/O x 16 banks, 32 Meg x 16 I/O x 16 banks. Options 1. Note: GDDR SGRM 8Gb: x6, x GDDR SGRM Features MTJ6M 6 Meg x I/O x 6 banks, Meg x 6 I/O x 6 banks Features = =.V ±% and.v ±% Data rate: 6.0 Gb/s, 7.0 Gb/s, 8.0 Gb/s 6 internal banks Four bank groups for t CCDL

More information

NAND Flash Performance Improvement Using Internal Data Move

NAND Flash Performance Improvement Using Internal Data Move TN-29-15: NAND Flash Internal Data Move Introduction Technical Note NAND Flash Performance Improvement Using Internal Data Move Introduction IDM Overview Micron offers a NAND Flash feature known as internal

More information

Technical Note Using Micron Asynchronous PSRAM with the NXP LPC2292 and LPC2294 Microcontrollers

Technical Note Using Micron Asynchronous PSRAM with the NXP LPC2292 and LPC2294 Microcontrollers TN-45-29: Using Micron Async PSRAM with NXP LPC2292/2294 Introduction Technical Note Using Micron Asynchronous PSRAM with the NXP LPC2292 and LPC2294 Microcontrollers Introduction The NXP LPC2292 and LPC2294

More information

Options. Data Rate (MT/s) CL = 3 CL = 2.5 CL = 2-40B PC PC PC

Options. Data Rate (MT/s) CL = 3 CL = 2.5 CL = 2-40B PC PC PC DDR SDRAM UDIMM MT16VDDF6464A 512MB 1 MT16VDDF12864A 1GB 1 For component data sheets, refer to Micron s Web site: www.micron.com 512MB, 1GB (x64, DR) 184-Pin DDR SDRAM UDIMM Features Features 184-pin,

More information

EDW4032BABG 8 Meg x 32 I/O x 16 banks, 16 Meg x 16 I/O x 16 banks. Options 1. Note:

EDW4032BABG 8 Meg x 32 I/O x 16 banks, 16 Meg x 16 I/O x 16 banks. Options 1. Note: GR5 SGRM 4Gb: x16, x32 GR5 SGRM Features EW4032G 8 Meg x 32 I/O x 16 banks, 16 Meg x 16 I/O x 16 banks Features = = 1.6V/1.55V/1.5V ±3% and 1.35V ±3% ata rate: 6.0 Gb/s, 7.0 Gb/s, 8.0 Gb/s (MX) 16 internal

More information

Comparing Micron N25Q and Macronix MX25L Flash Devices

Comparing Micron N25Q and Macronix MX25L Flash Devices Technical Note TN-12-14: Comparing and Flash Devices Introduction Comparing Micron and Macronix Flash Devices Introduction The purpose of this technical note is to compare features of the Micron (32Mb

More information

DDR SDRAM UDIMM. Draft 9/ 9/ MT18VDDT6472A 512MB 1 MT18VDDT12872A 1GB For component data sheets, refer to Micron s Web site:

DDR SDRAM UDIMM. Draft 9/ 9/ MT18VDDT6472A 512MB 1 MT18VDDT12872A 1GB For component data sheets, refer to Micron s Web site: DDR SDRAM UDIMM MT18VDDT6472A 512MB 1 MT18VDDT12872A 1GB For component data sheets, refer to Micron s Web site: www.micron.com 512MB, 1GB (x72, ECC, DR) 184-Pin DDR SDRAM UDIMM Features Features 184-pin,

More information

DDR SDRAM SODIMM MT8VDDT1664H 128MB 1. MT8VDDT3264H 256MB 2 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site:

DDR SDRAM SODIMM MT8VDDT1664H 128MB 1. MT8VDDT3264H 256MB 2 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site: SODIMM MT8VDDT1664H 128MB 1 128MB, 256MB, 512MB (x64, SR) 200-Pin SODIMM Features MT8VDDT3264H 256MB 2 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site: www.micron.com Features

More information

1. The values of t RCD and t RP for -335 modules show 18ns to align with industry specifications; actual DDR SDRAM device specifications are 15ns.

