Power System Protection Laboratory Electric Power and Energy Engineering

Size: px
Start display at page:

Download "Power System Protection Laboratory Electric Power and Energy Engineering"

Transcription

1 Experiment no. 5 Overcurrent Protection of Transmission Line Power System Protection Laboratory Electric Power and Energy Engineering Dr. Jamal Thalji Eng. Saddam Ratrout Eng. Mageda El-Moubarak

2 Content of experiment: 1. Determination of reset ratio in the case of three pole short circuit. 2. Determination of reset ratio in the case of two pole short circuit. 3. Determination of reset ratio in the case of one pole short circuit. 4. Testing a circuit breaker trip characteristic in the event of a fault. Required equipment: Number Equipment Name Quantity CO3301-4J Overcurrent protection 1 CO3301-5P Power switch module 2 CO3301-3F Resistive load (3-phase, 1 kw) 1 CO3301-3A Line model 1 ST8008-4S Adjustable three-phase power supply (0-400V / 2A, 72PU) 1 CO5127-1Y Three-phase meter 2 LM 2330 Digital multimeter 1 Theory of Overcurrent Protection of Transmission line. Overcurrent protection is a selective type of overload and short circuit protection, used mainly in radial networks with single ended feeders found in medium voltage systems. Figure 1 shows the single line diagram of the radial network. Most protective devices of this kind also serve as a backup measure for differential and distance protection in the case of transformers, machines and transmission lines. The protective device is energized (excited) by a short circuit current I k or an overcurrent I > which significantly exceeds the operating current I N. To obtain an adequate measurement variable for the protective device, the current is coupled out via a current transformer and measured. If the current magnitude exceeds the set threshold, this is considered as the start command for the relay preset time delay. If the excitation is still present after the time delay, the protective device performs the desired action; the output relay is actuated, thereby triggering the circuit breaker. Otherwise, the action is cancelled. Simple overcurrent protection is non-directional, i.e. its decision criteria only involve the measured current magnitude and time length of the energized phase. For overcurrent to result in energization, the threshold value (pickup value) must lie below the minimum short circuit current occurring in the system. The reset value at which the protective relay returns to its initial position must be lower than the (minimum) operating current (pickup value). This results in a hysteresis defined by the reset ratio RR (ratio of release and response values). In modern protective relays, this ratio is approximately RR = 0.95 for overcurrent energization. A reset ratio of RR = 1 would pose a risk of chatter, i.e. uncontrolled engagement and release by the protective device. Overcurrent protection can have a directional or non-directional trip characteristic. The single stage trip characteristic of non-directional, maximum-overcurrent time protection is shown in Figure 2 and functions as described above. 1

3 Figure 1: Radial power system. A disadvantage of the simple trip characteristic is that the delay time is always the same, regardless of the fault current magnitude. An excessively long delay time in the event of a fault can result in considerable damage to components. For this reason, most protective devices provide a choice of two or more tripping ranges. Figure 3 shows a distinction between the "overload" and "short circuit" ranges. If the excitation level lies between amperages I> and I >>, tripping takes place at instant t> (overload stage). At very high amperages beyond I>>, such as those occurring during short circuits, tripping takes place sooner at instant t>> (short-circuit stage). If several protective devices are connected in series across the network, this leads to a graded curve (Figure 4), the nearest protective relay being tripped in the event of a fault. If a protective relay fails, the previous one acts as a backup with a longer tripping time. The disadvantage here is that a fault near the feed point (source), where the tripping time t> is longest, results in the highest current. Consequently, additional protective measures are needed here. 2

4 Figure 2: Simple trip characteristic of non-directional, maximum-overcurrent time protection. Figure 3: Trip characteristic of two-stage, non-directional, maximum-overcurrent time protection. 3

5 Figure 4: Network map with non-directional, maximum-overcurrent time protection relay. Review questions (several answers may be correct): Where is overcurrent time protection normally used? Highly meshed networks. As a backup measure for transformers, differential / distance protection etc. Simple radial networks. What is the fast tripping stage known as? Turbo stage. Short-circuit stage. Overload stage. What are the disadvantages of overcurrent time protection? This kind of protective relay is very costly compared with other protective devices. Fault currents are highest in the proximity of the feed point, the location of the overcurrent relay with the longest tripping time. The protective relay responds very slowly. A simple trip characteristic involves a constant time delay regardless of the fault current's amperage. Experimental Procedure The overhead transmission line receives a three-phase power supply and is loaded symmetrically at its end. A circuit breaker (power switch module) is located before the transmission line to disconnect the line from the power supply in the event of a fault. The time overcurrent relay measures the current in each phase via a current transformer. Set up the experiment as shown in the circuit diagram of Figure 5 and layout plan of Figure 6. 4

6 Figure 5: Circuit diagram Figure 6: Layout plan The potentiometers need to be set precisely and the switching times measured subsequently. The accompanying HTL-Soft 4 software is provided for this purpose. The page titled "Operating the SEG HTL Soft" later describes the software's control elements. 5

7 1. Set the load to its lowest level. 2. Set the relay DIP switches as indicated in the table below. (active setting = green background) Start the SEG HTL-Soft software by pressing the corresponding icon. Figure 12: Start icon The window shown below appears. Figure 13: Device selection menu Click on the appropriate device to open its user interface. If the device was not previously configured, choose a connection first. For this purpose, click on the PC COM port (1, 2, 3 or 4 as shown below) which you set. The window shown in Figure 15 then appears. 6

8 Figure 14: Connection options The user interface has four different color-coded display groups: ALARM / MEASUREMENT VALUE / STATUS / PARAMETER The settings and measurement values are polled continuously, so that any change is indicated immediately in the presence of a connection between the protective relay and the PC. Use the scroll bar on the right-hand side to move up and down the displayed list. Make sure that the parameter settings is PANEL Figure 15: Display parameters For the purpose of setting the potentiometers, the values in this view are indicated to an accuracy of two decimal places (Figure 16). Figure 16: Potentiometer settings 7

