IST 4 Information and Logic. Claude Shannon April 30,

Size: px
Start display at page:

Download "IST 4 Information and Logic. Claude Shannon April 30,"

Transcription

1 IST 4 Information and Logic Claude Shannon April 30,

2 T = today x= hw#x out x= hw#x due mon tue wed thr 28 M1 oh 1 4 oh M1 oh oh 1 2 M2 18 oh oh 2 fri oh oh = office hours oh 25 oh M2 2 3 T oh midterms oh Mx= MQx out 9 oh 3 4 oh Mx= MQx due 16 oh oh oh 5 oh oh oh

3 Boolean Proofs: Axioms + Fun

4 Proof Dependency A1-A4 L1 L2 T0 T1 T2 T3 T4

5 Syllogism to Algebra George Boole, 1847 George Boole

6 George Boole George Boole Early Days Born in Lincoln, England an industrial town His father was a shoemaker with a passion for mathematics and science When George was 8 he surpassed his father s knowledge in mathematics By age 14 he was fluent in Latin, German, French, Italian and English and algebra When his was 15 he had to go to work to support his family, he became a math teacher in the Wesleyan Methodist academy in Doncaster (40 miles ) Lost his job after two years. Lost two more teaching jobs When he was 20 he opened his own school in his hometown - Lincoln

7 George Boole George Boole Early Career Born in Lincoln, England an industrial town In 1841 (26) he published three papers in the newly established Cambridge Mathematical Journal (edited by DG). In 1844 (29) he published On a General Method of Analysis ; he considered it to be his best paper. This paper won the first (newly established) Gold medal for Mathematics awarded by Royal Society In 1846 (31) he applied for a professor position in the newly established Queen s College 3 campuses in Ireland In 1847 (32) while waiting to hear from Ireland, he published The Mathematical Analysis of Logic source: wikipedia

8 George Boole George Boole Ireland 8848 m 29,029 ft Born in Lincoln, England an industrial town In 1847 (32) while waiting to hear from Ireland, he published The Mathematical Analysis of Logic In 1849 (34), his was offered a position of the first professor of mathematics at Queen s college at Cork He married Mary Everest ( ) in 1855 (23,40) and they had five daughters Niece of George Everest (Mt. Everest ) led the expedition to map the Himalayas In 1864, died of pneumonia (49) source: wikipedia

9 , taught at at Queen s college in Cork George Boole Geography Born in Lincoln, England an industrial town source: wikipedia

10 : lived here until got married Cork, Ireland Source:

11 Gottfried Leibniz Leibniz never held an academic position George Boole Boole was never a student at a university only a professor

12 Algorizmi AD It is all about Binary Gottfried Leibniz ??? Boolean George Boole

13 Boolean Algebra Boolean is not Binary...

14 Two-valued Boolean Algebra Boolean Algebra: set of elements B={0,1}, two binary operations OR and AND xy OR(x,y) xy AND(x,y) iff both x and y are 0 1 iff both x and y are 1 We proved it is a Boolean algebra

15 Four-valued Boolean Algebra Four-valued Boolean Algebra: set of elements?? two binary operations?? and?? Two-valued Boolean Algebra: set of elements B={0,1}, two binary operations OR and AND

16 0-1 vectors: operations? Elements: () () () ()

17 Elements are: (), (), (), () +

18 Elements are: (), (), (), () Bitwise OR +

19 Elements are: (), (), (), () xy OR(x,y) Bitwise OR

20 Elements are: (), (), (), ()

21 Elements are: (), (), (), () Bitwise AND

22 Elements are: (), (), (), () Bitwise AND xy AND(x,y)

23 Is it a Boolean algebra? Elements: () () () () 0 1 Operations: Bitwise OR Bitwise AND Bitwise Complement

24 +

25 +

26 +

27 + We can prove it!

28 In general: 0-1 vectors a Boolean algebra? Elements: It is a Boolean algebra! () () () () 0 1 Operations: Bitwise OR Bitwise AND Bitwise Complement

29 0-1 vectors Boolean algebra Elements: n=3 Operations: (0) (1) (0) (1) (1) (1) (0) (1) 0 1 Bitwise OR Bitwise AND Bitwise Complement True for a two-valued Boolean algebra n=1 True for any Boolean algebra with 0-1 vectors and bitwise OR and AND?? arbitrary finite n

30 Idea 1: Any identity that is true for 0-1 is true for 0-1 vectors with bitwise OR/AND Idea 2: Axioms are identities True for 0-1 à true for 0-1 vectors s

31 The 0-1 Theorem 0-1 Theorem: An identity is true for 0-1 vectors with bitwise OR and AND if and only if it is true for two valued (0-1) with bitwise OR and AND Proof: The easy direction Assume an identity true for 0-1 vectors True for 0-1

32 0-1 Theorem: The 0-1 Theorem An identity is true for 0-1 vectors with bitwise OR and AND if and only if it is true for two valued (0-1) with bitwise OR and AND Proof: The non-obvious direction Assume an identity true for 0-1 Need to prove true for any 0-1 vectors

33 Example: Theorem 2: Proof: The identity is true for = = = = 1 Need to prove it for 0-1 vectors

34 Example: By contradiction Theorem 2: Proof (for 0-1 vectors): If an identity is not true in general; then there is an assignment of elements that violates the equality Assume true for all 0-1 assignments and not true for some other assignment Hence, there must be a position in the binary vector that is violated There exists a 0-1 assignment to the identity that violates the equality, CONTRADICTION!!

35 Recap: The 0-1 Theorem An identity is true for 0-1 vectors with bitwise OR/AND if and only if it is true for two valued (0-1) with OR/AND Proof: The easy direction Assume an identity true for 0-1 vectors 0-1 is a special case: True for 0-1 The non-obvious direction CONTRADICTION!! Assume an identity true for 0-1 Q Need to prove true for 0-1 vectors Assume there exists a general identity violating assignment Show that there is a 0-1 identity violating assignment

36 Application of the the 0-1 Theorem Elements: 0-1 vectors of length n, there are 2 n vectors Operations: Bitwise OR Bitwise AND Bitwise Complement It is a Boolean algebra with for n=1 By the 0-1 Theorem: It is a Boolean algebra for any finite n

37 Boolean Algebra Two-value? Or not?

38 Prove or Disprove At least one of the following is true:

39 xy True for two-valued Boolean algebra Prove or Disprove OR(x,y) At least one of the following is true: Is it true for 0-1 vectors Boolean algebras?

40 + Prove or Disprove At least one of the following is true: Is it true for 0-1 vectors Boolean algebras? NO

41 The 0-1 Theorem: True only for identities!!! If Claim is NOT TRUE in general! + Then or

42 Examples other Boolean Algebras 0-1 vectors Arithmetic Boolean algebras Algebra of subsets union / intersection next next

43 Boolean algebra Boolean integers s

44 Euclid, 3BC Greatest Common Divisor 297 = 3x3x3x 405 = 3x3x3x3x5 884 = 2x2x13x = 2x2x3x3x17 27 = 3x3x3 68 = 2 x 2 x 17 Application: Simplifying fractions

45 Euclid, 3BC Least Common Multiple 297 = 3x3x3x 405 = 3x3x3x3x5 884 = 2x2x13x = 2x2x3x3x = 3x3x3x3x5x 7956 = 2x2x3x3x13x17 Application: Adding fractions

46 Euclid, 3BC Greatest Common Divisor Least Common Multiple gcd(297,405) = 27 lcm(297,405) = = 3x3x3x 405 = 3x3x3x3x5 27x4455 = 120, x405 = 120, = 3x3x3x 405 = 3x3x3x3x5 gcd(a,b) x lcm(a,b) = a x b

47 George Boole Arithmetic Boolean Algebra The set of elements: {1,2,3,6} The operations: lcm and gcd 1 is Boolean 0 6 is Boolean 1 lcm = lowest common multiple gcd = greatest common divisor

48 The set of elements: {1,2,3,6} The operations: lcm and gcd 1 is Boolean 0 6 is Boolean 1 What is the complement?

49 The set of elements: {1,2,3,6} The operations: lcm and gcd 1 is Boolean 0 6 is Boolean 1 Elements: Set of all the divisors of an integer n For which n does it work?

50 The set of elements: {1,2,4,8} The operations: lcm and gcd 1 is Boolean 0 8 is Boolean 1 The complement?

51 The set of elements: {1,2,3,6} The operations: lcm and gcd 1 is Boolean 0 6 is Boolean 1 Elements: Set of all the divisors of an integer n For which n does it work? Prime factors appear at most once in n

52 George Boole Bunitskiy Algebra 1899 Boolean Integers 2 x 3 x 5 = 30 2 x 3 x 7 = 42 Euclid, 3BC Every prime in the prime factorization is a power of one (square-free integer) Elements: The set of divisors of a Boolean integer {1,2,3,5,6,,15,30} The operations: lcm and gcd The 0 and 1 elements: 1 and 30

53 Is Bunitskiy Algebra a Boolean Algebra? YES LCM GCD 6 = 3x2 3 = 3 2 = 2 Bitwise OR Bitwise AND 1 = 1

54 + lcm gcd Bunitskiy algebra is isomorphic to the algebra of 0-1 vectors, it is a Boolean algebra! syntax the same different semantics

55 Boolean algebra subsets of a set s

56 Algebra of Subsets S is the set of all points Elements: all possible subsets of a set S + is union of sets: is intersection of sets How many elements? 2 s

57 Example: S = Operations: union and intersection Elements: Complement:

58 Is the algebra of subsets a Boolean Algebra? YES Corresponding 0-1 vectors: S = () () () () Elements: Algebra of subsets is isomorphic to the algebra of 0-1 vectors, it is a Boolean algebra! syntax the same different semantics

59 Elements are: (), (), (), ()

60 Union Bitwise OR Elements are: (), (), (), ()

61 Intersection Bitwise AND Elements are: (), (), (), ()

62 Boolean algebra an amazing theorem

63 Examples of Boolean Algebras Size 2 k 0-1 (two valued) Boolean algebra OR / AND 0-1 vectors bitwise OR / bitwise AND Arithmetic Boolean algebras lcm / gcd Algebra of subsets union / intersection They are isomorphic!

64 Representation Theorem (Stone 1936): Every finite Boolean algebra is isomorphic to a Boolean algebra of 0-1 vectors Algebra 1 Algebra 2 elements elements operations operations

65 Representation Theorem (Stone 1936): Every finite Boolean algebra is isomorphic to a Boolean algebra with elements being bit vectors of finite length with bitwise operations OR and AND Two Boolean algebras with m elements are isomorphic k Every Boolean algebra has 2 elements Provides intuition beyond the axioms: We can naturally reason about results in Boolean algebra

66 Marshall Stone Marshall Stone Proved in AB = years After Boole The Boolean Syntax invented in 1847 has a unique representative semantic!!! Marshall entered Harvard in 1919 intending to continue his studies at Harvard law school; fell in love with Mathematics, and the rest is history Harlan Fiske Stone 12 th Chief Justice of the US Marshall had a passion for travel. He began traveling when he was young and was on a trip to India when he died...

67 Quiz #3 min What is the complement of Show your work and justify every step! Use the following DeMorgan Laws: And the axioms: Solution in this form:

68 What is the complement of DeMorgan DeMorgan A4 A3 A4 A3 A2 And the axioms: A1 DeMorgan Laws:

69 One week!

70

71 d1 d2 majority c 2 symbol adder c s parity

72

73

74 Need to provide a complete proof No duality arguments See the solution to Quiz #3 For (c): Sum of products (no need to expand to DNF)

75 Prove 1 Prove multiply

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic T = today x= hw#x out x= hw#x due mon tue wed thr 28 M oh 4 oh M oh oh 2 M2 8 oh oh 2 fri oh oh = office hours oh 25 oh M2 2 3 oh T midterms oh Mx= MQx out 9 oh 3 4 oh Mx= MQx

More information

CNS 188a Overview. Implementing Boolean functions with relay circuits, circuits of AON (AND, OR, NOT) gates and LT (Linear Threshold) gates

CNS 188a Overview. Implementing Boolean functions with relay circuits, circuits of AON (AND, OR, NOT) gates and LT (Linear Threshold) gates CNS 88a Overview Boolean algebra as an axiomatic system Boolean functions and their representations using Boolean formulas and spectral methods Implementing Boolean functions with relay circuits, circuits

More information

SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)

SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202) Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called

More information

Boolean algebra. June 17, Howard Huang 1

Boolean algebra. June 17, Howard Huang 1 Boolean algebra Yesterday we talked about how analog voltages can represent the logical values true and false. We introduced the basic Boolean operations AND, OR and NOT, which can be implemented in hardware

More information

Lecture (04) Boolean Algebra and Logic Gates

Lecture (04) Boolean Algebra and Logic Gates Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 26, Logic Design Boolean algebra properties basic assumptions and properties: Closure law A set S is

More information

Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee

Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Boolean algebra properties basic assumptions and properties: Closure law A set S is closed with respect to a binary operator, for every

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Chapter 3. Boolean Algebra and Digital Logic

Chapter 3. Boolean Algebra and Digital Logic Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how

More information

To illustrate what is intended the following are three write ups by students. Diagonalization

To illustrate what is intended the following are three write ups by students. Diagonalization General guidelines: You may work with other people, as long as you write up your solution in your own words and understand everything you turn in. Make sure to justify your answers they should be clear

More information

The Further Mathematics Support Programme

The Further Mathematics Support Programme Degree Topics in Mathematics Groups A group is a mathematical structure that satisfies certain rules, which are known as axioms. Before we look at the axioms, we will consider some terminology. Elements

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Binary Representation. Jerry Cain CS 106AJ October 29, 2018 slides courtesy of Eric Roberts

Binary Representation. Jerry Cain CS 106AJ October 29, 2018 slides courtesy of Eric Roberts Binary Representation Jerry Cain CS 106AJ October 29, 2018 slides courtesy of Eric Roberts Once upon a time... Claude Shannon Claude Shannon was one of the pioneers who shaped computer science in its early

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Designing Computer Systems Boolean Algebra

Designing Computer Systems Boolean Algebra Designing Computer Systems Boolean Algebra 08:34:45 PM 4 June 2013 BA-1 Scott & Linda Wills Designing Computer Systems Boolean Algebra Programmable computers can exhibit amazing complexity and generality.

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London Discrete Mathematics SECOND EDITION Norman L. Biggs Professor of Mathematics London School of Economics University of London OXFORD UNIVERSITY PRESS Contents PART I FOUNDATIONS Statements and proofs. 1

More information

Semantics via Syntax. f (4) = if define f (x) =2 x + 55.

Semantics via Syntax. f (4) = if define f (x) =2 x + 55. 1 Semantics via Syntax The specification of a programming language starts with its syntax. As every programmer knows, the syntax of a language comes in the shape of a variant of a BNF (Backus-Naur Form)

More information

CSCI2467: Systems Programming Concepts

CSCI2467: Systems Programming Concepts CSCI2467: Systems Programming Concepts Slideset 2: Information as Data (CS:APP Chap. 2) Instructor: M. Toups Spring 2018 Course updates datalab out today! - due after Mardi gras... - do not wait until

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

Arithmetic and Bitwise Operations on Binary Data

Arithmetic and Bitwise Operations on Binary Data Arithmetic and Bitwise Operations on Binary Data CSCI 2400: Computer Architecture ECE 3217: Computer Architecture and Organization Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides

More information

Section A Arithmetic ( 5) Exercise A

Section A Arithmetic ( 5) Exercise A Section A Arithmetic In the non-calculator section of the examination there might be times when you need to work with quite awkward numbers quickly and accurately. In particular you must be very familiar

More information

BITS, BYTES, AND INTEGERS

BITS, BYTES, AND INTEGERS BITS, BYTES, AND INTEGERS CS 045 Computer Organization and Architecture Prof. Donald J. Patterson Adapted from Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition ORIGINS

More information

Chapter 4. Number Theory. 4.1 Factors and multiples

Chapter 4. Number Theory. 4.1 Factors and multiples Chapter 4 Number Theory We ve now covered most of the basic techniques for writing proofs. So we re going to start applying them to specific topics in mathematics, starting with number theory. Number theory

More information

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( ) 6. Combinational Circuits George Boole (85 864) Claude Shannon (96 2) Digital signals Binary (or logical ) values: or, on or off, high or low voltage Wires. Propagate logical values from place to place.

More information

Data III & Integers I

Data III & Integers I Data III & Integers I CSE 351 Spring 2017 Instructor: Ruth Anderson Teaching Assistants: Dylan Johnson Kevin Bi Linxing Preston Jiang Cody Ohlsen Yufang Sun Joshua Curtis Administrivia Everyone has VM

More information

Infinity and Uncountability. Countable Countably infinite. Enumeration

Infinity and Uncountability. Countable Countably infinite. Enumeration Infinity and Uncountability. Countable Countably infinite. Enumeration How big is the set of reals or the set of integers? Infinite! Is one bigger or smaller? Same size? Same number? Make a function f

More information

Chapter 2 Boolean algebra and Logic Gates

Chapter 2 Boolean algebra and Logic Gates Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

Why Don t Computers Use Base 10? Lecture 2 Bits and Bytes. Binary Representations. Byte-Oriented Memory Organization. Base 10 Number Representation

Why Don t Computers Use Base 10? Lecture 2 Bits and Bytes. Binary Representations. Byte-Oriented Memory Organization. Base 10 Number Representation Lecture 2 Bits and Bytes Topics! Why bits?! Representing information as bits " Binary/Hexadecimal " Byte representations» numbers» characters and strings» Instructions! Bit-level manipulations " Boolean

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 14: Set Theory: Definitions and Properties 1. Let C = {n Z n = 6r 5 for

More information

Lemma (x, y, z) is a Pythagorean triple iff (y, x, z) is a Pythagorean triple.

Lemma (x, y, z) is a Pythagorean triple iff (y, x, z) is a Pythagorean triple. Chapter Pythagorean Triples.1 Introduction. The Pythagorean triples have been known since the time of Euclid and can be found in the third century work Arithmetica by Diophantus [9]. An ancient Babylonian

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers & Number Systems

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers & Number Systems SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Numbers & Number Systems Introduction Numbers and Their Properties Multiples and Factors The Division Algorithm Prime and Composite Numbers Prime Factors

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03

Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03 Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03 Number Base and Regularity We use base 10. The Babylonians used base 60. Discuss

More information

Regarding Python level necessary for the course

Regarding Python level necessary for the course Logistics First two recitations (next two weeks) Python basics (installation, basic syntax, basic programming), optional Making models for 3D printing w/ Blender Will announce details through Sakai Regarding

More information

UNIT 2 BOOLEAN ALGEBRA

UNIT 2 BOOLEAN ALGEBRA UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification

More information

Data III & Integers I

Data III & Integers I Data III & Integers I CSE 351 Autumn 2016 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun

More information

Multi-matrices and arithmetical operations with multi-matrices

Multi-matrices and arithmetical operations with multi-matrices 1 Multi-matrices and arithmetical operations with multi-matrices Constantin Scheau National College M. Viteazul, Ploiesti, Romania c_scheau@yahoo.com Abstract. The multi-space structure has been defined

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

The Intersection of Two Sets

The Intersection of Two Sets Venn Diagrams There are times when it proves useful or desirable for us to represent sets and the relationships among them in a visual manner. This can be beneficial for a variety of reasons, among which

More information

1. Relations 2. Equivalence relations 3. Modular arithmetics. ! Think of relations as directed graphs! xry means there in an edge x!

1. Relations 2. Equivalence relations 3. Modular arithmetics. ! Think of relations as directed graphs! xry means there in an edge x! 2 Today s Topics: CSE 20: Discrete Mathematics for Computer Science Prof. Miles Jones 1. Relations 2. 3. Modular arithmetics 3 4 Relations are graphs! Think of relations as directed graphs! xry means there

More information

LATIN SQUARES AND TRANSVERSAL DESIGNS

LATIN SQUARES AND TRANSVERSAL DESIGNS LATIN SQUARES AND TRANSVERSAL DESIGNS *Shirin Babaei Department of Mathematics, University of Zanjan, Zanjan, Iran *Author for Correspondence ABSTRACT We employ a new construction to show that if and if

More information

UNIT-II NUMBER THEORY

UNIT-II NUMBER THEORY UNIT-II NUMBER THEORY An integer n is even if, and only if, n equals twice some integer. i.e. if n is an integer, then n is even an integer k such that n =2k An integer n is odd if, and only if, n equals

More information

Summary of Course Coverage

Summary of Course Coverage CS-227, Discrete Structures I Spring 2006 Semester Summary of Course Coverage 1) Propositional Calculus a) Negation (logical NOT) b) Conjunction (logical AND) c) Disjunction (logical inclusive-or) d) Inequalities

More information

Euclid's Algorithm. MA/CSSE 473 Day 06. Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm

Euclid's Algorithm. MA/CSSE 473 Day 06. Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm MA/CSSE 473 Day 06 Euclid's Algorithm MA/CSSE 473 Day 06 Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm 1 Quick look at review topics in textbook REVIEW

More information

CS 33. Data Representation, Part 1. CS33 Intro to Computer Systems VII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Data Representation, Part 1. CS33 Intro to Computer Systems VII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Data Representation, Part 1 CS33 Intro to Computer Systems VII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Number Representation Hindu-Arabic numerals developed by Hindus starting in

More information

Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification

Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):

More information

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n.

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n. Math 532, 736I: Modern Geometry Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel Part 1: 1. Axioms for a finite AFFINE plane of order n. AA1: There exist at least 4 points, no

More information

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan MATH 22 Lecture M: 10/14/2003 MORE ABOUT FUNCTIONS Form follows function. Louis Henri Sullivan This frightful word, function, was born under other skies than those I have loved. Le Corbusier D ora innanzi

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

Bits and Bytes. Why bits? Representing information as bits Binary/Hexadecimal Byte representations» numbers» characters and strings» Instructions

Bits and Bytes. Why bits? Representing information as bits Binary/Hexadecimal Byte representations» numbers» characters and strings» Instructions Bits and Bytes Topics Why bits? Representing information as bits Binary/Hexadecimal Byte representations» numbers» characters and strings» Instructions Bit-level manipulations Boolean algebra Expressing

More information

(i, j)-almost Continuity and (i, j)-weakly Continuity in Fuzzy Bitopological Spaces

(i, j)-almost Continuity and (i, j)-weakly Continuity in Fuzzy Bitopological Spaces International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 4, Issue 2, February 2016, PP 89-98 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org (i, j)-almost

More information

University of Nevada, Las Vegas Computer Science 456/656 Fall 2016

University of Nevada, Las Vegas Computer Science 456/656 Fall 2016 University of Nevada, Las Vegas Computer Science 456/656 Fall 2016 The entire examination is 925 points. The real final will be much shorter. Name: No books, notes, scratch paper, or calculators. Use pen

More information

Lecture 7 Number Theory Euiseong Seo

Lecture 7 Number Theory Euiseong Seo Lecture 7 Number Theory Euiseong Seo (euiseong@skku.edu) 1 Number Theory God created the integers. All else is the work of man Leopold Kronecker Study of the property of the integers Specifically, integer

More information

Strategies for Proofs

Strategies for Proofs Strategies for Proofs Landscape with House and Ploughman Van Gogh Discrete Structures (CS 173) Madhusudan Parthasarathy, University of Illinois 1 Goals of this lecture A bit more logic Reviewing Implication

More information

Why Don t Computers Use Base 10? Lecture 2 Bits and Bytes. Binary Representations. Byte-Oriented Memory Organization. Base 10 Number Representation

Why Don t Computers Use Base 10? Lecture 2 Bits and Bytes. Binary Representations. Byte-Oriented Memory Organization. Base 10 Number Representation Lecture 2 Bits and Bytes Topics Why bits? Representing information as bits Binary/Hexadecimal Byte representations» numbers» characters and strings» Instructions Bit-level manipulations Boolean algebra

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Discrete structures - CS Fall 2017 Questions for chapter 2.1 and 2.2

Discrete structures - CS Fall 2017 Questions for chapter 2.1 and 2.2 Discrete structures - CS1802 - Fall 2017 Questions for chapter 2.1 and 2.2 1. (a) For the following switch diagrams, write the corresponding truth table and decide whether they correspond to one of the

More information

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula Homework 1 MTH 4590 Spring 2018 1. Chapter 1, # 1: Prove that for all sets,, C, the formula ( C) = ( ) ( C) is true. Proof : It suffices to show that ( C) ( ) ( C) and ( ) ( C) ( C). ssume that x ( C),

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

Conditionals !

Conditionals ! Conditionals 02-201! Computing GCD GCD Problem: Compute the greatest common divisor of two integers. Input: Two integers a and b. Output: The greatest common divisor of a and b. Exercise: Design an algorithm

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

Circuit analysis summary

Circuit analysis summary Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert

More information

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD Recap. Growth rates: Arrange the following functions in ascending order of growth rate: n 2 log n n log n 2 log n n/ log n n n Introduction Algorithm: A step-by-step way of solving a problem. Design of

More information

(d) If the moon shares nothing and the sun does not share our works, then the earth is alive with creeping men.

(d) If the moon shares nothing and the sun does not share our works, then the earth is alive with creeping men. Math 15 - Spring 17 Chapters 1 and 2 Test Solutions 1. Consider the declaratives statements, P : The moon shares nothing. Q: It is the sun that shares our works. R: The earth is alive with creeping men.

More information

Module 2 Congruence Arithmetic pages 39 54

Module 2 Congruence Arithmetic pages 39 54 Module 2 Congruence Arithmetic pages 9 5 Here are some excellent websites that can help you on this topic: http://mathcentral.uregina.ca/qq/database/qq.09.98/kupper1.html http://nrich.maths.org/public.viewer.php?obj_id=50

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Multiple Choice Style Informatics

Multiple Choice Style Informatics Multiple Choice Style Informatics Jordan Tabov, Emil Kelevedzhiev & Borislav Lazarov I. Introduction. Jordan Tabov was an IMO participant and has been a team leader of the Bulgarian IMO team. He graduated

More information

Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson. UNIT I STUDY GUIDE Number Theory and the Real Number System

Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson. UNIT I STUDY GUIDE Number Theory and the Real Number System UNIT I STUDY GUIDE Number Theory and the Real Number System Course Learning Outcomes for Unit I Upon completion of this unit, students should be able to: 2. Relate number theory, integer computation, and

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

Introduction to Boolean Algebra

Introduction to Boolean Algebra Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

More information

LET S GET STARTED WITH NUMBERS. Xin Li Math Circle, Spring 2018 University of Central Florida

LET S GET STARTED WITH NUMBERS. Xin Li Math Circle, Spring 2018 University of Central Florida LET S GET STARTED WITH NUMBERS Xin Li Math Circle, Spring 2018 University of Central Florida WHAT IS A NUMBER? Give me an example of a number Give me an example of a natural number Give me an example of

More information

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton Fundamental Mathematical Concepts Math 107A Professor T. D. Hamilton January 17, 2007 2 Contents 1 Set Theory 7 What is a set?.......................................... 7 Describing a Set.........................................

More information

Boolean Algebra & Digital Logic

Boolean Algebra & Digital Logic Boolean Algebra & Digital Logic Boolean algebra was developed by the Englishman George Boole, who published the basic principles in the 1854 treatise An Investigation of the Laws of Thought on Which to

More information

1 / 43. Today. Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm.

1 / 43. Today. Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm. 1 / 43 Today Finish Euclid. Bijection/CRT/Isomorphism. Fermat s Little Theorem. Review for Midterm. 2 / 43 Finding an inverse? We showed how to efficiently tell if there is an inverse. Extend euclid to

More information

Introduction to Boolean Algebra

Introduction to Boolean Algebra Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

More information

Pick s Theorem! Finding the area of polygons on a square lattice grid.

Pick s Theorem! Finding the area of polygons on a square lattice grid. Section 3 4A Pick s Theorem! Finding the area of polygons on a square lattice grid. A polygon is a 2 dimensional closed figure whose sides are straight line segments. Each of the sides is connected to

More information

Strong Dominating Sets of Some Arithmetic Graphs

Strong Dominating Sets of Some Arithmetic Graphs International Journal of Computer Applications (09 888) Volume 8 No, December 01 Strong Dominating Sets of Some Arithmetic Graphs MManjuri Dept of Applied Mathematics, SPWomen s University, Tirupati-10,

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

More information

Cyclic base orders of matroids

Cyclic base orders of matroids Cyclic base orders of matroids Doug Wiedemann May 9, 2006 Abstract This is a typewritten version, with many corrections, of a handwritten note, August 1984, for a course taught by Jack Edmonds. The purpose

More information

Math 126 Number Theory

Math 126 Number Theory Math 16 Number Theory Prof. D. Joyce, Clark University 8 Mar 006 Due Friday. Page 155: exercises 1,, 7. Choose one of the three and write it up completely. Whichever one you choose, find all those solutions

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

Provide a drawing. Mark any line with three points in blue color.

Provide a drawing. Mark any line with three points in blue color. Math 3181 Name: Dr. Franz Rothe August 18, 2014 All3181\3181_fall14h1.tex Homework has to be turned in this handout. For extra space, use the back pages, or blank pages between. The homework can be done

More information

X Std. Topic Content Expected Learning Outcomes Mode of Transaction

X Std. Topic Content Expected Learning Outcomes Mode of Transaction X Std COMMON SYLLABUS 2009 - MATHEMATICS I. Theory of Sets ii. Properties of operations on sets iii. De Morgan s lawsverification using example Venn diagram iv. Formula for n( AÈBÈ C) v. Functions To revise

More information

On Fuzzy Topological Spaces Involving Boolean Algebraic Structures

On Fuzzy Topological Spaces Involving Boolean Algebraic Structures Journal of mathematics and computer Science 15 (2015) 252-260 On Fuzzy Topological Spaces Involving Boolean Algebraic Structures P.K. Sharma Post Graduate Department of Mathematics, D.A.V. College, Jalandhar

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

3. Logical Values. Boolean Functions; the Type bool; logical and relational operators; shortcut evaluation

3. Logical Values. Boolean Functions; the Type bool; logical and relational operators; shortcut evaluation 140 3. Logical Values Boolean Functions; the Type bool; logical and relational operators; shortcut evaluation Our Goal 141 int a; std::cin >> a; if (a % 2 == 0) std::cout

More information

Logic Design: Part 2

Logic Design: Part 2 Orange Coast College Business Division Computer Science Department CS 6- Computer Architecture Logic Design: Part 2 Where are we? Number systems Decimal Binary (and related Octal and Hexadecimal) Binary

More information

ST MARY S COLLEGE FORM ONE COURSE OUTLINE MATHEMATICS. Term 1. Addition and subtraction. Multiplication and division facts

ST MARY S COLLEGE FORM ONE COURSE OUTLINE MATHEMATICS. Term 1. Addition and subtraction. Multiplication and division facts ST MARY S COLLEGE FORM ONE COURSE OUTLINE MATHEMATICS Term 1 1 1 Arithmetic: Place Value Definition of number types and the relation to each other Place value for integers. Number in words and vice versa

More information

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability)

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) Last modified: September 16, 2004 Reference: Apostol, Calculus, Vol. 2, section 13.19 (attached). The aim

More information