1. The values of t RCD and t RP for -335 modules show 18ns to align with industry specifications; actual DDR SDRAM device specifications are 15ns. UDIMM MT4VDDT1664A 128MB MT4VDDT3264A 256MB For component data sheets, refer to Micron s Web site: www.micron.com 128MB, 256MB (x64, SR) 184-Pin UDIMM Features Features 184-pin, unbuffered dual in-line

More information

DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB

DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB For component data sheets, refer to Micron s Web site: www.micron.com 512MB, 1GB, 2GB (x64, DR) 184-Pin DDR SDRAM UDIMM Features

More information

DUAL/QUAD SPI BUFFER READ & CONTINUOUS READ CONCURRENT OPERATIONS

DUAL/QUAD SPI BUFFER READ & CONTINUOUS READ CONCURRENT OPERATIONS Featuring 1.8V 2G-BIT (2 x 1G-BIT) SERIAL SLC NAND FLASH MEMORY WITH DUAL/QUAD SPI BUFFER READ & CONTINUOUS READ CONCURRENT OPERATIONS Publication Release Date: March 08, 2017 Preliminary - Revision B

More information

DDR SDRAM UDIMM MT8VDDT3264A 256MB MT8VDDT6464A 512MB For component data sheets, refer to Micron s Web site:

DDR SDRAM UDIMM MT8VDDT3264A 256MB MT8VDDT6464A 512MB For component data sheets, refer to Micron s Web site: DDR SDRAM UDIMM MT8VDDT3264A 256MB MT8VDDT6464A 512MB For component data sheets, refer to Micron s Web site: www.micron.com 256MB, 512MB (x64, SR) 184-Pin DDR SDRAM UDIMM Features Features 184-pin, unbuffered

More information

SPC584Cx, SPC58ECx. 32-bit Power Architecture microcontroller for automotive ASIL-B applications. Features

SPC584Cx, SPC58ECx. 32-bit Power Architecture microcontroller for automotive ASIL-B applications. Features 32-bit Power Architecture microcontroller for automotive ASIL-B applications Data brief Features etqfp64 (10 x 10 x 1.0 mm) etqfp144 (20 x 20 x 1.0 mm) AEC-Q100 qualified FPBGA292 (17 x 17 x 1.8 mm) High

More information

Technical Note. ONFI 4.0 Design Guide. Introduction. TN-29-83: ONFI 4.0 Design Guide. Introduction

Technical Note. ONFI 4.0 Design Guide. Introduction. TN-29-83: ONFI 4.0 Design Guide. Introduction Introduction Technical Note ONFI 4.0 Design Guide Introduction The ONFI 4.0 specification enables high data rates of 667 MT/s and 800 MT/s. These high data rates, along with lower input/output capacitance,

More information

Overview. TN-29-08: Hamming Codes for NAND Flash Memory Devices Overview

Overview. TN-29-08: Hamming Codes for NAND Flash Memory Devices Overview TN-9-8: Hamming Codes for NAND Flash Memory Devices Overview Technical Note Hamming Codes for NAND Flash Memory Devices For the latest NAND Flash product data sheets, see www.micron.com/products/nand/partlist.aspx.

More information

DDR2 SDRAM UDIMM MT16HTF25664AZ 2GB MT16HTF51264AZ 4GB For component data sheets, refer to Micron s Web site:

DDR2 SDRAM UDIMM MT16HTF25664AZ 2GB MT16HTF51264AZ 4GB For component data sheets, refer to Micron s Web site: DDR2 SDRAM UDIMM MT16HTF25664AZ 2GB MT16HTF51264AZ 4GB For component data sheets, refer to Micron s Web site: www.micron.com 2GB, 4GB (x64, DR): 240-Pin DDR2 SDRAM UDIMM Features Features 240-pin, unbuffered

More information

DDR SDRAM SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB

DDR SDRAM SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB 512MB, 1GB (x64, DR) 200-Pin DDR SODIMM Features For component data sheets, refer to Micron s Web site: www.micron.com Features 200-pin, small-outline dual