9 1. Determination of the reset ratio in the case of a three-pole short circuit. Connect the power switch module as shown in Figure 7 so that the right-hand side is bridged, and the left-hand side connected to all three phases at the overhead line's end. For this experiment, disconnect the relay output from power switch 1 to prevent premature tripping. Figure 7: Three-pole short circuit Figure 8: Potentiometer On relay XI1-I, set the overcurrent level I> to 0.5 A and all other potentiometers to 0. Make sure that the source voltage is 0 V. Turn on both power switches and slowly increase the voltage until the relay is energized (red upper LED comes on). Read the amperage on the three phase meter and note the pickup value Ipickup in the table below. Reduce the voltage on the three phase power supply and note the release (reset) value Ireset at which the relay is deenergized again (red upper LED goes off). Calculate the reset ratio RR from the pickup value Ipickup and reset value Ireset as follows; RR = Ireset / Ipickup Repeat this procedure at overcurrent (I>) levels of 0.8, 1 and 1.2A and enter the corresponding values in the table below. Open power switches 1 and 2 (OFF buttons) and turn the voltage back to 0 V. 8

10 2. Determination of the reset ratio in the case of a two pole short circuit. We will now simulate a two-pole short circuit and determine the associated reset ratio. Close power switch 2 as shown in Figure 9, so that the right-hand side is bridged, and the left-hand side connected to two phases at the overhead line's end. Figure 9: Two-pole short circuit Leave the potentiometer settings from the first experiment unchanged. Turn on both power switches and slowly increase the voltage until the relay is energized. Read the amperage on the three-phase meter and note the pickup value Ipickup in the table below. Reduce the voltage on the three-phase power supply and note the release value Ireset at which the relay is de-energized again. Calculate the reset ratio RR from the pickup value Ipickup and release (reset) value Ireset as follows; RR = Ireset / Ipickup Repeat this procedure at overcurrent (I> levels) 0.8, 1 and 1.2A and enter the corresponding values in the table below. Open power switches 1 and 2 (OFF buttons) and turn the voltage back to 0 V. 9

11 3. Determination of the reset ratio in the case of a single pole short circuit. We will now simulate one-pole short circuit and determine the associated reset ratio. Connect the power switch (2) as shown in Figure10, so that the right-hand side is bridged and the left hand side connected to one phase and the N-conductor. Figure 10: One-pole short circuit On relay XI1-I, set the overcurrent level I> to 0.5 A and all other potentiometers respectively to their lowest values. Turn on both power switches and slowly increase the voltage until the relay is energized. Read the amperage on the three phase meter and note the pickup value Ipickup in the table below. Reduce the voltage on the three-phase power supply and note the release (reset) value Ireset at which the relay is de-energized again. Calculate the reset ratio RR from the pickup value Ipickup and release value Ireset as follows; RR = Ireset/ Ipickup Repeat this procedure at overcurrent (I>) levels 0.8, 1 and 1.2A and enter the corresponding values in the table below. 10

12 Review questions What is the average reset ratio RR in all three experiments? RR = % Why does the reset ratio deviate from 1, thereby resulting in a hysteresis between the pickup and release values? Digital protective relays are often imprecise and have an indeterminate response. A constant hysteresis prevents chatter and ensures a stable response. The transformers in the network cause delays which result in the hysteresis. 4. Testing a circuit breaker trip characteristic in the event of a fault. Set up the experiment as shown in Figure 11. Reestablish the connection between the OFF button and the 24 VDC power supply of power switch 1 as well as relay outputs 24/21 and 14/11. Figure Layout plan Set the relay's DIP switches as shown in the table below (active setting = green background). 11

13 A. Simulation of an overload test Open power switch 2 (OFF button). The potentiometers should remain at the settings shown in the table above. Leave the load setting unchanged. Line-to-line voltage ULL = 220V. Turn on power switch 1 (ON button). The configuration is back in its normal operating mode. Decrease the load resistance slowly until the relay responds. At which stage does pick-up occur? Stage is: At which stage does tripping occur? Stage is: What is the trip delay? Trip delay is: B. Simulation of a three-pole short circuit Make sure that power switch 2 is open (OFF button). Check the potentiometer settings once again. Turn the load control up to the halfway mark, so that the white arrow points straight up. Set the line-to-line voltage ULL = 220 V. Turn on power switch 1 (ON button). The configuration is now in its normal operating mode. Check the connections for power switch 2. Three phases at the end of the line must be linked together. Produce a three-pole short circuit by closing power switch 2 (ON button). At which stage does pick-up occur? Stage is: At which stage does tripping occur? Stage is: What is the trip delay? Trip delay is: 12

VAMP 221. Table of Contents

VAMP 221. Table of Contents 2 V221/EN M/E019 VAMP 221 Table of Contents Table of Contents 1. General... 7 1.1. VAMP 221 arc protection system components... 7 1.1.1. Central unit VAMP 221... 9 1.1.2. I/O units VAM 12L / VAM 12 LD,

More information

Verification of Utility Requirements on Modern Numerical Busbar Protection by Dynamic Simulation

Verification of Utility Requirements on Modern Numerical Busbar Protection by Dynamic Simulation 111 Verification of Utility Requirements on Modern Numerical Busbar Protection by Dynamic Simulation Z. Gajić (ABB, Sweden) JP Wang / PW Gong / YS Xu (ABB China) ZX Zhou (CERPI, China) Summary Power utilities

More information

MiCOM P122C Time-Overcurrent Protection

MiCOM P122C Time-Overcurrent Protection Protection Relays 01 MiCOM P122C Time-Overcurrent Protection Customer Benefits 1A/5A software setting 4 function keys Compact unit for flush and wall-surface mounting Comprehensive measurements Disturbance

