# Boolean algebra. June 17, Howard Huang 1

Size: px
Start display at page:

Transcription

1 Boolean algebra Yesterday we talked about how analog voltages can represent the logical values true and false. We introduced the basic Boolean operations AND, OR and NOT, which can be implemented in hardware with primitive logic gates. It follows that any Boolean expression, composed of basic operations, can be computed with a circuit of primitive gates. Today we ll present the axioms of Boolean algebra, and discuss how they help us simplify functions and circuits. June 7, Howard Huang

2 Operations and gates review Operation: AND (product) of two inputs OR (sum) of two inputs NOT (complement) of one input Expression: xy or x y x + y x or x Truth table: x y xy x y x + y x x Logic gate symbol: June 7, 23 Boolean algebra 2

3 Expressions and circuits We can build a circuit for any Boolean expression by connecting primitive logic gates in the correct order. Yesterday we showed the example circuit below, which accepts inputs x, y and z, and produces the output (x + y )z + x. June 7, 23 Boolean algebra 3

4 Simplifying circuits The big circuit on the last page is actually equivalent to this simpler one. Simpler hardware is almost always better. In many cases, simpler circuits are faster. Less hardware means lower costs. A smaller circuit also consumes less power. So how were we able to simplify this particular circuit? Smaller is better. June 7, 23 Boolean algebra 4

5 The definition of a Boolean algebra The secret is Boolean algebra, which lets us simplify Boolean functions just as regular algebra allows us to manipulate arithmetic functions. A Boolean algebra requires: A set of values with at least two elements, denoted and Two binary (two-argument) operations + and A unary (one-argument) operation These values and operations must satisfy the axioms shown below. x + = x x + = x + x = x x + x = (x ) = x x + y = y + x x + (y + z) = (x + y) + z x(y + z) = xy + xz (x + y) = x y x = x x = x x = x x x = xy = yx x(yz) = (xy)z x + yz = (x + y)(x + z) (xy) = x + y Commutative Associative Distributive DeMorgan s Law June 7, 23 Boolean algebra 5

6 Satisfying the axioms Fortunately, the AND, OR and NOT operations that we defined do satisfy all of the axioms. x y xy x y x + y x x For example, we can show that the axiom x + x = always holds. There are only two possible values for x, or. The complement of these values is and, by our definition of NOT. According to our definition of OR, + =, and + =. x x x + x June 7, 23 Boolean algebra 6

7 Similarities with regular algebra The axioms in blue look just like regular algebraic rules this is one of the reasons we overload the + and symbols for Boolean operations. The associative laws show that there is no ambiguity in an expression like xyz or x + y + z, so we can use multi-input primitive gates as well as our original two-input gates. x + = x x + = x + x = x x + x = (x ) = x x + y = y + x x + (y + z) = (x + y) + z x(y + z) = xy + xz (x + y) = x y x = x x = x x = x x x = xy = yx x(yz) = (xy)z x + yz = (x + y)(x + z) (xy) = x + y Commutative Associative Distributive DeMorgan s Law June 7, 23 Boolean algebra 7

8 The complement operation The magenta axioms deal with the complement operator. The first three make sense if you think about some English examples. It is snowing or it is not snowing is always true (x + x = ) It is snowing and it is not snowing can never be true (x x = ) I am not not handsome means I am handsome ((x ) = x) x + = x x + = x + x = x x + x = (x ) = x x + y = y + x x + (y + z) = (x + y) + z x(y + z) = xy + xz (x + y) = x y x = x x = x x = x x x = xy = yx x(yz) = (xy)z x + yz = (x + y)(x + z) (xy) = x + y Commutative Associative Distributive DeMorgan s Law June 7, 23 Boolean algebra 8

9 DeMorgan s Laws DeMorgan s Laws explain how to complement arbitrary expressions. (x + y) = x y (xy) = x + y Here are some examples in English. I m not rich-or-famous means that I m not rich and I m not famous. I am not old-and-bald means I am not old or I am not bald. But I could be () young and bald, (2) young and hairy, or (3) old and hairy. Who s DeMorgan? June 7, 23 Boolean algebra 9