More information

3V 2G-BIT (2 x 1G-BIT) SERIAL SLC NAND FLASH MEMORY WITH

3V 2G-BIT (2 x 1G-BIT) SERIAL SLC NAND FLASH MEMORY WITH Featuring 3V 2G-BIT (2 x 1G-BIT) SERIAL SLC NAND FLASH MEMORY WITH DUAL/QUAD SPI BUFFER READ & CONTINUOUS READ CONCURRENT OPERATIONS Revision F Table of Contents 1. GENERAL DESCRIPTIONS... 6 2. FEATURES...

More information

Technical Note. Design Considerations when using NOR Flash on PCBs. Introduction and Definitions

Technical Note. Design Considerations when using NOR Flash on PCBs. Introduction and Definitions Technical Note Design Considerations when using NOR Flash on PCBs Introduction and Definitions TN-13-30: NOR Flash Memory: PCB Design Considerations Introduction and Definitions Table 1: Definitions Term

More information

Technical Note. GDDR5X: The Next-Generation Graphics DRAM. Introduction. TN-ED-02: GDDR5X: The Next-Generation Graphics DRAM.

Technical Note. GDDR5X: The Next-Generation Graphics DRAM. Introduction. TN-ED-02: GDDR5X: The Next-Generation Graphics DRAM. Technical Note TN-ED-02: GDDR5X: The Next-Generation Graphics DRAM Introduction GDDR5X: The Next-Generation Graphics DRAM Introduction Since its market introduction in 2008, GDDR5 SGRAM has been the choice

More information

GLS85VM1016B / 1032B / 1064B Industrial Temp emmc NANDrive

GLS85VM1016B / 1032B / 1064B Industrial Temp emmc NANDrive Features Industry Standard Embedded MultiMediaCard (emmc) Host Interface - JEDEC/MMC Standard Version 4.4 JESD84-A44 compliant - Backward compatible with emmc 4.3 Performance - emmc clock speed: Up to

More information

LC1628-L High-Speed USB Flash Disk Controller Preliminary Data Sheet

LC1628-L High-Speed USB Flash Disk Controller Preliminary Data Sheet LC1628-L High-Speed USB Flash Disk Controller Preliminary Data Sheet Rev. 1.1 Jan. 18, 2007 頁 1 / 12 Revision History Date Rev Owner Description Jan 09, 2007 1.0 Iris Chang Jan 18, 2007 1.1 Iris Chang

More information

GLS85VM1004A / 1008A / 1016A / 1032A Industrial Temp emmc NANDrive

GLS85VM1004A / 1008A / 1016A / 1032A Industrial Temp emmc NANDrive Features Industry Standard Embedded MultiMediaCard (emmc) Host Interface - JEDEC/MMC Standard Version 4.4 JESD84-A44 compliant - Backward compatible with emmc 4.3 Performance - emmc clock speed: Up to

More information

MT29F4G08AAA, MT29F8G08BAA, MT29F8G08DAA, MT29F16G08FAA, MT29F8G08MAA, MT29F16G08QAA,

MT29F4G08AAA, MT29F8G08BAA, MT29F8G08DAA, MT29F16G08FAA, MT29F8G08MAA, MT29F16G08QAA, Introduction Technical Note Improving NAND Flash Performance Using Two-Plane Command Enabled Micron Devices MT29F4G08AAA, MT29F8G08BAA, MT29F8G08DAA, MT29F16G08FAA, MT29F8G08MAA, MT29F16G08QAA, and MT29F32G08TAA

More information

Mobile DRAM Power-Saving Features and Power Calculations

Mobile DRAM Power-Saving Features and Power Calculations Technical Note TN-46-12: Mobile DRAM Power-Saving Features/Calculations Introduction Mobile DRAM Power-Saving Features and Power Calculations Introduction It s important for today s mobile system designer

More information

AN4820 Application note

AN4820 Application note Application note BlueNRG-1 and BlueNRG-2 low power modes Introduction The BlueNRG-1 and BlueNRG-2 are very low power Bluetooth low energy (BLE) single-mode systemson-chip, compliant with Bluetooth specification.