More information

Distribution Management System Open++ Opera v.3.3. User Manual

Distribution Management System Open++ Opera v.3.3. User Manual Distribution Management System Open++ Opera v.3.3 User Manual 1MRS 751464-MUM Issued: 31.12.1999 Version: D/29.8.2003 Program Revision: 3.3D We reserve the right to change data without prior notice. User

More information

EE 868: Digital Techniques for Power System Protection. Laboratory Assignment #2 (Feb. 8 (12pm)) Overcurrent Relay Coordination

EE 868: Digital Techniques for Power System Protection. Laboratory Assignment #2 (Feb. 8 (12pm)) Overcurrent Relay Coordination EE 868: Digital Techniques for Power System Protection 1 Objective Laboratory Assignment #2 (Feb. 8 (12pm)) Overcurrent Relay Coordination Rama Gokaraju Department of Electrical & Computer Engineering

More information

PANEL DIGITAL READOUT ABSOLUTE/RELATIVE DISPLAY INPUT BY POTENTIOMETER 2 RELAY OUTPUTS

PANEL DIGITAL READOUT ABSOLUTE/RELATIVE DISPLAY INPUT BY POTENTIOMETER 2 RELAY OUTPUTS VD4 LQ2R PANEL DIGITAL READOUT ABSOLUTE/RELATIVE DISPLAY INPUT BY POTENTIOMETER 2 RELAY OUTPUTS Digital readouts series VD4 LQ can be coupled to linear and rotary potentiometers with resistive value ranging

More information

C C CIRCUIT-BREAKERS Moulded-case (MCCB), general. 1. Introduction. 2. General description

C C CIRCUIT-BREAKERS Moulded-case (MCCB), general. 1. Introduction. 2. General description CIRCUIT-BREAKERS C C81-21 CIRCUIT-BREAKERS - Contents 1. Introduction 2. General description 3. Rated voltages 3.1 Rated operational voltage (U e ) 3.2 Rated impulse withstand voltage (U imp ) 3.3 Rated

More information

Auto-Sectionalizing Firmware Product Description, Information and Specification

Auto-Sectionalizing Firmware Product Description, Information and Specification g GE Energy Services Product Description, Information and Specification Document Number : PRPI-023 Version : 3.00 Revision : 2 Date : 03.02.10 Classification: GE Energy Services NOTICE OF COPYRIGHT & PROPRIETARY

More information

PRC Coordination of Protection Systems for Performance During Faults

PRC Coordination of Protection Systems for Performance During Faults PRC-027-1 Coordination of Protection Systems for Performance During Faults A. Introduction 1. Title: Coordination of Protection Systems for Performance During Faults 2. Number: PRC-027-1 3. Purpose: To

More information

Common Departures Interconnecting Facilities Requirements

Common Departures Interconnecting Facilities Requirements Welcome to our e-rew Express. In our last issue, we discussed the common departures on metering installation requirements. This time, we would like to discuss the common departures on the customer low

More information

Standard Development Timeline

Standard Development Timeline Standard Development Timeline This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective. Description of Current Draft

More information

Utility Implements Communications- Assisted Special Protection and Control Schemes for Distribution Substations

Utility Implements Communications- Assisted Special Protection and Control Schemes for Distribution Substations Utility Implements Communications- Assisted Special Protection and Control Schemes for Distribution Substations Michael. Duff City of College Station Payal Gupta, Dharmendra Prajapati, and Alex Langseth

More information

Application Techniques CENTERLINE 2100 Motor Control Centers

Application Techniques CENTERLINE 2100 Motor Control Centers POWER SYSTEM CONSIDERATIONS FOR PRODUCT SELECTION Application Techniques CENTERLINE 2100 Motor Control Centers Power System Considerations for Product Selection i Power System Considerations for Product

More information

SEL-487B. A Powerful Solution for Busbar Differential Protection. Bus Differential and Breaker Failure Relay

SEL-487B. A Powerful Solution for Busbar Differential Protection. Bus Differential and Breaker Failure Relay Bus Differential and Breaker Failure Relay A Powerful Solution for Busbar Differential Protection Features and Benefits Select the for the differential protection of busbar systems with up to 18 terminals.

More information

Power systems 5: Protection

Power systems 5: Protection Power systems 5: Protection Introduction In this series of articles, we will be looking at each of the main stages of the electrical power system in turn. As you will recall from our Introduction to Electrical

More information

Distribution Management System Open++ Opera v.3.2. User Manual

Distribution Management System Open++ Opera v.3.2. User Manual Distribution Management System Open++ Opera v.3.2 1MRS 751464-MUM Issued: 31.12.1999 Version: B/21.2.2001 Checked: MK Approved: PV Open++ Opera v.3.2 We reserve the right to change data without prior

More information

Standard Development Timeline

Standard Development Timeline Standard Development Timeline This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective. Description of Current Draft

More information

Identify and understand the operation of common bus. After this presentation you will be able to: Identify common bus arrangements

Identify and understand the operation of common bus. After this presentation you will be able to: Identify common bus arrangements Introduction to Bus Protection By Matt Horvath, P.E. November 6, 2018 Electrical Buses Physical and Electrical Junction A bus is a critical element of a power system, as it is the point of convergence

More information

We will discuss two types of loss-of-potential (LOP) logic during this presentation:

We will discuss two types of loss-of-potential (LOP) logic during this presentation: 1 We will discuss two types of loss-of-potential (LOP) logic during this presentation: Traditional LOP, which uses traditional voltage and current elements to detect an LOP condition. Advanced LOP, which

More information

MiCOM P521. Fast Feeder Differential Protection

MiCOM P521. Fast Feeder Differential Protection 01 Fast Feeder Differential Protection The relay provides high-speed two-ended current differential unit protection of overhead lines and underground cables in applications such as ring mains and parallel