10 Other differences from regular algebra Finally, the red axioms are completely different from regular algebra. The first three make sense logically. Anything or true always holds, even if anything is false (x + = ) I am handsome or I am handsome is redundant (x + x = x) I am handsome and I am handsome is also redundant (x x = x) The last one, x + yz = (x + y)(x + z), is the least intuitive, but you can prove it using truth tables or the other axioms. x + = x x + = x + x = x x + x = (x ) = x x + y = y + x x + (y + z) = (x + y) + z x(y + z) = xy + xz (x + y) = x y x = x x = x x = x x x = xy = yx x(yz) = (xy)z x + yz = (x + y)(x + z) (xy) = x + y Commutative Associative Distributive DeMorgan s Law June 7, 23 Boolean algebra

11 Simplifications Now we can use these axioms to simplify expressions and circuits. x y + xyz + x y = x y + x y + xyz [ Commutative ] = x (y + y) + xyz [ Distributive ] = (x ) + xyz [ y + y = ] = x + xyz [ x = x ] = (x + x)(x + yz) [ Distributive! ] = (x + yz) [ x + x = ] = x + yz x + = x x + = x + x = x x + x = (x ) = x x + y = y + x x + (y + z) = (x + y) + z x(y + z) = xy + xz (x + y) = x y x = x x = x x = x x x = xy = yx x(yz) = (xy)z x + yz = (x + y)(x + z) (xy) = x + y Commutative Associative Distributive DeMorgan s Law June 7, 23 Boolean algebra

12 Simpler expressions yield simpler hardware Here are circuits corresponding to the original and simplified expressions. June 7, 23 Boolean algebra 2

13 Proofs with truth tables We also can prove that two expressions are equivalent by showing that they always produce the same results for the same inputs. x y x + y (x + y) x y x y x y Here are truth tables proving one of DeMorgan s Laws, (x + y) = x y. The leftmost columns in each table show all the possible inputs. The columns on the right are the outputs. Additional columns can aid in showing intermediate results. Both of the output columns are the same, so we know that (x + y) and x y must be equivalent. June 7, 23 Boolean algebra 3

14 Duality There s a reason why the table of axioms has two columns. The laws on the left and right are duals of each other. The AND and OR operators are exchanged. The constant values and are also exchanged. The dual of any equation is always true. If E and F are two equivalent expressions, the dual of E will also be equivalent to the dual of F. x + = x x + = x + x = x x + x = (x ) = x x + y = y + x x + (y + z) = (x + y) + z x(y + z) = xy + xz (x + y) = x y x = x x = x x = x x x = xy = yx x(yz) = (xy)z x + yz = (x + y)(x + z) (xy) = x + y Commutative Associative Distributive DeMorgan s Law June 7, 23 Boolean algebra 4

15 Some more laws Some other useful equations are shown below. They can all be proven from the axioms we already showed. Notice that each law also has a dual. Feel free to use these in homeworks and exams. x + xy = x xy + xy = x x + x y = x + y xy + x z + yz = xy + x z x(x + y) = x (x + y)(x + y ) = x x(x + y) = xy (x + y)(x + z)(y + z) = (x + y)(x + z) June 7, 23 Boolean algebra 5

16 Why is it called Boolean algebra? It was invented by George Boole way back in the 85s! Obviously, that was before they had digital cameras. It wasn t until about 937 that Claude Shannon got the idea to apply Boolean algebra to circuit design. This, as well as several other things, made Shannon so richand-famous that he retired when he was just 5. June 7, 23 Boolean algebra 6

17 June 7, 23 Boolean algebra 7 Complementing a truth table The complement of a function should output when the original function outputs, and vice versa. In a truth table, we can just exchange and in the output column. On the left is a truth table for f(x,y,z) = (x + y )z + x. On the right is the table for the complement of f, denoted f (x,y,z). f(x,y,z) z y x f (x,y,z) z y x