More information

W25N01GV 3V 1G-BIT SERIAL SPINAND FLASH MEMORY WITH DUAL/QUAD SPI. Publication Release Date: April 12, 2013 Preliminary - Revision A

W25N01GV 3V 1G-BIT SERIAL SPINAND FLASH MEMORY WITH DUAL/QUAD SPI. Publication Release Date: April 12, 2013 Preliminary - Revision A 3V 1G-BIT SERIAL SPINAND FLASH MEMORY WITH DUAL/QUAD SPI Preliminary - Revision A Table of Contents 1. GENERAL DESCRIPTIONS... 6 2. FEATURES... 6 3. PACKAGE TYPES AND PIN CONFIGURATIONS... 7 3.1 Pad Configuration

More information

AN2061 APPLICATION NOTE

AN2061 APPLICATION NOTE APPLICATION NOTE EEPROM Emulation with ST10F2xx Description External EEPROMs are often used in automotive applications to store adaptative/evolutive data. On the other hand, the Microcontroller used in

More information

SPC58EHx,SPC58NHx. A scalable approach for high-end body, networking and security platforms for Automotive. Description. Features

SPC58EHx,SPC58NHx. A scalable approach for high-end body, networking and security platforms for Automotive. Description. Features SPC58EHx,SPC58NHx A scalable approach for high-end body, networking and security platforms for Automotive Data brief Package: etqfp144, elqfp176, FPBGA302, FPBGA386 Supply: 5V or 3.3V with internal regulator

More information

RN0084 Release note. ST-LINK/V2 firmware upgrade. About this release note

RN0084 Release note. ST-LINK/V2 firmware upgrade. About this release note Release note ST-LINK/V2 firmware upgrade About this release note This Release Note contains information about the firmware of the ST-LINK/V2. The ST-LINK/V2 firmware upgrade application can be used to

More information

Table 1 provides silicon errata information that relates to the masks 0M55B, 1M55B, and M55B of the MC9328MX21S (i.mx21s) applications processor.

Table 1 provides silicon errata information that relates to the masks 0M55B, 1M55B, and M55B of the MC9328MX21S (i.mx21s) applications processor. Freescale Semiconductor Chip Errata Document : MC9328MX21SCE Rev. 4, 11/2012 MC9328MX21S Chip Errata for Masks:,, Table 1 provides silicon errata information that relates to the masks,, and of the MC9328MX21S

More information

DDR2 SDRAM UDIMM MT4HTF1664AY 128MB MT4HTF3264AY 256MB MT4HTF6464AY 512MB. Features. 128MB, 256MB, 512MB (x64, SR) 240-Pin DDR2 SDRAM UDIMM.

DDR2 SDRAM UDIMM MT4HTF1664AY 128MB MT4HTF3264AY 256MB MT4HTF6464AY 512MB. Features. 128MB, 256MB, 512MB (x64, SR) 240-Pin DDR2 SDRAM UDIMM. DDR2 SDRAM UDIMM MT4HTF1664AY 128MB MT4HTF3264AY 256MB MT4HTF6464AY 512MB 128MB, 256MB, 512MB (x64, SR) 240-Pin DDR2 SDRAM UDIMM Features Features 240-pin, unbuffered dual in-line memory module (UDIMM)

More information

Technical Note. J3F 32Mb, 64Mb, 256Mb Parallel NOR Flash Memory Software Device Drivers. Introduction. TN-12-50: J3F Software Device Drivers

Technical Note. J3F 32Mb, 64Mb, 256Mb Parallel NOR Flash Memory Software Device Drivers. Introduction. TN-12-50: J3F Software Device Drivers Technical Note J3F 32Mb, 64Mb, 256Mb Parallel NOR Flash Memory Software Device Drivers TN-12-50: J3F Software Device Drivers Introduction Introduction This technical note provides a description of the

More information

1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded

1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded Distinctive Characteristics Density Gb / 2 Gb / 4 Gb Architecture Input / Output Bus Width: 8 bits / 6 bits Page size: 8: Gb: (2048 +

More information

Personalized Commerce View

Personalized Commerce View Personalized Commerce View Cisco Order Status Tool User Guide The Cisco Personalized Commerce View User Guide Table of Contents CISCO ORDER STATUS TOOL USER GUIDE...1 TABLE OF CONTENTS...2 ABOUT THIS GUIDE...4

More information

3V 1G-BIT SERIAL SLC NAND FLASH MEMORY WITH DUAL/QUAD SPI BUFFER READ & CONTINUOUS READ

3V 1G-BIT SERIAL SLC NAND FLASH MEMORY WITH DUAL/QUAD SPI BUFFER READ & CONTINUOUS READ 3V 1G-BIT SERIAL SLC NAND FLASH MEMORY WITH DUAL/QUAD SPI BUFFER READ & CONTINUOUS READ Revision L Table of Contents 1. GENERAL DESCRIPTIONS... 6 2. FEATURES... 6 3. PACKAGE TYPES AND PIN CONFIGURATIONS...

More information

TwinDie 1.35V DDR3L SDRAM

TwinDie 1.35V DDR3L SDRAM TwinDie 1.35R3L SDRAM MT41K4G4 256 Meg x 4 x 8 Banks x 2 Ranks MT41K2G8 128 Meg x 8 x 8 Banks x 2 Ranks 16Gb: x4, x8 TwinDie DDR3L SDRAM Description Description The 16Gb (TwinDie ) DDR3L SDRAM (1.35V)

More information

Technical Note Using CellularRAM to Replace UtRAM

Technical Note Using CellularRAM to Replace UtRAM Technical Note Using CellularRAM to Replace UtRAM TN-45-13: CellularRAM replacing UtRAM Introduction Introduction The Micron family of CellularRAM devices is designed to be backward compatible with 6T

More information

AN4749 Application note

AN4749 Application note Application note Managing low-power consumption on STM32F7 Series microcontrollers Introduction The STM32F7 Series microcontrollers embed a smart architecture taking advantage of the ST s ART- accelerator

More information

EMC Unisphere for VMAX Database Storage Analyzer

EMC Unisphere for VMAX Database Storage Analyzer EMC Unisphere for VMAX Database Storage Analyzer Version 8.0.3 Online Help (PDF version) Copyright 2014-2015 EMC Corporation. All rights reserved. Published in USA. Published June, 2015 EMC believes the

More information

Technical Note. Comparing Micron N25Q and M25P Flash Devices. Introduction. TN-12-12: Comparing N25Q and M25P Flash Devices.

Technical Note. Comparing Micron N25Q and M25P Flash Devices. Introduction. TN-12-12: Comparing N25Q and M25P Flash Devices. Technical Note Comparing Micron and Flash Devices TN-12-12: Comparing and Flash Devices Introduction Introduction The purpose of this technical note is to compare features of the Micron serial- Flash family

More information

IP-48DAC channel 16-bit Digital/Analog Converter With memory Industry Pack Module PROGRAMMING MANUAL Version 1.

IP-48DAC channel 16-bit Digital/Analog Converter With memory Industry Pack Module PROGRAMMING MANUAL Version 1. IP-48DAC-16 48-channel 16-bit Digital/Analog Converter With memory Industry Pack Module PROGRAMMING MANUAL 828-10-000-4000 Version 1.0 January 2007 ALPHI TECHNOLOGY CORPORATION 1898 E. Southern Ave Tempe,

More information

SSD ENDURANCE. Application Note. Document #AN0032 Viking SSD Endurance Rev. A

SSD ENDURANCE. Application Note. Document #AN0032 Viking SSD Endurance Rev. A SSD ENDURANCE Application Note Document #AN0032 Viking Rev. A Table of Contents 1 INTRODUCTION 3 2 FACTORS AFFECTING ENDURANCE 3 3 SSD APPLICATION CLASS DEFINITIONS 5 4 ENTERPRISE SSD ENDURANCE WORKLOADS

More information

GLS89SP032G3/064G3/128G3/256G3/512G3/001T3 Industrial Temp 2.5 SATA ArmourDrive PX Series

GLS89SP032G3/064G3/128G3/256G3/512G3/001T3 Industrial Temp 2.5 SATA ArmourDrive PX Series Features Industry Standard 2.5 SATA Host Interface - SATA 1.5Gb/s, 3Gb/s and 6Gb/s - SATA Revision 3.2 - ATA/ATAPI-8 compliant - Supports 48-bit address feature set Performance - Sequential data read:

More information

AN5153 Application note

AN5153 Application note Application note IMA usage with SPC582B60 Introduction This document describes the usage of IMA. This design targets automotive applications and this cost-effective solution is based on the SPC582B60 device

More information

GLS86FB008G2 / 016G2 / 032G2 / 064G2 Industrial Temp msata ArmourDrive

GLS86FB008G2 / 016G2 / 032G2 / 064G2 Industrial Temp msata ArmourDrive Features Industry Standard mini-serial ATA (minisata or msata) Host Interface - SATA 1.5 Gb/s or SATA 3.0 Gb/s 1) - ATA/ATAPI-8 compliant - Supports 48-bit address feature set Performance - Sequential

More information

IoT, Wearable, Networking and Automotive Markets Driving External Memory Innovation Jim Cooke, Sr. Ecosystem Enabling Manager, Embedded Business Unit

IoT, Wearable, Networking and Automotive Markets Driving External Memory Innovation Jim Cooke, Sr. Ecosystem Enabling Manager, Embedded Business Unit IoT, Wearable, Networking and Automotive Markets Driving External Memory Innovation Jim Cooke, Sr. Ecosystem Enabling Manager, Embedded Business Unit JCooke@Micron.com 2016Micron Technology, Inc. All rights

More information

W25Q257FV 3V 256M-BIT SERIAL FLASH MEMORY WITH DUAL/QUAD SPI & QPI

W25Q257FV 3V 256M-BIT SERIAL FLASH MEMORY WITH DUAL/QUAD SPI & QPI 3V 256M-BIT SERIAL FLASH MEMORY WITH DUAL/QUAD SPI & QPI Publication Release Date: November 13, 2015-0 - Preliminary -Revision D Preliminary -Revision D Table of Contents 1. GENERAL DESCRIPTIONS... 5 2.

More information

Hiddn SafeDisk. Installation Manual. Version April //

Hiddn SafeDisk. Installation Manual. Version April // Hiddn SafeDisk Installation Manual Version 2.1.5 24. April 2018 1. Introduction This document will explain what is delivered, how units are initialized (loaded with certificates) and some alternatives

More information

Micron Serial NOR Flash Memory

Micron Serial NOR Flash Memory Micron Serial NOR Flash Memory 3V, Twin-Quad I/O, 4KB, 32KB, 64KB, Sector Erase MT25TL256 256Mb, Twin-Quad I/O Serial Flash Memory Features Features Stacked device (two 128Mb die) SPI-compatible serial

More information

AT45DB041E. 4-Mbit DataFlash (with Extra 128-Kbits), 1.65V Minimum SPI Serial Flash Memory. Features

AT45DB041E. 4-Mbit DataFlash (with Extra 128-Kbits), 1.65V Minimum SPI Serial Flash Memory. Features 4-Mbit DataFlash (with Extra 128-Kbits), 1.65V Minimum SPI Serial Flash Memory Features Single 1.65V - 3.6V supply Serial Peripheral Interface (SPI) compatible Supports SPI modes 0 and 3 Supports RapidS

More information

A33 Nand Flash Controller Specification

A33 Nand Flash Controller Specification A33 Nand Flash Controller Specification Revision 1.0 Feb.28,2014 Copyright 2014 by Allwinner. All rights reserved Page 1 of 29 DECLARATION THIS DOCUMENTATION IS THE ORIGINAL WORK AND COPYRIGHTED PROPERTY

More information

* Performance and power specifications subject to change

* Performance and power specifications subject to change Features Industry Standard Embedded MultiMediaCard (emmc) Host Interface - JEDEC/MMC Standard Version 5.1 JESD84-B51 compliant - Backward compatible with previous MMC Performance - emmc clock speed: Up

More information

AN4872 Application note

AN4872 Application note Application note BlueNRG-1 and BlueNRG-2 UART bootloader protocol Introduction The BlueNRG-1 and BlueNRG-2 are very low power Bluetooth low energy (BLE) single-mode systemson-chip, compliant with Bluetooth

More information

3V 512M-BIT (2 x 256M-BIT) SERIAL MCP FLASH MEMORY W25M512JV. Featuring. With Multi I/O SPI & Concurrent Operations

3V 512M-BIT (2 x 256M-BIT) SERIAL MCP FLASH MEMORY W25M512JV. Featuring. With Multi I/O SPI & Concurrent Operations Featuring 3V 512M-BIT (2 x 256M-BIT SERIAL MCP FLASH MEMORY With Multi I/O SPI & Concurrent Operations - Revision D Table of Contents 1. GENERAL DESCRIPTIONS... 6 2. FEATURES... 6 3. PACKAGE TYPES AND

More information

An Introduction to SPI-NOR Subsystem. By Vignesh R Texas Instruments India

An Introduction to SPI-NOR Subsystem. By Vignesh R Texas Instruments India An Introduction to SPI-NOR Subsystem By Vignesh R Texas Instruments India vigneshr@ti.com About me Software Engineer at Texas Instruments India Part of Linux team that works on supporting various TI SoCs

More information

DDR2 SDRAM UDIMM MT9HTF6472AZ 512MB MT9HTF12872AZ 1GB MT9HTF25672AZ 2GB. Features. 512MB, 1GB, 2GB (x72, SR) 240-Pin DDR2 SDRAM UDIMM.

DDR2 SDRAM UDIMM MT9HTF6472AZ 512MB MT9HTF12872AZ 1GB MT9HTF25672AZ 2GB. Features. 512MB, 1GB, 2GB (x72, SR) 240-Pin DDR2 SDRAM UDIMM. DDR2 SDRAM UDIMM MT9HTF6472AZ 512MB MT9HTF12872AZ 1GB MT9HTF25672AZ 2GB 512MB, 1GB, 2GB (x72, SR) 240-Pin DDR2 SDRAM UDIMM Features Features 240-pin, unbuffered dual in-line memory module Fast data transfer

More information

Optimizing Fusion iomemory on Red Hat Enterprise Linux 6 for Database Performance Acceleration. Sanjay Rao, Principal Software Engineer

Optimizing Fusion iomemory on Red Hat Enterprise Linux 6 for Database Performance Acceleration. Sanjay Rao, Principal Software Engineer Optimizing Fusion iomemory on Red Hat Enterprise Linux 6 for Database Performance Acceleration Sanjay Rao, Principal Software Engineer Version 1.0 August 2011 1801 Varsity Drive Raleigh NC 27606-2072 USA

More information

TwinDie 1.35V DDR3L SDRAM

TwinDie 1.35V DDR3L SDRAM TwinDie 1.35R3L SDRAM MT41K2G4 128 Meg x 4 x 8 Banks x 2 Ranks MT41K1G8 64 Meg x 8 x 8 Banks x 2 Ranks 8Gb: x4, x8 TwinDie DDR3L SDRAM Description Description The 8Gb (TwinDie ) DDR3L SDRAM (1.35V) uses

More information

PARAMETER SYMBOL MIN MAX Address Access Time

PARAMETER SYMBOL MIN MAX Address Access Time TECHNICAL NOTE TN-00-17 TIMING SPECIFICATION DERATING FOR HIGH CAPACITANCE OUTPUT LOADING Introduction Memory systems are varied in the number of controllers, memory, and other devices that may share a

More information