Emerging Non-volatile Storage Memories

Size: px
Start display at page:

Download "Emerging Non-volatile Storage Memories"

Transcription

1 Emerging Non-volatile Storage Memories Gian-Luca Bona IBM Research, Almaden Research Center

2 Outline Non-volatile Memory Landscape Emerging Non-volatile Storage Memory Examples - Phase Change Memory - Polymer-based Charge Storage Memory - Storage Probe Memory - Magnetic Shift Register Memory Summary & Conclusion: Expected Advances in Solid State Storage Technology IBM

3 Non-volatile Storage Memories SL m SL m+1 SL m-1 WL n-1 WL n WL n+1 Everyone is looking for a dense (cheap) crosspoint memory. It is relatively easy to identify materials that show bistable hysteretic behavior (easily distinguishable, stable on/off states). IBM

4 The Nonvolatile Memory Landscape

5 The Nonvolatile Memory Landscape More new non-volatile memory technologies under development today than at any time in history 2 reasons Year Flash Technology node (nm) Flash NOR tunnel oxide thickness (nm) Manufacturing solution exist ITRS 2004 Manufacturing solution is known Manufacturing solution is NOT known Scaling: Oxide thickness will reach limit very soon Explosive market growth Diversified applications

6 Non-volatile Storage Memory SCM Specs: Storage Class Memory (SCM): Key Features: Much faster to write small blocks than Flash, HDD Less expensive than Flash More rugged than HDD Lower standby power than HDD Access Time <2.5 us Data Rate (MB/s) Endurance HER (/TB) MTBF (MH) On Power (mw) Standby (mw) Cost ($/GB) <5.5 1.E+05 1.E+03 1.E+01 1.E-01 1.E+01 Tape 1.E-01 HDD 1.E-03 DRAM SCM 1.E-05 1.E-07 1.E-09 Performance (IOPS) CGR 35% Access Time (s)

7 IOPS dependence on access time and data rate IOPS vs Access Time and Data 4kB IO DRAM 1,000, ,000 SCM HDD 10, K-1M IOPS 1, K-100K 3-4 1K-10K 100 NAND (read) K NAND (write) Data Rate (MB/Sec) Access Time (us)

8 Example: Phase Change Solid State Memory (PCM) Writing: transition from crystalline to amorphous phase by melting and fast cooling (10 ns) in GST-material (GeSbTe) Erase: heating over T cryst and slow cooling ( ns) Read: Measure R at low current Companies report contact pore or line diameter as small as 50 nm Most materials characterization is done on blanket films Need to investigate properties of nanostructure to study scaling write temperature erase T melt T cryst crystalline amorphous time M. H. R Lankhorts et al., Philips, Nature Mat. 4 (2005) 347 S. L. Cho et al., Samsung, 2005 Symp. On VLSI Technol.

9 SEM of GST nanostructures Scanning electron microscope image of 200 nm square GST patterns. Scanning electron microscope image of 65 nm round GST patterns. Fabricated nanostructures of variable sizes from GST and 65 nm diameter from GeSb Measured crystallization temperature as a function of structure size (for details see S. Raoux et al., Collaboration IBM, Macronix & Infineon, Sep. 2005, )

10 Crosspoint PCM devices Test arrays: defined by ARC ARC Material focus & fast prototyping: Substantial improvements: -> T G, T cryst -> fast switching, a few ns -> min. cell size: >=65nm Devices >10 8 switching cycles shown Collaboration IBM, Macronix & Infineon 8 Prototyping at MRL Watson

11 Example: Nanotrap Memory Polymer-based Charge Storage Crosspoint Memory First Alq3 layer Wide band-gap organic semiconductor containing... Layer of metallic nanoparticles Between metal electrodes Granular Al or Au Metal electrodes: Al ( 50nm) Granular metal: Al (5 nm) Charge transport medium:alq3 (50 nm) FIB SEM by V. Deline

12 Response of Nanotrap Memory Element Current Density (A/cm 2 ) ON OFF REGION I Al/Alq3/Al/Alq3/Al V th V max V min REGION II REGION III Voltage (V) Region I Bistable ON and OFF states retained for > 1 year Pulse to V max to turn ON Pulse to V min to turn OFF Region II Negative differential resistance Increasing charge on particles L. D. Bozano et al. Appl. Phys Lett., 2004 Region III Normal current flow

13 Example: MILLIPEDE Probe Storage MILLIPEDE SCANNER shuttle MICROMECHANICAL DATA STORAGE permanent magnet (on shutte) fixed coil movable table for storage medium (6.5 x 6.5 mm) parallelization beam Lever Electronic Cell pivot spring system frame Coil Magnet Scanner CMOS Chip Lever Interconnect read resistor write resistor Base Plate Interconnect Bonding Pad Spacer tip capacitive platform hinge 100 nm THERMOMECHANICAL RECORDING 1.14 Tbit / in nm 641 Gbit / in nm LEVER ARRAY 410 Gbit / in nm IBM

14 Small-scale Storage Prototype Small-scale storage prototype comprises: MEMS assembly in form factor (2D array/microscanner/thermal sensors) Readback electronics in non-form factor (parallel operation of up to 8 levers) Navigation/servo system Microcontroller for controlling all functions of prototype storage system MEMS Assembly Microscanner Cantilever array Data controller / ECC Compact Flash Interface 512 byte sector size 4 RS codeword per sector, 4-way interleaved Encoder/Decoder RS (151,129) (1,7) modulation Encoder/Decoder IBM