18 Complementing an expression To complement an expression, you can use DeMorgan s Laws to keep pushing the NOT operator inwards, all the way to the literals. f(x,y,z) = (x + y )z + x f (x,y,z) = ((x + y )z + x ) [ complementing both sides ] = ((x + y )z) (x ) [ because (x + y) = x y ] = ((x + y ) + z ) x [ (xy) = x + y, and (x ) = x ] = (x y + z ) x [ (x + y) = x y again ] Another clever method of complementing an expression is to take the dual of the expression, and then complement each literal. The dual of (x + y )z + x is (xy + z) x. Complementing each literal yields (x y + z ) x. So f (x,y,z) = (x y + z ) x. June 7, 23 Boolean algebra 8

19 Sum of products expressions There are many equivalent ways to write a function, but some forms turn out to be more useful than others. A sum of products or SOP expression consists of: One or more terms summed (OR ed) together. Each of those terms is a product of literals. f(x, y, z) = y + x yz + xz Sum of products expressions can be implemented with two-level circuits. Levels: 2 June 7, 23 Boolean algebra 9

20 Minterms A minterm is a special product of literals, in which each input variable appears exactly once. A function with n input variables has 2 n possible minterms. For instance, a three-variable function f(x,y,z) has 8 possible minterms: x y z x y z x y z x y z x y z x y z x y z x y z Each minterm is true for exactly one combination of inputs. Minterm x y z x y z x y z x y z x y z x y z x y z x y z True when xyz = xyz = xyz = xyz = xyz = xyz = xyz = xyz = Shorthand m m m 2 m 3 m 4 m 5 m 6 m 7 Hey! This looks like a truth table! June 7, 23 Boolean algebra 2

21 Sum of minterms expressions A sum of minterms is a special kind of sum of products. Every function can be written as a unique sum of minterms expression. A truth table for a function can be rewritten as a sum of minterms just by finding the table rows where the function output is. x y z C(x,y,z) C (x,y,z) C = x yz + xy z + xyz + xyz =m 3 + m 5 + m 6 + m 7 = Σm(3,5,6,7) C = x y z + x y z + x yz + xy z = m + m + m 2 + m 4 = Σm(,,2,4) C contains all the minterms not in C, and vice versa. June 7, 23 Boolean algebra 2

22 Product of sums expressions As you might expect, we can work with the duals of these ideas too. A product of sums or POS consists of: One or more terms multiplied (AND ed) together. Each of those terms is a sum of literals. g(x, y, z) = y (x + y + z )(x + z) Products of sums can also be implemented with two-level circuits. Levels: 2 June 7, 23 Boolean algebra 22

23 Maxterms A maxterm is a sum of literals where each input variable appears once. A function with n input variables has 2 n possible maxterms. For instance, a function with three variables x, y and z has 8 possible maxterms: x + y + z x + y + z x + y + z x + y + z x + y + z x + y + z x + y + z x + y + z Each maxterm is false for exactly one combination of inputs. Maxterm x + y + z x + y + z x + y + z x + y + z x + y + z x + y + z x + y + z x + y + z False when xyz = xyz = xyz = xyz = xyz = xyz = xyz = xyz = Shorthand M M M 2 M 3 M 4 M 5 M 6 M 7 June 7, 23 Boolean algebra 23

24 Product of maxterms expressions Every function can also be written as a unique product of maxterms. A truth table for a function can be rewritten as a product of maxterms just by finding the table rows where the function output is. x y z C(x,y,z) C (x,y,z) C = (x + y + z)(x + y + z ) (x + y + z)(x + y + z) =M M M 2 M 4 = M(,,2,4) C = (x + y + z )(x + y + z ) (x + y + z)(x + y + z ) = M 3 M 5 M 6 M 7 = M(3,5,6,7) C contains all the maxterms not in C, and vice versa. June 7, 23 Boolean algebra 24

25 Minterms and maxterms, oh my! Now we ve seen two different ways to write the function C, as a sum of minterms Σm(3,5,6,7) and as a product of maxterms ΠM(,,2,4). Notice the product term includes maxterm numbers whose corresponding minterms do not appear in the sum expression. x y z C(x,y,z) C = x yz + xy z + xyz + xyz =m 3 + m 5 + m 6 + m 7 = Σm(3,5,6,7) C = (x + y + z)(x + y + z ) (x + y + z)(x + y + z) =M M M 2 M 4 = M(,,2,4) June 7, 23 Boolean algebra 25