More information

TRI-SERVICE ELECTRICAL WORKING GROUP (TSEWG) 07/16/08 TSEWG TP-3: SURGE PROTECTOR PERFORMANCE AND EVALUATION CRITERIA

TRI-SERVICE ELECTRICAL WORKING GROUP (TSEWG) 07/16/08 TSEWG TP-3: SURGE PROTECTOR PERFORMANCE AND EVALUATION CRITERIA TSEWG TP-3: SURGE PROTECTOR PERFORMANCE AND EVALUATION CRITERIA SURGE PROTECTION DESIGN. Parallel Versus Series Protection. Surge protectors within the scope of this UFC should normally be of the parallel

More information

System Protection and Control Subcommittee

System Protection and Control Subcommittee Power Plant and Transmission System Protection Coordination GSU Phase Overcurrent (51T), GSU Ground Overcurrent (51TG), and Breaker Failure (50BF) Protection System Protection and Control Subcommittee

More information

selectivity module Selective monitoring of 24 V DC load circuits

selectivity module Selective monitoring of 24 V DC load circuits Siemens AG 07 Miniature circuitbreaker versus electronic selectivity module Selective monitoring of 4 V DC load circuits In modern plant and machine construction all 4 V DC loads whether rugged electro-mechanical

More information

XU1-E Earth fault voltage relay. (August 1996) Manual XU1-E (Revision New)

XU1-E Earth fault voltage relay. (August 1996) Manual XU1-E (Revision New) XU1-E Earth fault voltage relay (August 1996) Manual XU1-E (Revision New) Woodward Manual XU1-E GB Woodward Governor Company reserves the right to update any portion of this publication at any time. Information

More information

SR489 SR489. Generator Management Relay. Economical protection, metering, and monitoring functions for small and medium sized generators.

SR489 SR489. Generator Management Relay. Economical protection, metering, and monitoring functions for small and medium sized generators. SR489 Generator Management Relay Economical protection, metering, and monitoring functions for small and medium sized generators. 1 Product Highlights Inputs / Outputs Generator Protection Power Metering

More information

CABLETROLL 3 CABLETROLL CABLETROLL CABLETROLL CABLETROLL LED-2 5 CABLETROLL CABLETROLL REMOTE INDICATION 7

CABLETROLL 3 CABLETROLL CABLETROLL CABLETROLL CABLETROLL LED-2 5 CABLETROLL CABLETROLL REMOTE INDICATION 7 CABLETROLL 3 CABLETROLL 2310 4 CABLETROLL 2320 4 CABLETROLL 2330 5 CABLETROLL 2350 5 LED-2 5 CABLETROLL 2410 6 CABLETROLL 2440 6 REMOTE INDICATION 7 The CableTroll indicators are fault current detectors

More information

Miniature circuit-breaker versus electronic selectivity module Selective monitoring of 24 V DC load circuits

Miniature circuit-breaker versus electronic selectivity module Selective monitoring of 24 V DC load circuits Miniature circuit-breaker versus electronic selectivity module Selective monitoring of 24 V DC load circuits In modern plant and machine construction all 24 V DC loads whether rugged electro-mechanical

More information

Understanding SCCR. THE BEST ELECTRICAL CONTROLS BUSINESS ON THE PLANET! Unmatched Service Superior Product Quality Advantage Pricing

Understanding SCCR. THE BEST ELECTRICAL CONTROLS BUSINESS ON THE PLANET! Unmatched Service Superior Product Quality Advantage Pricing Understanding SCCR What is SCCR? When it comes to industrial machinery, it s critical to ensure that electrical panels are designed and built with the proper SCCR to maintain the system, eliminate downtime

More information

SSV-T and SSC-T High Drop-out Relay. Range amps amps amps amps. Operating Frequency: Temperature Error:

SSV-T and SSC-T High Drop-out Relay. Range amps amps amps amps. Operating Frequency: Temperature Error: 41-766.7 SSV-T and SSC-T High Drop-out Relay device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the

More information

XRI1-ER Earth fault relay for isolated and compensated mains

XRI1-ER Earth fault relay for isolated and compensated mains XRI1-ER Earth fault relay for isolated and compensated mains Contents 1 Introduction and application 2 Features and characteristics 3 Design 3.1 Connections 3.1.1 Analog input circuits 3.1.2 Blocking input

More information

Contents. Temperature & Process Measurement Indicators Setup Guide

Contents. Temperature & Process Measurement Indicators Setup Guide Contents Introduction... 2 Installation... 3 Connections... 5 Connecting the Sensor... 6 Powering the Instrument... 7 Operator Functions... 8 The Setup Menus... 9 Configuration Menu Map... 12 Menu Options...

More information

ARCON 2.0 Arc protection system. Operation and configuration instructions Technical description.

ARCON 2.0 Arc protection system. Operation and configuration instructions Technical description. ARCON 2.0 Arc protection system Operation and configuration instructions Technical description Eaton Industries (Austria) GmbH, Eugenia 1, A-3943 Schrems www.eaton.eu/documentation 1 MA_Arcon_en.qd/04.2018b

More information

Ground Fault Current Protection Devices Prevent Costly Production Shutdowns

Ground Fault Current Protection Devices Prevent Costly Production Shutdowns Ground Fault Current Protection Devices Prevent Costly Production Shutdowns Figure.1 Altech s three new series deliver multiple capabilities. In all three series, ground fault sensitivity levels range

More information

BE1-50/51M TIME OVERCURRENT RELAY ADVANTAGES

BE1-50/51M TIME OVERCURRENT RELAY ADVANTAGES BE1-50/51M TIME OVERCURRENT RELAY The BE1-50/51M Time Overcurrent Relay provides economical overload and fault protection for generators, transformers, lines and motors. ADVANTAGES Self powered from 50/60Hz

More information

XU1-DC DC voltage relay. (June 1998) Manual XU1-DC (Revision New)