15 Breaking the Terabit / in 2 Barrier Bit-pitch Areal = Density 13 nm Track-pitch Tbits/in = 27 2 nm Bit pitch 13.3 nm, Track pitch 26.6 nm Single Lever Test-stand Data Set Size > 300 K bits BIT-ERROR RATE 10 4 Track pitch: 26.6 nm On-track min. indent spacing: 26.6 nm Modulation code d=1 Criterion: raw bit-error-rate < 10-4 Conclusion: Thermomechanical recording achieves 1.2 Tbit/in 2 in a stringent, industry-standard areal density demonstration cf. Magnetic recording: < 250 Gbit/in 2 AREAL DENSITY (Gb/in 2 ) IBM

16 Summary: Storage Probe Memory Millipede Demonstration of small-scale prototype storage system with servo navigation and parallel read/write/erase capability using nano-scale probe-storage technology First time a scanning-probe recording technology has reached this level of technical maturity demonstrating joint operation of all building blocks of a storage device Challenges/open questions: - Tracking of multiple probes at sub-nanometer resolution - Optimization of tip/medium interaction - Optimal tradeoff between number of tips, data rate, and power consumption - Dependence of device operation on environmental conditions - System level reliability not yet assessed 2D Cantilever Array on CMOS Chip Storage media on xy scanner IBM

17 Storage-Class Memory: Example: Magnetic Race-track Philosophy Want a solid-state memory with no moving parts which is very cheap and of moderate to high performance Main approaches Make extremely small cells Requires significant engineering developments Current roadmaps suggest that F<45nm will be possible within 5 years, thus making this approach extremely challenging Access multiple bits from one set of logic Similar philosophy used in conventional storage drives and in millipede However we want a solid state memory with no moving parts Recent developments in magnetic materials makes this approach viable and attractive by storing information in domain walls (spatially varying order parameter in homogeneous material) Lots of new science: Spin currents and torque, domain wall fringing fields IBM

18 Current induced Domain wall motion θ = 0, φ Current torque on DW t t 0 Massless motion!! θ (Magnetic field pressure on DW, ) t 0, φ t 0 From Sadamichi Maekawa IBM

19 Magnetic Race-track Memory A novel three-dimensional spintronic storage class memory The capacity of a hard disk drive but the reliability and performance of solid state memory - a disruptive technology based on recent developments in spintronic materials and physics Parkin, US patents , , Current pulses move domains along racetrack shift register TMR sensor to read bit pattern Special current pulse-driven element to re-write a bit IBM

20 Magnetic Racetrack Memory: writing mechanism Writing a bit current pulse on special write element Parkin, US patents , , IBM

21 Magnetic Shift Register Memory Magnetic race-tracks can be connected in series Many other configurations possible IBM

22 Magnetic Race-Track Memory: Domain-Wall Magnetic Shift Register Alternating layers of two ferromagnetic materials to pin domain walls domain wall Information stored as domain walls in vertical race track Reading and writing carried out along bottom of race track Electronics built under race track using conventional CMOS Domains moved around track using nano second long pulses of current - Data stored in the third dimension in tall columns of magnetic material - Domains race around track for reading and writing - 10 to 100 times the storage capacity of conventional solid state memory - Could displace flash memory and hard disk drives for many applications Spintronics Stuart Parkin

23 Expected Advances in Solid State Storage Technology Storage Class Memories (SCM): cost, scaling and density matters Various cheap, non-volatile memories (SCM) are under development. If successful, they can displace flash first Maturing and will be on market in a few years: Phase Change Memory (PCM) advanced demonstrations in and most mature in Samsung, Intel,. Effort in IBM, partnership with Infineon, Macronix MRAM - > Scaling demonstrations pursued to 45nm in MRAM and PCM Exploratory: Polymer (charge storage), Magnetic Shift Register (domain wall motion), Probe Storage Millipede, Perovskite (resistance change), Advancements in low cost manufacturing is key Nanoimprint Lithography (stamping), Self-assembly, Multiple bits per cell, Multiple cell layers per chip

Emerging Information Storage Technology A Technologist Viewpoint. Gordon Hughes, Associate Director, UCSD CMRR Center for Magnetic Recording Research

Emerging Information Storage Technology A Technologist Viewpoint. Gordon Hughes, Associate Director, UCSD CMRR Center for Magnetic Recording Research Emerging Information Storage Technology A Technologist Viewpoint, Associate Director, UCSD CMRR Center for Magnetic Recording Research gfhughes@ucsd.edu 858-534-5317 1 New Technologies are Old Stuff 50

More information

Needs of the data storage industry

Needs of the data storage industry Needs of the data storage industry Focus on magnetic media first, and, as in the lecture on the electronics industry, will try to keep an eye on areas where nano will be relevant. Historic trends State-of-the-art

More information

Magnetoresistive RAM (MRAM) Jacob Lauzon, Ryan McLaughlin

Magnetoresistive RAM (MRAM) Jacob Lauzon, Ryan McLaughlin Magnetoresistive RAM (MRAM) Jacob Lauzon, Ryan McLaughlin Agenda Current solutions Why MRAM? What is MRAM? History How it works Comparisons Outlook Current Memory Types Memory Market primarily consists

More information

Storage Class Memory, Technology and Use

Storage Class Memory, Technology and Use IBM Almaden Research Center Storage Class Memory, Technology and Use SL m-1 SL m SL m+1 F WL n-1 Rich Freitas WL n WL n+1 IBM Almaden Research center Agenda Introduction Storage Class Memory Technologies

More information

Emerging NV Storage and Memory Technologies --Development, Manufacturing and

Emerging NV Storage and Memory Technologies --Development, Manufacturing and Emerging NV Storage and Memory Technologies --Development, Manufacturing and Applications-- Tom Coughlin, Coughlin Associates Ed Grochowski, Computer Storage Consultant 2014 Coughlin Associates 1 Outline

More information

Phase Change Memory An Architecture and Systems Perspective

Phase Change Memory An Architecture and Systems Perspective Phase Change Memory An Architecture and Systems Perspective Benjamin C. Lee Stanford University bcclee@stanford.edu Fall 2010, Assistant Professor @ Duke University Benjamin C. Lee 1 Memory Scaling density,

More information

Phase Change Memory: Replacement or Transformational

Phase Change Memory: Replacement or Transformational Phase Change Memory: Replacement or Transformational Hsiang-Lan Lung Macronix International Co., Ltd IBM/Macronix PCM Joint Project LETI 4th Workshop on Inovative Memory Technologies 06/21/2012 PCM is

More information

CS 320 February 2, 2018 Ch 5 Memory

CS 320 February 2, 2018 Ch 5 Memory CS 320 February 2, 2018 Ch 5 Memory Main memory often referred to as core by the older generation because core memory was a mainstay of computers until the advent of cheap semi-conductor memory in the

More information

Will Phase Change Memory (PCM) Replace DRAM or NAND Flash?

Will Phase Change Memory (PCM) Replace DRAM or NAND Flash? Will Phase Change Memory (PCM) Replace DRAM or NAND Flash? Dr. Mostafa Abdulla High-Speed Engineering Sr. Manager, Micron Marc Greenberg Product Marketing Director, Cadence August 19, 2010 Flash Memory

More information

Recent Advancements in Spin-Torque Switching for High-Density MRAM

Recent Advancements in Spin-Torque Switching for High-Density MRAM Recent Advancements in Spin-Torque Switching for High-Density MRAM Jon Slaughter Everspin Technologies 7th International Symposium on Advanced Gate Stack Technology, September 30, 2010 Everspin Technologies,

More information

Steven Geiger Jackson Lamp

Steven Geiger Jackson Lamp Steven Geiger Jackson Lamp Universal Memory Universal memory is any memory device that has all the benefits from each of the main memory families Density of DRAM Speed of SRAM Non-volatile like Flash MRAM

More information

Phase Change Memory An Architecture and Systems Perspective

Phase Change Memory An Architecture and Systems Perspective Phase Change Memory An Architecture and Systems Perspective Benjamin Lee Electrical Engineering Stanford University Stanford EE382 2 December 2009 Benjamin Lee 1 :: PCM :: 2 Dec 09 Memory Scaling density,

More information

MRAM - present state-of and future challenges

MRAM - present state-of and future challenges MRAM - present state-of of-the-art and future challenges Dr G. Pan CRIST School of Computing, Communication & Electronics Faculty of Technology, University of Plymouth, Plymouth, PL4 8AA, UK Outline The

More information

COMPUTER ARCHITECTURE

COMPUTER ARCHITECTURE COMPUTER ARCHITECTURE 8 Memory Types & Technologies RA - 8 2018, Škraba, Rozman, FRI Memory types & technologies - objectives 8 Memory types & technologies - objectives: Basic understanding of: The speed

More information

Phase Change Memory and its positive influence on Flash Algorithms Rajagopal Vaideeswaran Principal Software Engineer Symantec

Phase Change Memory and its positive influence on Flash Algorithms Rajagopal Vaideeswaran Principal Software Engineer Symantec Phase Change Memory and its positive influence on Flash Algorithms Rajagopal Vaideeswaran Principal Software Engineer Symantec Agenda Why NAND / NOR? NAND and NOR Electronics Phase Change Memory (PCM)

More information

Advanced Information Storage 11

Advanced Information Storage 11 Advanced Information Storage 11 Atsufumi Hirohata Department of Electronics 16:00 11/November/2013 Monday (P/L 002) Quick Review over the Last Lecture Shingled write recording : * Bit patterned media (BPM)

More information

Mohsen Imani. University of California San Diego. System Energy Efficiency Lab seelab.ucsd.edu

Mohsen Imani. University of California San Diego. System Energy Efficiency Lab seelab.ucsd.edu Mohsen Imani University of California San Diego Winter 2016 Technology Trend for IoT http://www.flashmemorysummit.com/english/collaterals/proceedi ngs/2014/20140807_304c_hill.pdf 2 Motivation IoT significantly

More information

Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014

Novel Nonvolatile Memory Hierarchies to Realize Normally-Off Mobile Processors ASP-DAC 2014 Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014 Shinobu Fujita, Kumiko Nomura, Hiroki Noguchi, Susumu Takeda, Keiko Abe Toshiba Corporation, R&D Center Advanced

More information

Lecture 8: Virtual Memory. Today: DRAM innovations, virtual memory (Sections )

Lecture 8: Virtual Memory. Today: DRAM innovations, virtual memory (Sections ) Lecture 8: Virtual Memory Today: DRAM innovations, virtual memory (Sections 5.3-5.4) 1 DRAM Technology Trends Improvements in technology (smaller devices) DRAM capacities double every two years, but latency

More information

The Memory Hierarchy 1

The Memory Hierarchy 1 The Memory Hierarchy 1 What is a cache? 2 What problem do caches solve? 3 Memory CPU Abstraction: Big array of bytes Memory memory 4 Performance vs 1980 Processor vs Memory Performance Memory is very slow

More information

NAND Flash Memory. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

NAND Flash Memory. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University NAND Flash Memory Jinkyu Jeong (Jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ICE3028: Embedded Systems Design, Fall 2018, Jinkyu Jeong (jinkyu@skku.edu) Flash

More information

Information Storage and Spintronics 10

Information Storage and Spintronics 10 Information Storage and Spintronics 10 Atsufumi Hirohata Department of Electronic Engineering 09:00 Tuesday, 30/October/2018 (J/Q 004) Quick Review over the Last Lecture Flash memory : NAND-flash writing

More information

NanoScale Storage Systems Inc.

NanoScale Storage Systems Inc. NanoScale Storage Systems Inc. NanoTechnology for Hard Disk Drives Joe Straub 7100 Nanjemoy CT Falls Church VA 22046-3851 Phone: +1-703-241-0882 FAX: +1-703-241-0735 E-mail: joseph.straub@verizon.net Presented

More information

MEMORY. Computer memory refers to the hardware device that are used to store and access data or programs on a temporary or permanent basis.

MEMORY. Computer memory refers to the hardware device that are used to store and access data or programs on a temporary or permanent basis. MEMORY Computer memory refers to the hardware device that are used to store and access data or programs on a temporary or permanent basis. There are TWO TYPE of nature of memory in a computer. Temporary/

More information

Storage and Memory Infrastructure to Support 5G Applications. Tom Coughlin President, Coughlin Associates

Storage and Memory Infrastructure to Support 5G Applications. Tom Coughlin President, Coughlin Associates Storage and Memory Infrastructure to Support 5G Applications Tom Coughlin President, Coughlin Associates www.tomcoughlin.com Outline 5G and its Implementation Storage and Memory Technologies Emerging Non

More information

Test and Reliability of Emerging Non-Volatile Memories

Test and Reliability of Emerging Non-Volatile Memories Test and Reliability of Emerging Non-Volatile Memories Elena Ioana Vătăjelu, Lorena Anghel TIMA Laboratory, Grenoble, France Outline Emerging Non-Volatile Memories Defects and Fault Models Test Algorithms

More information

Semiconductor Memory Storage (popular types)

Semiconductor Memory Storage (popular types) Semiconductor Memory Storage (popular types) Volatile Semiconductor Memory Non-Volatile RAM DRAM SRAM Floating Gate Nitride Emerging ROM & Fuse Polymer NV Ram Ferro- Magnetic Phase Unified Mem electric

More information

High Density, High Reliability Carbon Nanotube NRAM. Thomas Rueckes CTO Nantero

High Density, High Reliability Carbon Nanotube NRAM. Thomas Rueckes CTO Nantero High Density, High Reliability Carbon Nanotube NRAM Thomas Rueckes CTO Nantero Nantero Overview Founded in 2001 to develop nonvolatile memory using carbon nanotubes (CNT) for high density standalone and

More information

3D Xpoint Status and Forecast 2017

3D Xpoint Status and Forecast 2017 3D Xpoint Status and Forecast 2017 Mark Webb MKW 1 Ventures Consulting, LLC Memory Technologies Latency Density Cost HVM ready DRAM ***** *** *** ***** NAND * ***** ***** ***** MRAM ***** * * *** 3DXP

More information

Scalable High Performance Main Memory System Using PCM Technology

Scalable High Performance Main Memory System Using PCM Technology Scalable High Performance Main Memory System Using PCM Technology Moinuddin K. Qureshi Viji Srinivasan and Jude Rivers IBM T. J. Watson Research Center, Yorktown Heights, NY International Symposium on

More information

Forging a Future in Memory: New Technologies, New Markets, New Applications. Ed Doller Chief Technology Officer

Forging a Future in Memory: New Technologies, New Markets, New Applications. Ed Doller Chief Technology Officer Forging a Future in Memory: New Technologies, New Markets, New Applications Ed Doller Chief Technology Officer Legal Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX PRODUCTS.

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 MOTIVATION 1.1.1 LCD Industry and LTPS Technology [1], [2] The liquid-crystal display (LCD) industry has shown rapid growth in five market areas, namely, notebook computers,

More information

A Step Ahead in Phase Change Memory Technology

A Step Ahead in Phase Change Memory Technology A Step Ahead in Phase Change Memory Technology Roberto Bez Process R&D Agrate Brianza (Milan), Italy 2010 Micron Technology, Inc. 1 Outline Non Volatile Memories Status The Phase Change Memories An Outlook

More information

Memory Class Storage. Bill Gervasi Principal Systems Architect Santa Clara, CA August

Memory Class Storage. Bill Gervasi Principal Systems Architect Santa Clara, CA August Memory Class Storage Bill Gervasi Principal Systems Architect bilge@nantero.com August 2018 1 DRAM Treadmill DDR5-3200 DDR5-3600 DDR5-4400 DDR5-4000 DDR5-4800 DDR5-5200 DDR4-1600 DDR5-5600 DDR4-1866 DDR5-6000

More information

Semiconductor Memory Types Microprocessor Design & Organisation HCA2102

Semiconductor Memory Types Microprocessor Design & Organisation HCA2102 Semiconductor Memory Types Microprocessor Design & Organisation HCA2102 Internal & External Memory Semiconductor Memory RAM Misnamed as all semiconductor memory is random access Read/Write Volatile Temporary

More information

SOLVING MANUFACTURING CHALLENGES AND BRINGING SPIN TORQUE MRAM TO THE MAINSTREAM

SOLVING MANUFACTURING CHALLENGES AND BRINGING SPIN TORQUE MRAM TO THE MAINSTREAM SEMICON Taipei SOLVING MANUFACTURING CHALLENGES AND BRINGING SPIN TORQUE MRAM TO THE MAINSTREAM Joe O Hare, Marketing Director Sanjeev Aggarwal, Ph.D., VP Manufacturing & Process Everspin Company Highlights

More information

Microdrive: High Capacity Storage for the Handheld Revolution

Microdrive: High Capacity Storage for the Handheld Revolution Microdrive: High Capacity Storage for the Handheld Revolution IBM Almaden Research Center San Jose, CA IBM Mobile Storage Development Fujisawa, Japan IBM Storage Systems Division San Jose, CA Recent History

More information

Cantilever Based Ultra Fine Pitch Probing

Cantilever Based Ultra Fine Pitch Probing Cantilever Based Ultra Fine Pitch Probing Christian Leth Petersen Peter Folmer Nielsen Dirch Petersen SouthWest Test Workshop San Diego, June 2004 1 About CAPRES Danish MEMS probe & interfacing venture

More information

Memory technology and optimizations ( 2.3) Main Memory

Memory technology and optimizations ( 2.3) Main Memory Memory technology and optimizations ( 2.3) 47 Main Memory Performance of Main Memory: Latency: affects Cache Miss Penalty» Access Time: time between request and word arrival» Cycle Time: minimum time between

More information

MLC 2.5 SATA III SSD

MLC 2.5 SATA III SSD MLC 2.5 SATA III SSD HERCULES-T Series Product Specification APRO RUGGED METAL 2.5 SATA III MLC SSD Version 01V0 Document No. 100-xR2SR-MTCTMB MAY 2017 APRO CO., LTD. Phone: +88628226-1539 Fax: +88628226-1389

More information

Novel Cell Array Noise Cancelling Design Scheme. for Stacked Type MRAM. with NAND Structured Cell

Novel Cell Array Noise Cancelling Design Scheme. for Stacked Type MRAM. with NAND Structured Cell Contemporary Engineering Sciences, Vol. 6, 2013, no. 8, 377-391 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2013.3946 Novel Cell Array Noise Cancelling Design Scheme for Stacked Type MRAM

More information

Disks and RAID. CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse]

Disks and RAID. CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse] Disks and RAID CS 4410 Operating Systems [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse] Storage Devices Magnetic disks Storage that rarely becomes corrupted Large capacity at low cost Block

More information

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory Memory Hierarchy Contents Memory System Overview Cache Memory Internal Memory External Memory Virtual Memory Memory Hierarchy Registers In CPU Internal or Main memory Cache RAM External memory Backing

More information

Unleashing MRAM as Persistent Memory

Unleashing MRAM as Persistent Memory Unleashing MRAM as Persistent Memory Andrew J. Walker PhD Spin Transfer Technologies Contents The Creaking Pyramid Challenges with the Memory Hierarchy What and Where is MRAM? State of the Art pmtj Unleashing

More information

Storage. CS 3410 Computer System Organization & Programming

Storage. CS 3410 Computer System Organization & Programming Storage CS 3410 Computer System Organization & Programming These slides are the product of many rounds of teaching CS 3410 by Deniz Altinbuke, Kevin Walsh, and Professors Weatherspoon, Bala, Bracy, and

More information

A Ten Year ( ) Storage Landscape LTO Tape Media, HDD, NAND

A Ten Year ( ) Storage Landscape LTO Tape Media, HDD, NAND R. Fontana, G. Decad IBM Systems May 15, 2018 A Ten Year (2008-2017) Storage Landscape LTO Tape Media,, 10 Year Storage Landscape 1 A Ten Year (2008-2017) Storage Landscape: LTO Tape Media,, Topics Data

More information

Monolithic 3D Flash NEW TECHNOLOGIES & DEVICE STRUCTURES

Monolithic 3D Flash NEW TECHNOLOGIES & DEVICE STRUCTURES Monolithic 3D Flash Andrew J. Walker Schiltron Corporation Abstract The specter of the end of the NAND Flash roadmap has resulted in renewed interest in monolithic 3D approaches that continue the drive

More information

Alternative Non-Volatile Memory Adoption Timeline

Alternative Non-Volatile Memory Adoption Timeline Alternative Non-Volatile Memory Adoption Timeline Mark Webb MKW Ventures, LLC Flash Memory Summit 2015 Santa Clara, CA 1 Technologies Many NVM technologies exist today. NOR: low density, low growth, incredibly

More information

Semiconductor Memory II Future Memory Trend

Semiconductor Memory II Future Memory Trend Semiconductor Memory II Future Memory Trend Seong-Ook Jung 2010. 4. 2. sjung@yonsei.ac.kr VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Contents 1. Future memory trend

More information

3MG2-P Series. Customer Approver. Approver. Customer: Customer Part Number: Innodisk Part Number: Model Name: Date:

3MG2-P Series. Customer Approver. Approver. Customer: Customer Part Number: Innodisk Part Number: Model Name: Date: 3MG2-P Series Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: Innodisk Approver Customer Approver Table of Contents 1.8 SATA SSD 3MG2-P LIST OF FIGURES... 6 1. PRODUCT

More information

2.5 SATA III MLC SSD

2.5 SATA III MLC SSD 2.5 SATA III MLC SSD PHANES-HR Series Product Specification APRO RUGGED METAL 2.5 SATA III MLC SSD Supports DDR-III SDRAM Cache Version 01V1 Document No. 100-XR7SR-PHCTMB JULY 2017 APRO CO., LTD. Phone:

More information

CSE 451: Operating Systems Spring Module 12 Secondary Storage

CSE 451: Operating Systems Spring Module 12 Secondary Storage CSE 451: Operating Systems Spring 2017 Module 12 Secondary Storage John Zahorjan 1 Secondary storage Secondary storage typically: is anything that is outside of primary memory does not permit direct execution

More information

Daniele Ielmini DEI - Politecnico di Milano, Milano, Italy Outline. Solid-state disk (SSD) Storage class memory (SCM)

Daniele Ielmini DEI - Politecnico di Milano, Milano, Italy Outline. Solid-state disk (SSD) Storage class memory (SCM) Beyond NVMs Daniele Ielmini DEI - Politecnico di Milano, Milano, Italy ielmini@elet.polimi.it Outline Storage applications Solid-state disk (SSD) Storage class memory (SCM) Logic applications: Crossbar

More information

Detector R&D at the LCFI Collaboration

Detector R&D at the LCFI Collaboration LCFI Overview Detector R&D at the LCFI Collaboration (Bristol U, Oxford U, Lancaster U, Liverpool U, RAL) Konstantin Stefanov on behalf of the LCFI collaboration LCWS2005, Stanford, 18-22 March 2005 Introduction

More information

Adrian Proctor Vice President, Marketing Viking Technology

Adrian Proctor Vice President, Marketing Viking Technology Storage PRESENTATION in the TITLE DIMM GOES HERE Socket Adrian Proctor Vice President, Marketing Viking Technology SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless

More information

Progress of the Development of High Performance Removable Storage at InPhase Technologies for Application to Archival Storage

Progress of the Development of High Performance Removable Storage at InPhase Technologies for Application to Archival Storage Progress of the Development of High Performance Removable Storage at InPhase Technologies for Application to Archival Storage William L. Wilson Ph.D, Chief Scientist, Founder InPhase Technologies Longmont,

More information

MRAM, XPoint, ReRAM PM Fuel to Propel Tomorrow s Computing Advances

MRAM, XPoint, ReRAM PM Fuel to Propel Tomorrow s Computing Advances MRAM, XPoint, ReRAM PM Fuel to Propel Tomorrow s Computing Advances Jim Handy Objective Analysis Tom Coughlin Coughlin Associates The Market is at a Nexus PM 2 Emerging Memory Technologies MRAM: Magnetic

More information

Forthcoming Cross Point ReRAM. Amigo Tsutsui Sony Semiconductor Solutions Corp

Forthcoming Cross Point ReRAM. Amigo Tsutsui Sony Semiconductor Solutions Corp Forthcoming Cross Point ReRAM Amigo Tsutsui Sony Semiconductor Solutions Corp ReRAM: High Speed and Low Power PCM Two states of phase change material Based on thermal operation Amorphous: low resistance

More information

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory 5.1 Semiconductor Main Memory 5.2 Error Correction 5.3 Advanced DRAM Organization 5.1 Semiconductor Main Memory

More information

Flash Memory. Gary J. Minden November 12, 2013

Flash Memory. Gary J. Minden November 12, 2013 Flash Memory Gary J. Minden November 12, 2013 1 Memory Types Static Random Access Memory (SRAM) Register File Cache Memory on Processor Dynamic Random Access Memory (DRAM, SDRAM) Disk Solid State Disk

More information

High Performance and Highly Reliable SSD

High Performance and Highly Reliable SSD High Performance and Highly Reliable SSD -Proposal of the Fastest Storage with B4-Flash - Moriyoshi Nakashima GENUSION,Inc http://www.genusion.co.jp/ info@genusion.co.jp Santa Clara, CA 1 Big Data comes

More information

Emerging NVM Memory Technologies

Emerging NVM Memory Technologies Emerging NVM Memory Technologies Yuan Xie Associate Professor The Pennsylvania State University Department of Computer Science & Engineering www.cse.psu.edu/~yuanxie yuanxie@cse.psu.edu Position Statement

More information

Emerging NVM Enabled Storage Architecture:

Emerging NVM Enabled Storage Architecture: Emerging NVM Enabled Storage Architecture: From Evolution to Revolution. Yiran Chen Electrical and Computer Engineering University of Pittsburgh Sponsors: NSF, DARPA, AFRL, and HP Labs 1 Outline Introduction

More information

Advances in Non- Vola0le Storage Technologies Tom Coughlin Coughlin Associates Ed Grochowski, Computer Memory/ Storage Consultant

Advances in Non- Vola0le Storage Technologies Tom Coughlin Coughlin Associates Ed Grochowski, Computer Memory/ Storage Consultant Advances in Non- Vola0le Storage Technologies Tom Coughlin Coughlin Associates Ed Grochowski, Computer Memory/ Storage Consultant 2015 Coughlin Associates 1 Outline The Shape of Things to Come In Search

More information

Embedded System Application

Embedded System Application Laboratory Embedded System Application 4190.303C 2010 Spring Semester ROMs, Non-volatile and Flash Memories ELPL Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@snu.ac.kr Revisit Previous

More information

Annual Update on Flash Memory for Non-Technologists

Annual Update on Flash Memory for Non-Technologists Annual Update on Flash Memory for Non-Technologists Jay Kramer, Network Storage Advisors & George Crump, Storage Switzerland August 2017 1 Memory / Storage Hierarchy Flash Memory Summit 2017 2 NAND Flash

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture

MTJ-Based Nonvolatile Logic-in-Memory Architecture 2011 Spintronics Workshop on LSI @ Kyoto, Japan, June 13, 2011 MTJ-Based Nonvolatile Logic-in-Memory Architecture Takahiro Hanyu Center for Spintronics Integrated Systems, Tohoku University, JAPAN Laboratory

More information

3ME2 Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date:

3ME2 Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: 3ME2 Series Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: Innodisk Approver Customer Approver Table of contents LIST OF FIGURES... 6 1. PRODUCT OVERVIEW... 7 1.1 INTRODUCTION

More information

Subodh Kulkarni Executive Director, R&D

Subodh Kulkarni Executive Director, R&D Subodh Kulkarni Executive Director, R&D Imation Magnetic and Optical Technologies November 15, 2005 Imation Participates in All Four Pillars of Storage Magnetic Tape Cartridges Recordable CD/DVD Advanced

More information

Design Method of Stacked Type MRAM. with NAND Structured Cell

Design Method of Stacked Type MRAM. with NAND Structured Cell Contemporary Engineering Sciences, Vol. 6, 2013, no. 2, 69-86 HIKARI Ltd, www.m-hikari.com Design Method of Stacked Type MRAM with NAND Structured Cell Shoto Tamai Oi Electric Co. LTd. Kohoku-ku, Yokohama,

More information

Evaluating Phase Change Memory for Enterprise Storage Systems

Evaluating Phase Change Memory for Enterprise Storage Systems Hyojun Kim Evaluating Phase Change Memory for Enterprise Storage Systems IBM Almaden Research Micron provided a prototype SSD built with 45 nm 1 Gbit Phase Change Memory Measurement study Performance Characteris?cs

More information

New Embedded NVM architectures

New Embedded NVM architectures New Embedded NVM architectures for Secure & Low Power Microcontrollers Jean DEVIN, Bruno LECONTE Microcontrollers, Memories & Smartcard Group STMicroelectronics 11 th LETI Annual review, June 24th, 2009

More information

2.5 SATA III MLC SSD

2.5 SATA III MLC SSD 2.5 SATA III MLC SSD HERMES-F Series Product Specification APRO RUGGED METAL 2.5 SATA III MLC SSD Version 01V1 Document No. 100-xR2SF-JFTM April 2015 APRO CO., LTD. Phone: +88628226-1539 Fax: +88628226-1389

More information

Hardware Design with VHDL PLDs I ECE 443. FPGAs can be configured at least once, many are reprogrammable.

Hardware Design with VHDL PLDs I ECE 443. FPGAs can be configured at least once, many are reprogrammable. PLDs, ASICs and FPGAs FPGA definition: Digital integrated circuit that contains configurable blocks of logic and configurable interconnects between these blocks. Key points: Manufacturer does NOT determine

More information

3ME2 Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date:

3ME2 Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: 3ME2 Series Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: Innodisk Approver Customer Approver Table of contents 2.5 SATA SSD 3ME2 LIST OF FIGURES... 6 1. PRODUCT OVERVIEW...

More information

Differential RAID: Rethinking RAID for SSD Reliability

Differential RAID: Rethinking RAID for SSD Reliability Differential RAID: Rethinking RAID for SSD Reliability Mahesh Balakrishnan Asim Kadav 1, Vijayan Prabhakaran, Dahlia Malkhi Microsoft Research Silicon Valley 1 The University of Wisconsin-Madison Solid

More information

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory Semiconductor Memory Types Semiconductor Memory RAM Misnamed as all semiconductor memory is random access

More information

3MG2-P Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date:

3MG2-P Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: 3MG2-P Series Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: Innodisk Approver Customer Approver Table of contents 2.5 SATA SSD 3MG2-P LIST OF FIGURES... 6 1. PRODUCT

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2017 Lecture 13

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2017 Lecture 13 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2017 Lecture 13 COMPUTER MEMORY So far, have viewed computer memory in a very simple way Two memory areas in our computer: The register file Small number

More information

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Vivek Pai Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill

Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill Lecture Handout Database Management System Lecture No. 34 Reading Material Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill Modern Database Management, Fred McFadden,

More information

Recent Development and Progress in Nonvolatile Memory for Embedded Market

Recent Development and Progress in Nonvolatile Memory for Embedded Market Recent Development and Progress in Nonvolatile Memory for Embedded Market Saied Tehrani, Ph.D. Chief Technology Officer, Spansion Inc. July 11, 2012 1 Outline Market Trend for Nonvolatile Memory NOR Flash

More information

Invest in New Technologies or Divest in Market Share

Invest in New Technologies or Divest in Market Share Invest in New Technologies or Divest in Market Share (Hard Disk Drive and Component Companies Face a Critical Decision to Grow or Die) Thomas Coughlin Coughlin Associates www.tomcoughlin.com Outline Slowing

More information

MS800 Series. msata Solid State Drive Datasheet. Product Feature Capacity: 32GB,64GB,128GB,256GB,512GB Flash Type: MLC NAND FLASH

MS800 Series. msata Solid State Drive Datasheet. Product Feature Capacity: 32GB,64GB,128GB,256GB,512GB Flash Type: MLC NAND FLASH MS800 Series msata Solid State Drive Datasheet Product Feature Capacity: 32GB,64GB,128GB,256GB,512GB Flash Type: MLC NAND FLASH Form factor: msata Interface standard: Serial ATA Revision 3.0, 6Gbps Performance:

More information

NAND Flash Memory. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

NAND Flash Memory. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University NAND Flash Memory Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Flash Memory Memory Types EPROM FLASH High-density Low-cost High-speed Low-power

More information

envm in Automotive Modules MINATEC Workshop Grenoble, June 21, 2010 May Marco 28, 2009 OLIVO, ST Automotive Group

envm in Automotive Modules MINATEC Workshop Grenoble, June 21, 2010 May Marco 28, 2009 OLIVO, ST Automotive Group envm in Automotive Modules MINATEC Workshop Grenoble, June 21, 2010 May Marco 28, 2009 OLIVO, ST Automotive Group envm in automotive: Outline marketing requirements

More information

28F K (256K x 8) FLASH MEMORY

28F K (256K x 8) FLASH MEMORY 28F020 2048K (256K x 8) FLASH MEMOR SmartDie Product Specification Flash Electrical Chip Erase 2 Second Typical Chip Erase Quick-Pulse Programming Algorithm 10 ms Typical Byte Program 4 Second Chip Program

More information

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University Memory Overview Curtis Nelson Walla Walla University Overview - Memory Types n n n Magnetic tape (used primarily for long term archive) Magnetic disk n Hard disk (File, Directory, Folder) n Floppy disks

More information

3MG2-P Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date:

3MG2-P Series. Customer Approver. Innodisk Approver. Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: 3MG2-P Series Customer: Customer Part Number: Innodisk Part Number: Innodisk Model Name: Date: Innodisk Approver Customer Approver Table of Contents 1.8 SATA SSD 3MG2-P LIST OF FIGURES... 6 1. PRODUCT

More information

The Long-Term Future of Solid State Storage Jim Handy Objective Analysis

The Long-Term Future of Solid State Storage Jim Handy Objective Analysis The Long-Term Future of Solid State Storage Jim Handy Objective Analysis Agenda How did we get here? Why it s suboptimal How we move ahead Why now? DRAM speed scaling Changing role of NVM in computing

More information

Magnetic core memory (1951) cm 2 ( bit)

Magnetic core memory (1951) cm 2 ( bit) Magnetic core memory (1951) 16 16 cm 2 (128 128 bit) Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM

More information

3D systems-on-chip. A clever partitioning of circuits to improve area, cost, power and performance. The 3D technology landscape

3D systems-on-chip. A clever partitioning of circuits to improve area, cost, power and performance. The 3D technology landscape Edition April 2017 Semiconductor technology & processing 3D systems-on-chip A clever partitioning of circuits to improve area, cost, power and performance. In recent years, the technology of 3D integration

More information

Manufacturing Challenges for Lithography in the Textured Disc Paradigm. September 18 th, 2008 Babak Heidari

Manufacturing Challenges for Lithography in the Textured Disc Paradigm. September 18 th, 2008 Babak Heidari Manufacturing Challenges for Lithography in the Textured Disc Paradigm September 18 th, 2008 Babak Heidari Longitudinal Perpendicular Pattern media + HAMR 6,25 T/in 2 TDK: DTR 602 Gb/in 2 1 T/in 2 150

More information

Flash memory: Models and Algorithms. Guest Lecturer: Deepak Ajwani

Flash memory: Models and Algorithms. Guest Lecturer: Deepak Ajwani Flash memory: Models and Algorithms Guest Lecturer: Deepak Ajwani Flash Memory Flash Memory Flash Memory Flash Memory Flash Memory Flash Memory Flash Memory Solid State Disks A data-storage device that

More information

Computer System Architecture

Computer System Architecture CSC 203 1.5 Computer System Architecture Department of Statistics and Computer Science University of Sri Jayewardenepura Secondary Memory 2 Technologies Magnetic storage Floppy, Zip disk, Hard drives,

More information

Silicon Memories. Why store things in silicon? It s fast!!! Compatible with logic devices (mostly)

Silicon Memories. Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) Memories and SRAM 1 Silicon Memories Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) The main goal is to be cheap Dense -- The smaller the bits, the less area you need,

More information

Preface. Fig. 1 Solid-State-Drive block diagram

Preface. Fig. 1 Solid-State-Drive block diagram Preface Solid-State-Drives (SSDs) gained a lot of popularity in the recent few years; compared to traditional HDDs, SSDs exhibit higher speed and reduced power, thus satisfying the tough needs of mobile

More information

Long Live Data: Opportunities & Challenges of Emerging NVM. Jeff Childress San Jose Research center

Long Live Data: Opportunities & Challenges of Emerging NVM. Jeff Childress San Jose Research center Long Live Data: Opportunities & Challenges of Emerging NVM Jeff Childress San Jose Research center 2015 HGST, INC. 2015 HGST, INC. 1 Outline I. HGST data storage company overview II. III. Storage trends

More information

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Storage Systems : Disks and SSDs Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Why study storage? Scalable High Performance Main Memory System Using Phase-Change Memory Technology,

More information