26 The relationship revealed Every minterm m i is the complement of its corresponding maxterm M i. Minterm (m ) x y z (m ) x y z (m 2 ) x y z (m 3 ) x y z (m 4 ) x y z (m 5 ) x y z (m 6 ) x y z (m 7 ) x y z True when xyz = xyz = xyz = xyz = xyz = xyz = xyz = xyz = Maxterm (M ) x + y + z (M ) x + y + z (M 2 ) x + y + z (M 3 ) x + y + z (M 4 ) x + y + z (M 5 ) x + y + z (M 6 ) x + y + z (M 7 ) x + y + z False when xyz = xyz = xyz = xyz = xyz = xyz = xyz = xyz = For example, m 4 = M 4 because (xy z ) = x + y + z. June 7, 23 Boolean algebra 26

27 Converting between standard forms We can convert sums of minterms to products of maxterms algebraically. C = Σm(3,5,6,7) C = Σm(,,2,4) [ C contains the minterms not in C ] = m + m + m 2 + m 4 (C ) = (m + m + m 2 + m 4 ) [ complementing both sides ] C = m m m 2 m 4 [ DeMorgan s law ] = M M M 2 M 4 [ from the previous page ] = M(,,2,4) The easy way is to replace minterms with maxterms, using the maxterm numbers that do not appear in the sum of minterms. C= Σm(3,5,6,7) = M(,,2,4) June 7, 23 Boolean algebra 27

28 Summary We saw two ways to prove the equivalence of expressions. Truth tables show that all possible inputs yield the same outputs. Boolean algebra is especially useful for simplifying expressions, and therefore circuits as well. Expressions can be written in many ways, so standard representations like sums of products and sums of minterms are often useful. We will sometimes see products of sums and products of maxterms too. Tomorrow we ll introduce a more graphical simplification technique. Then we can start to build and analyze larger, more realistic circuits! June 7, 23 Boolean algebra 28

### Circuit analysis summary

Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert

### Standard Forms of Expression. Minterms and Maxterms

Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:

### Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification

Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

### Review: Standard forms of expressions

Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and NOT. These operations can be combined to form complex expressions, which can

### IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### UNIT 2 BOOLEAN ALGEBRA

UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification

### CS February 17

Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)

### S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017

S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017 Karnaugh Map Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and

### Unit-IV Boolean Algebra

Unit-IV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of

### Philadelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.

Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms

### 2.6 BOOLEAN FUNCTIONS

2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses

### Chapter 2 Boolean algebra and Logic Gates

Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions

### Lecture 5. Chapter 2: Sections 4-7

Lecture 5 Chapter 2: Sections 4-7 Outline Boolean Functions What are Canonical Forms? Minterms and Maxterms Index Representation of Minterms and Maxterms Sum-of-Minterm (SOM) Representations Product-of-Maxterm

### Basic circuit analysis and design. Circuit analysis. Write algebraic expressions or make a truth table

Basic circuit analysis and design Circuit analysis Circuit analysis involves figuring out what some circuit does. Every circuit computes some function, which can be described with Boolean expressions or

### Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can

### Chapter 3. Boolean Algebra and Digital Logic

Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how

### UNIT-4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.

UNIT-4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?

### Boolean Algebra & Digital Logic

Boolean Algebra & Digital Logic Boolean algebra was developed by the Englishman George Boole, who published the basic principles in the 1854 treatise An Investigation of the Laws of Thought on Which to

### Lecture (04) Boolean Algebra and Logic Gates

Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 26, Logic Design Boolean algebra properties basic assumptions and properties: Closure law A set S is

### Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee

Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Boolean algebra properties basic assumptions and properties: Closure law A set S is closed with respect to a binary operator, for every

### Software Engineering 2DA4. Slides 2: Introduction to Logic Circuits

Software Engineering 2DA4 Slides 2: Introduction to Logic Circuits Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of Digital

### Computer Organization

Computer Organization (Logic circuits design and minimization) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering

### Announcements. Chapter 2 - Part 1 1

Announcements If you haven t shown the grader your proof of prerequisite, please do so by 11:59 pm on 09/05/2018 (Wednesday). I will drop students that do not show us the prerequisite proof after this

### Dr. Chuck Cartledge. 10 June 2015

Miscellanea Exam #1 Break Exam review 2.1 2.2 2.3 2.4 Break 3 4 Conclusion References CSC-205 Computer Organization Lecture #003 Chapter 2, Sections 2.1 through 4 Dr. Chuck Cartledge 10 June 2015 1/30

### Review. EECS Components and Design Techniques for Digital Systems. Lec 05 Boolean Logic 9/4-04. Seq. Circuit Behavior. Outline.

Review EECS 150 - Components and Design Techniques for Digital Systems Lec 05 Boolean Logic 94-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley Design flow

### Chapter 2. Boolean Expressions:

Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean

### BOOLEAN ALGEBRA. 1. State & Verify Laws by using :

BOOLEAN ALGEBRA. State & Verify Laws by using :. State and algebraically verify Absorption Laws. (2) Absorption law states that (i) X + XY = X and (ii) X(X + Y) = X (i) X + XY = X LHS = X + XY = X( + Y)

### Chapter 2 Combinational Logic Circuits

Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

### Binary logic. Dr.Abu-Arqoub

Binary logic Binary logic deals with variables like (a, b, c,, x, y) that take on two discrete values (, ) and with operations that assume logic meaning ( AND, OR, NOT) Truth table is a table of all possible

### 1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

### Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization

### Computer Science. Unit-4: Introduction to Boolean Algebra

Unit-4: Introduction to Boolean Algebra Learning Objective At the end of the chapter students will: Learn Fundamental concepts and basic laws of Boolean algebra. Learn about Boolean expression and will

### Designing Computer Systems Boolean Algebra

Designing Computer Systems Boolean Algebra 08:34:45 PM 4 June 2013 BA-1 Scott & Linda Wills Designing Computer Systems Boolean Algebra Programmable computers can exhibit amazing complexity and generality.

### Experiment 3: Logic Simplification

Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed El-Saied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions

### Permutation Matrices. Permutation Matrices. Permutation Matrices. Permutation Matrices. Isomorphisms of Graphs. 19 Nov 2015

9 Nov 25 A permutation matrix is an n by n matrix with a single in each row and column, elsewhere. If P is a permutation (bijection) on {,2,..,n} let A P be the permutation matrix with A ip(i) =, A ij

### 2.1 Binary Logic and Gates

1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary

### Digital Logic Lecture 7 Gate Level Minimization

Digital Logic Lecture 7 Gate Level Minimization By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. K-map principles. Simplification using K-maps. Don t-care

### Lecture 4: Implementation AND, OR, NOT Gates and Complement

EE210: Switching Systems Lecture 4: Implementation AND, OR, NOT Gates and Complement Prof. YingLi Tian Feb. 13, 2018 Department of Electrical Engineering The City College of New York The City University

### Spring 2010 CPE231 Digital Logic Section 1 Quiz 1-A. Convert the following numbers from the given base to the other three bases listed in the table:

Section 1 Quiz 1-A Convert the following numbers from the given base to the other three bases listed in the table: Decimal Binary Hexadecimal 1377.140625 10101100001.001001 561.24 454.3125 111000110.0101

### Standard Boolean Forms

Standard Boolean Forms In this section, we develop the idea of standard forms of Boolean expressions. In part, these forms are based on some standard Boolean simplification rules. Standard forms are either

### Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER

Boolean Algebra BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 5 Boolean Algebra /2 A set of elements B There exist at least two elements x, y B s. t. x y Binary operators: +

### Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

### (Refer Slide Time 6:48)

Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

### 2/8/2017. SOP Form Gives Good Performance. ECE 120: Introduction to Computing. K-Maps Can Identify Single-Gate Functions

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Two-Level Logic SOP Form Gives Good Performance s you know, one can use a K-map