XU1-DC DC voltage relay. (June 1998) Manual XU1-DC (Revision New) XU1-DC DC voltage relay (June 1998) Manual XU1-DC (Revision New) Woodward Manual XU1-DC GB Woodward Governor Company reserves the right to update any portion of this publication at any time. Information

More information

1. Coordination of series-rated devices is permitted where indicated on Drawings.

1. Coordination of series-rated devices is permitted where indicated on Drawings. SECTION 16055 - OVERCURRENT PROTECTIVE DEVICE COORDINATION PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and

More information

High-Reliability Fault-Clearing System solution. Application Guide. Outdoor Distribution (15.5 kv through 38 kv) S&C ELECTRIC COMPANY

High-Reliability Fault-Clearing System solution. Application Guide. Outdoor Distribution (15.5 kv through 38 kv) S&C ELECTRIC COMPANY S&C Remote Supervisory V ista Outdoor Distribution (15.5 kv through 38 kv) Electric utility customers are increasingly concerned about the frequency and duration of outages they are experiencing, and are

More information

MiCOM P124 T&D. Self and Dual Powered Overcurrent Relays

MiCOM P124 T&D. Self and Dual Powered Overcurrent Relays PROTECTION MiCOM P124 Self and Dual Powered Overcurrent Relays MiCOM P124 are numerical relays designed to offer complete overcurrent protection without requiring any external auxiliary supply. They can

More information

IMPROVING POWER SYSTEM RELIABILITY USING MULTIFUNCTION PROTECTIVE RELAYS

IMPROVING POWER SYSTEM RELIABILITY USING MULTIFUNCTION PROTECTIVE RELAYS IMPROVING POWER SYSTEM RELIABILITY USING MULTIFUNCTION PROTECTIVE RELAYS Armando Guzmán Schweitzer Engineering Laboratories, Inc. Pullman, WA 99163 A reliable power system maintains frequency and voltage

More information

Application of overvoltage protection to the Peruvian Power System

Application of overvoltage protection to the Peruvian Power System Application of overvoltage protection to the Peruvian Power System Presented to Western Protective Relay Conference 2008 Spokane, Washington, USA Prepared by Yofre Jacome, and Francisco Torres, COES SINAC

More information

BN1-400 Mains decoupling relay. (February 2000) Manual BN1-400 (Revision New)

BN1-400 Mains decoupling relay. (February 2000) Manual BN1-400 (Revision New) BN1-400 Mains decoupling relay (February 2000) Manual BN1-400 (Revision New) Woodward Manual BN1-400 GB Woodward Governor Company reserves the right to update any portion of this publication at any time.

More information

BREAKER FAILURE PROTECTION

BREAKER FAILURE PROTECTION 0 th Annual HANDS-ON RELAY SCHOOL March 11-15, 201 REAKER FAILURE PROTECTION brent.c@relayapplication.com OUTLINE Protection System Failures and reaker Failures Protection versus Relaying Relay Schemes

More information

Prime Point on Wave Energy Reducing Switchgear ( SWITCHGEAR ).

Prime Point on Wave Energy Reducing Switchgear ( SWITCHGEAR ). S W I T C H G E A R Prime Point on Wave Energy Reducing Switchgear ( SWITCHGEAR ). Prime Engineering is a full service electrical engineering firm that specializes in medium and high voltage equipment

More information

MiCOM P124. Self and Dual Powered Overcurrent Relays. Protection Relays

MiCOM P124. Self and Dual Powered Overcurrent Relays. Protection Relays 01 Self and Dual Powered Overcurrent Relays are numerical relays designed to offer complete overcurrent protection without requiring any external auxiliary supply. They can be applied to a wide variety

More information

PFC-10 Power Factor Controller

PFC-10 Power Factor Controller PFC-10 Power Factor Controller Instruction Manual Ver. 6.0 / 2002 (2-2005 update) Table of Contents Page Subject 3 Starter ion 4-5 Installation Notes 6-7 Terminals Review & Control Wiring 8 Front-panel

More information

Loop Automation. Technical Manual for the ADVC Controller Range

Loop Automation. Technical Manual for the ADVC Controller Range Loop Automation Technical Manual for the ADVC Controller Range Contents List of Figures 5 List of Tables 7 Acronyms 7 Symbols 7 Introduction 8 About this Manual 8 ADVC Controller Firmware Version 9 WSOS

More information

MiCOM P521. Fast feeder differential protection

MiCOM P521. Fast feeder differential protection 01 Fast feeder differential protection The relay provides high-speed two-ended current differential unit protection of overhead lines and underground cables in applications such as ring mains and parallel

More information

XG2 Generator-/Mains Monitor. Manual XG2 (Revision A)

XG2 Generator-/Mains Monitor. Manual XG2 (Revision A) XG2 Generator-/Mains Monitor Manual XG2 (Revision A) Woodward Manual XG2 GB Woodward Governor Company reserves the right to update any portion of this publication at any time. Information provided by Woodward

More information

Zone-Selective Interlocking Field Testing and Commissioning

Zone-Selective Interlocking Field Testing and Commissioning GE Energy Connections DEH-583 Instruction Guide Zone-Selective Interlocking Field Testing and Commissioning For EntelliGuard* and microentelliguard* Trip Units 2 Table of Contents 1. Overview... 4 2. ZSI

More information

NPI800 NPI800R. First Handling Guide. Phase and earth overcurrent relay

NPI800 NPI800R. First Handling Guide. Phase and earth overcurrent relay Phase and earth overcurrent relay FOREWORD The aim of this handbook is to provide to the User information useful for the commissioning and the tests of NPI800 and NPI800R relays, multifunction digital

More information

SENTRON. Protective devices Selectivity for 3VA molded case circuit breakers. Introduction. Selectivity - terms and definitions

SENTRON. Protective devices Selectivity for 3VA molded case circuit breakers. Introduction. Selectivity - terms and definitions Introduction 1 Selectivity - terms and definitions 2 SENTRON Methods of implementing selectivity using circuit breakers 3 Protective devices Selectivity for 3VA molded case circuit breakers Configuration

More information

1S20. Arc Fault Monitor Relay. Features. Introduction. ARC Fault Protection

1S20. Arc Fault Monitor Relay. Features. Introduction. ARC Fault Protection Technical Bulletin Arc Fault Monitor Relay Features Compact, economic design Simple panel mounting for retrofit applications Two or three arc sensor inputs Two high speed tripping duty arc sense output

More information

Application Notes on Generator Protection Schemes

Application Notes on Generator Protection Schemes Application Notes on Generator Protection Schemes Single Line Diagram Examples 1. Introduction The application notes provide selected single line diagrams for the SIPROTEC 4 generator protection device

More information

Voltage Sag Simulator

Voltage Sag Simulator For use with all DPI s & VDC s 120/208/240V 50/60Hz LEADERS IN VOLTAGE-DIP PROOFING Contents Introduction to the DPI... 3 Theory of DPI operation... 3 Description -... 4 Operation... 5 Sag Simulation...

More information

Relay Configuration Form * Required

Relay Configuration Form * Required Relay Configuration Form * Required 1. Uni directional or Bi directional Relay? Uni directional relays are installed between a source of voltage/current, and a load. Because the primary semiconductors

More information

SPECIAL CONSIDERATION OF FEEDER PROTECTION FOR BREAKER-AND-A-HALF CONFIGURA- TIONS. G. Steynberg

SPECIAL CONSIDERATION OF FEEDER PROTECTION FOR BREAKER-AND-A-HALF CONFIGURA- TIONS. G. Steynberg SPECIAL CONSIDERATION OF FEEDER PROTECTION FOR BREAKER-AND-A-HALF CONFIGURA- TIONS G. Steynberg Siemens AG; Energy Sector, Energy Automation, Nuremberg 1. INTRODUCTION The breaker-and-a-half configuration

More information

ELG4125: System Protection

ELG4125: System Protection ELG4125: System Protection System Protection Any power system is prone to 'faults', (also called short-circuits), which occur mostly as a result of insulation failure and sometimes due to external causes.

More information

Substation Automation Products. Line differential protection RED670 Relion 670 series

Substation Automation Products. Line differential protection RED670 Relion 670 series Substation Automation Products Line differential protection RED670 Relion 670 series For maximum reliability of your power system The RED670 IED (Intelligent Electronic Device) is designed for protection,

More information

Flexible High-Speed Load Shedding Using a Crosspoint Switch

Flexible High-Speed Load Shedding Using a Crosspoint Switch Flexible High-Speed Load Shedding Using a Crosspoint Switch Will Allen and Tony Lee Schweitzer Engineering Laboratories, Inc. Published in Wide-Area Protection and Control Systems: A Collection of Technical

More information

Protect Against Power-Related DUT Damage During Test

Protect Against Power-Related DUT Damage During Test Protect Against Power-Related DUT Damage During Test Our thanks to Keysight Technologies for allowing us to reprint this article. An over-voltage or over-current event can occur for a variety of reasons,

More information

Busbar protection REB 670

Busbar protection REB 670 Gunnar Stranne Busbar protection REB 670 Rio de Janeiro April 23-25, 2006 ABB Power Technologies AB 2 3 4 REB 500 is enabled for use with IEC61850 communication Benefits of REB 670 outstanding features

More information

MYRIAD QLC 4-CHANNEL MONITOR/CONTROLLER INSTRUCTION MANUAL

MYRIAD QLC 4-CHANNEL MONITOR/CONTROLLER INSTRUCTION MANUAL MYRIAD QLC 4-CHANNEL MONITOR/CONTROLLER INSTRUCTION MANUAL VISIT OUR WEBSITE SIGMACONTROLS.COM MYR QLC MANUAL 013114 2 TABLE OF CONTENTS INTRODUCTION 3 Ordering Information Specifications Features WIRING

More information

XE2 DC current relay for loss of excitation protection. Manual XE2 (Revision A)

XE2 DC current relay for loss of excitation protection. Manual XE2 (Revision A) XE2 DC current relay for loss of excitation protection Manual XE2 (Revision A) Woodward Manual XE2 GB Woodward Governor Company reserves the right to update any portion of this publication at any time.

More information

FS Series PV Modules Reverse Current Overload

FS Series PV Modules Reverse Current Overload FS Series PV Modules Reverse Current Overload Purpose The purpose of this document is: to describe the system conditions that can cause reverse current overload (RCOL) and the behavior of FS modules in

More information

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY GUJARAT TECHNOLOGICAL UNIVERSITY Type of course: Engineering SUBJECT NAME: Switch Gear and Protection SUBJECT CODE: 2170908 Prerequisite: Electrical Power Systems II B.E. 7 th SEMESTER Rationale: This

More information

Products Portfolio. Pole mounted Vacuum Recloser

Products Portfolio. Pole mounted Vacuum Recloser Products Portfolio Pole mounted Vacuum Recloser Efacec Switchgear Efacec Switchgear is a leading company in Portugal and a worldwide reference in the development of solutions for power generation, transmission,

More information

IPS INTELLIGENT PUMP STARTER

IPS INTELLIGENT PUMP STARTER IPS INTELLIGENT PUMP STARTER The IPS Intelligent Pump Starter features SMARTSTART motor protection, integrated electronic pump protection overload, and power metering and data logging options. Ø & Ø, 0/60

More information

DREAM 2 WIRED RTU SYSTEM GUIDE

DREAM 2 WIRED RTU SYSTEM GUIDE TALGIL COMPUTING & CONTROL LTD. NAAMAN CENTER, HAIFA - ACCO ROAD ISRAEL P.O. BOX 775 KIRYAT MOTZKIN 26119 TEL: 972-4-8775947-8775948 FAX: 972-4-8775949 DREAM 2 WIRED SYSTEM GUIDE 2007 1 CONTENTS 1. SYSTEM

More information

Redundant Bus Protection Using High-Impedance Differential Relays. Josh LaBlanc

Redundant Bus Protection Using High-Impedance Differential Relays. Josh LaBlanc Redundant Bus Protection Using High-Impedance Differential Relays Josh LaBlanc Purpose Discuss the configuration of the bus under study, and touch on the needs for redundant protection on the bus. Briefly

More information

What s New in Version 14 of ASPEN OneLiner/ Power Flow

What s New in Version 14 of ASPEN OneLiner/ Power Flow What s New in Version 14 of ASPEN OneLiner/ Power Flow The following are the new features in version 14 of ASPEN OneLiner/Power Flow. 1. Sharper and more vivid graphics on Windows 10. 2. New command to

More information

Why is my AFCI tripping?

Why is my AFCI tripping? www.garyklinka.com Page 1 of 21 Instructions: Fee $25 1. Print these pages. 2. Use the included information located on pages 12-20 to answer the 61 questions below. 3. Circle the correct answers and transfer

More information

Impact of Leading Power Factor on Data Center Generator Systems

Impact of Leading Power Factor on Data Center Generator Systems Impact of Leading Power Factor on Data Center Generator Systems White Paper 200 Revision 1 by Neil Rasmussen Executive summary IT devices may exhibit electrical input current with a characteristic called

More information

XRI1-IR - Digital multifunctional relay for time overcurrent protection

XRI1-IR - Digital multifunctional relay for time overcurrent protection 德国 SEG XRI1-IR - Digital multifunctional relay for time overcurrent protection 德国 SEG Contents 1 Introduction and application 2 Features and characteristics 3 Design 3.1 Connections 3.1.1 Analog input

More information

UR Universal Relay Series

UR Universal Relay Series GE Digital Energy UR Universal Relay Series Revision 4.43 Release Notes GE Publication Number: GER-4380Rev1 Copyright 2010 GE Multilin Summary Overview GE Multilin issues the UR 4.43 release that introduces

More information

EATON 5S 850/1200/1600

EATON 5S 850/1200/1600 www.eaton.com EATON 5S 850/1200/1600 Installation and user manual Packaging EATON 5S 1 2 3 5 Caution! l Before installing the Eaton 5S, read the booklet 3 containing the safety instructions to be respected.

More information

Entry Level Assessment Blueprint Electrical Occupations

Entry Level Assessment Blueprint Electrical Occupations Entry Level Assessment Blueprint Electrical Occupations Test Code: 3029 / Version: 01 Specific Competencies and Skills Tested in this Assessment: Safety Apply shop safety rules and ergonomics Explain fire

More information

The PCI Series. Precise power control for complex SCR applications. Phase Angle Fired SCR Power Controls AMPS VAC

The PCI Series. Precise power control for complex SCR applications. Phase Angle Fired SCR Power Controls AMPS VAC The PCI Series Phase Angle Fired SCR Power Controls 25-1200 AMPS 120-600 VAC Precise power control for complex SCR applications. ROBICON 1996 Distributed Worldwide by www.mcgoff-bethune.com Applications

More information

Power System Protection Training

Power System Protection Training Power System Protection Training Contact us Today for a FREE quotation to deliver this course at your company?s location. https://www.electricityforum.com/onsite-training-rfq Refresh your knowledge of

More information

Technical Requirements for High-voltage DC Power Feeding Interfaces of ICT equipment

Technical Requirements for High-voltage DC Power Feeding Interfaces of ICT equipment Technical Requirements for High-voltage DC Power Feeding Interfaces of ICT equipment TR No. 176002 1.1.EDITION April 1st, 2015 Nippon Telegraph and Telephone Corporation Introduction This document describes

More information

FAULT DETECTION ISOLATION AND RESTORATION ON THE FEEDER (FDIR): PICK YOUR TECHNOLOGY

FAULT DETECTION ISOLATION AND RESTORATION ON THE FEEDER (FDIR): PICK YOUR TECHNOLOGY FAULT DETECTION ISOLATION AND RESTORATION ON THE FEEDER (FDIR): PICK YOUR TECHNOLOGY Fahrudin Mekic Ken Alloway Cleber Angelo Robert Goodin ABB Inc. USA ABB Inc. USA ABB Inc. USA ABB Inc. USA fahrudin.mekic@us.abb.com.ken.alloway@us.abb.com

More information

WiAutoLink Frequently Asked Questions

WiAutoLink Frequently Asked Questions Rev. 0 December 2014 Page 1 of 8 WiAutoLink Frequently Asked Questions December 2014 1 Rev. 0 December 2014 Page 2 of 8 Table of Contents 1 Background... 4 1.1 What is the WiAutoLink Single Phase Electronic

More information

Small Generator Interconnection System Impact Study Report. Completed For Q0047

Small Generator Interconnection System Impact Study Report. Completed For Q0047 Small Generator Interconnection Completed For Q0047 Proposed Interconnection PacifiCorp s Existing Goshen Rigby 69 kv Line March 7, 2005 1.0 Description of the Generation Facility Q0047 ( Interconnection

More information

Built for speed, security, and simplicity

Built for speed, security, and simplicity Time-Domain Line Protection Built for speed, security, and simplicity Traveling-wave-based and incremental-quantity-based line protection schemes as fast as ms with traditional pilot channels and over

More information

Substation Automation Products. Line distance protection REL670/650 Relion 670 and 650 series

Substation Automation Products. Line distance protection REL670/650 Relion 670 and 650 series Substation Automation Products Line distance protection REL670/650 Relion 670 and 650 series For maximum reliability of your power system REL670 and REL650 line distance protection IEDs (Intelligent Electronic

More information

Set up and verify the operation of basic motor starters. Understand the purpose of a separate control circuit.

Set up and verify the operation of basic motor starters. Understand the purpose of a separate control circuit. Exercise 3-1 Motor Starters EXERCISE OBJECTIVE Set up and verify the operation of basic motor starters. Understand the purpose of a separate control circuit. DISCUSSION OUTLINE The Discussion of this exercise

More information

reliable company...caterpillar

reliable company...caterpillar The markets most reliable technology... from the industryʼs most reliable company...caterpillar Caterpillar switchgear with PowerLynx technology has been designed to integrate hand-inglove with Caterpillar

More information

DGSZV-EP DIGITAL GALVANIC LONGITUDINAL DIFFERENTIAL PROTECTION. Application field

DGSZV-EP DIGITAL GALVANIC LONGITUDINAL DIFFERENTIAL PROTECTION. Application field DGSZV-EP DIGITAL GALVANIC LONGITUDINAL DIFFERENTIAL PROTECTION The digital galvanic longitudinal differential protection of type DGSZV-EP is part of device family named EuroProt. This short description

More information

BE1-51 BE1-51/27C BE1-51/27R TIME OVERCURRENT RELAY

BE1-51 BE1-51/27C BE1-51/27R TIME OVERCURRENT RELAY BE1-51 BE1-51/27C BE1-51/27R TIME OVERCURRENT RELAY The BE1-51 Series of Time Overcurrent Relays is microprocessor-based to provide versatile overload and fault protection on 50Hz or 60Hz systems. ADVANTAGES

More information

Maximizing protection coordination with self-healing technology

Maximizing protection coordination with self-healing technology Supersedes December 2011 Daniel P. Roth, Distribution Automation Technical Manager, Eaton s Cooper Power Systems Abstract Much of the Smart Grid initiative includes the installation of new recloser and

More information

One Click Technologies Limited. Customisation Cable & Software Manual. Part Number AVCP01

One Click Technologies Limited. Customisation Cable & Software Manual. Part Number AVCP01 One Click Technologies Limited Customisation Cable & Software Manual Part Number AVCP01 1 Installation One Click Customisation Cable & Software Manual IMPORTANT Use the AVCP01 customisation cable only

More information

Main Components of a Static Var Compensator (SVC)

Main Components of a Static Var Compensator (SVC) Exercise 1 Main Components of a Static Var Compensator (SVC) EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the simplified diagram of an SVC. You will also be familiar

More information

Numerical Protective and Management Relays

Numerical Protective and Management Relays Numerical Protective and Management Relays Presented at: The Institution of Engineers (India) Andaman and Nicobar State Centre Port Blair Dr. H. K. Verma Deputy Director and Professor of Electrical Engineering

More information

MRP2-S3 Apparent Power Relay. Manual MRP2-S3 (Revision A)

MRP2-S3 Apparent Power Relay. Manual MRP2-S3 (Revision A) MRP2-S3 Apparent Power Relay Manual MRP2-S3 (Revision A) Woodward Manual MRP2-S3 GB Woodward Governor Company reserves the right to update any portion of this publication at any time. Information provided

More information

Supplementary operating instructions for your air curtain system Controller TMC 500

Supplementary operating instructions for your air curtain system Controller TMC 500 Supplementary operating instructions for your air curtain system Controller TMC 500 (Translation of the original) Serial number: Year: Please quote this number when contacting customer service! Date 08.04.2016

More information

Voltage Dip-Proofing Inverter

Voltage Dip-Proofing Inverter Voltage Dip-Proofing Inverter DPI54S / 54L Series Models 120V & 208/230 50/60Hz Contents: Introduction...3 Theory of operation...3 Specifications...5 Up-time considerations...6 Installation Guide...7 Test

More information

PD-Series. Emergency Standby. General Description. Available Modes of Operation. Standard Features. User Interface. Communication and Controls

PD-Series. Emergency Standby. General Description. Available Modes of Operation. Standard Features. User Interface. Communication and Controls PD-Series Emergency Standby General Description The generators provide power in the event of a loss of utility service. In a typical Automatic Transfer Switch (ATS) -- based emergency standby power system,

More information

Models 120LS, 200LS, 300LS, 400LS, 560LS Installation Instructions

Models 120LS, 200LS, 300LS, 400LS, 560LS Installation Instructions 299-600-96 Rev. F MCG Surge Protection Models 120LS, 200LS, 300LS, 400LS, 560LS Installation Instructions Important Warranty Information: MCG surge protectors are designed to work at specific voltages

More information

Monitoring Technique. VARIMETER PRO Multifunction Measuring Relay MK 9300N, MH 9300

Monitoring Technique. VARIMETER PRO Multifunction Measuring Relay MK 9300N, MH 9300 Monitoring Technique VARIMETER PRO Multifunction Measuring Relay MK 93N, MH 93 268581 Product Description MK 93N MH 93 The universal measuring relays MK 93N / MH 93 of the VARIMETER PRO series monitor

More information

Ground Fault Protection on Solidly Grounded Low Voltage Electrical Systems APPLICATION GUIDE. application GUIDE

Ground Fault Protection on Solidly Grounded Low Voltage Electrical Systems APPLICATION GUIDE. application GUIDE Ground Fault Protection on Solidly Grounded Low Voltage Electrical Systems APPLICATION GUIDE application GUIDE Application Guide, October 2014 ABOUT I-GARD I-Gard s commitment to electrical safety provides

More information

Important Considerations in Testing and Commissioning Digital Relays

Important Considerations in Testing and Commissioning Digital Relays Important Considerations in Testing and Commissioning Digital Relays Drew Welton, Beckwith Electric Co. Inc. Will Knapek, OMICRON electronics Corp. USA Justification Digital technology in protection relays

More information