### Introduction to Boolean Algebra

Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

### 3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f?

1. Prove: A full m-ary tree with i internal vertices contains n = mi + 1 vertices. 2. For a full m-ary tree with n vertices, i internal vertices, and l leaves, prove: (i) i = (n 1)/m and l = [(m 1)n +

### ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.

Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to

### Introduction to Boolean Algebra

Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

### Chapter 2: Combinational Systems

Uchechukwu Ofoegbu Chapter 2: Combinational Systems Temple University Adapted from Alan Marcovitz s Introduction to Logic and Computer Design Riddle Four switches can be turned on or off. One is the switch

### Lecture (05) Boolean Algebra and Logic Gates

Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either

### Introduction to Boolean logic and Logical Gates

Introduction to Boolean logic and Logical Gates Institute of Statistics Fall 2014 We saw the importance of the binary number system for data representation in a computer system. We ll see that the construction

### Gate Level Minimization Map Method

Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

### Objectives: 1- Bolean Algebra. Eng. Ayman Metwali

Objectives: Chapter 3 : 1- Boolean Algebra Boolean Expressions Boolean Identities Simplification of Boolean Expressions Complements Representing Boolean Functions 2- Logic gates 3- Digital Components 4-

### X Y Z F=X+Y+Z

This circuit is used to obtain the compliment of a value. If X = 0, then X = 1. The truth table for NOT gate is : X X 0 1 1 0 2. OR gate : The OR gate has two or more input signals but only one output

### Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions

### SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)

Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called

### QUESTION BANK FOR TEST

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

### CS8803: Advanced Digital Design for Embedded Hardware

CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

### Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

### Combinational Logic & Circuits

Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

### 6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

6. Combinational Circuits George Boole (85 864) Claude Shannon (96 2) Digital signals Binary (or logical ) values: or, on or off, high or low voltage Wires. Propagate logical values from place to place.

### Variable, Complement, and Literal are terms used in Boolean Algebra.

We have met gate logic and combination of gates. Another way of representing gate logic is through Boolean algebra, a way of algebraically representing logic gates. You should have already covered the

### DKT 122/3 DIGITAL SYSTEM 1

Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits

### Boolean Logic CS.352.F12

Boolean Logic CS.352.F12 Boolean Algebra Boolean Algebra Mathematical system used to manipulate logic equations. Boolean: deals with binary values (True/False, yes/no, on/off, 1/0) Algebra: set of operations

### ENGIN 112. Intro to Electrical and Computer Engineering

ENIN 2 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra ENIN2 L6: More Boolean Algebra September 5, 23 A B Overview Epressing Boolean functions Relationships between algebraic

### DSAS Laboratory no 4. Laboratory 4. Logic forms

Laboratory 4 Logic forms 4.1 Laboratory work goals Going from Boolean functions to Boolean forms. Logic forms equivalence. Boolean forms simplification. Shannon s theorems. Representation in NAND and NOR

### Introduction to Computer Architecture

Boolean Operators The Boolean operators AND and OR are binary infix operators (that is, they take two arguments, and the operator appears between them.) A AND B D OR E We will form Boolean Functions of

### Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER

Gate-Level Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to

### Module -7. Karnaugh Maps

1 Module -7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or Sum-of-Minterms (SOM) 2.4 Canonical product of sum or Product-of-Maxterms(POM)

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

### (Refer Slide Time 3:31)

Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 5 Logic Simplification In the last lecture we talked about logic functions

### MODULE 5 - COMBINATIONAL LOGIC

Introduction to Digital Electronics Module 5: Combinational Logic 1 MODULE 5 - COMBINATIONAL LOGIC OVERVIEW: For any given combination of input binary bits or variables, the logic will have a specific

### LECTURE 4. Logic Design

LECTURE 4 Logic Design LOGIC DESIGN The language of the machine is binary that is, sequences of 1 s and 0 s. But why? At the hardware level, computers are streams of signals. These signals only have two

### Combinational Logic Circuits Part III -Theoretical Foundations

Combinational Logic Circuits Part III -Theoretical Foundations Overview Simplifying Boolean Functions Algebraic Manipulation Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables) Systematic

### LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

### COMP combinational logic 1 Jan. 18, 2016

In lectures 1 and 2, we looked at representations of numbers. For the case of integers, we saw that we could perform addition of two numbers using a binary representation and using the same algorithm that

### BOOLEAN ALGEBRA AND CIRCUITS

UNIT 3 Structure BOOLEAN ALGEBRA AND CIRCUITS Boolean Algebra and 3. Introduction 3. Objectives 3.2 Boolean Algebras 3.3 Logic 3.4 Boolean Functions 3.5 Summary 3.6 Solutions/ Answers 3. INTRODUCTION This

### 01 Introduction to Digital Logic. ENGR 3410 Computer Architecture Mark L. Chang Fall 2008

Introduction to Digital Logic ENGR 34 Computer Architecture Mark L. Chang Fall 28 Acknowledgements Patterson & Hennessy: Book & Lecture Notes Patterson s 997 course notes (U.C. Berkeley CS 52, 997) Tom

### 6. Combinational Circuits. Building Blocks. Digital Circuits. Wires. Q. What is a digital system? A. Digital: signals are 0 or 1.

Digital Circuits 6 Combinational Circuits Q What is a digital system? A Digital: signals are or analog: signals vary continuously Q Why digital systems? A Accurate, reliable, fast, cheap Basic abstractions

### 6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

6. Combinational Circuits George Boole (85 864) Claude Shannon (96 2) Signals and Wires Digital signals Binary (or logical ) values: or, on or off, high or low voltage Wires. Propagate digital signals

### Combinational Devices and Boolean Algebra

Combinational Devices and Boolean Algebra Silvina Hanono Wachman M.I.T. L02-1 6004.mit.edu Home: Announcements, course staff Course information: Lecture and recitation times and locations Course materials

### Combinational Circuits Digital Logic (Materials taken primarily from:

Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a

### BOOLEAN ALGEBRA. Logic circuit: 1. From logic circuit to Boolean expression. Derive the Boolean expression for the following circuits.

COURSE / CODE DIGITAL SYSTEMS FUNDAMENTAL (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) BOOLEAN ALGEBRA Boolean Logic Boolean logic is a complete system for logical operations. It is used in countless

### Chapter 6. Logic Design Optimization Chapter 6

Chapter 6 Logic Design Optimization Chapter 6 Optimization The second part of our design process. Optimization criteria: Performance Size Power Two-level Optimization Manipulating a function until it is

### Chapter 3 Simplification of Boolean functions

3.1 Introduction Chapter 3 Simplification of Boolean functions In this chapter, we are going to discuss several methods for simplifying the Boolean function. What is the need for simplifying the Boolean

### 01 Introduction to Digital Logic. ENGR 3410 Computer Architecture Mark L. Chang Fall 2006

Introduction to Digital Logic ENGR 34 Computer Architecture Mark L. Chang Fall 26 Acknowledgements Patterson & Hennessy: Book & Lecture Notes Patterson s 997 course notes (U.C. Berkeley CS 52, 997) Tom

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

### Gate Level Minimization

Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch- Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =

### CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input

### 2. BOOLEAN ALGEBRA 2.1 INTRODUCTION

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION In the previous chapter, we introduced binary numbers and binary arithmetic. As you saw in binary arithmetic and in the handling of floating-point numbers, there is

### Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B

Boolean Algebra A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND ( ), a unary operation NOT ('), an equality sign (=) to indicate equivalence

### Combinational Circuits

Combinational Circuits Q. What is a combinational circuit? A. Digital: signals are or. A. No feedback: no loops. analog circuits: signals vary continuously sequential circuits: loops allowed (stay tuned)

### Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Tong In Oh 1 Basic Definitions 2 3 2.3 Axiomatic Definition of Boolean Algebra Boolean algebra: Algebraic structure defined by a set of elements, B, together

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

### Definitions. 03 Logic networks Boolean algebra. Boolean set: B 0,

3. Boolean algebra 3 Logic networks 3. Boolean algebra Definitions Boolean functions Properties Canonical forms Synthesis and minimization alessandro bogliolo isti information science and technology institute

### SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

### R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai

L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai- 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT - I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean