Microprocessor Memory Mapping. Dr. Cahit Karakuş, February-2018

Size: px
Start display at page:

Download "Microprocessor Memory Mapping. Dr. Cahit Karakuş, February-2018"

Transcription

1 Microprocessor Memory Mapping Dr. Cahit Karakuş, February-2018

2 Konu Başlıkları CPU Mimarisi Microprocessor Pins and Signals System Bus Bellek Haritası Bellek Arayüzü ve I/O portları Assemble Adres erişim ve Veri Transfer Komutlar

3 Memory

4 Media Storage Main memory (Electronic Memory): Stores data currently being used Is made of semiconductor chips. Secondary Memory magnetic (floppy discs, hard disc ) Optical (CD-ROM, DVD)

5 Arrangement of Memory Cells Each cell has a unique address Longer strings stored by using consecutive cells value = RAM (random access memory)

6 Accessing Data in the Main Memory Instructions and data are stored in the main memory in a serial order. CPU executes instructions one by one top down. An instruction may tell the CPU to jump to particular cell and execute the instruction held in it, or fetch the data stored is that cell. How is this done?

7 System Bus Main memory and CPU are linked using a set of wire: Three wires: address lines, data lines and control lines. Known as address bus, data bus and control bus. System bus

8 Address Space The address space of a computer is the maximum number of cells a computer can hold. The address space is determined by the number of address lines used in a computer. If each cell in a memory is 8-bit, then the memory is called byte addressable: 1 byte long has a unique address

9 Features of the Main Memory Memory Capacity. Access of information Access time Transfer rate

10 Memory Capacity Most computer s memory have 8-bit (1-byte) cells. In this case we have: Address lines N o of cells Capacity N 2^N 2^N * 1 32KB, 256MB and 20GB are used to describe the memory capacity.

11 Capacity Units 1kB = 2 10 = 1024 Byte. 1MB =1024 KB = 2 20 Bytes= 1, 048,576 B. 1GB =1024 MB = 2 30 kb=1, 073,741,824 Bytes.

12 Access Time Access time is taken between the moment when the CPU wants the read/write from/into a cell and the moment when the cell is activated. It is the moment that the CPU takes to activate a cell. 60ns (10-9 sec)

13 Transfer Rate Is the amount of information per second exchanged between the CPU and main memory. Main memory electronic signals Implies fast transfer rate in the scale about 100MB/sec

14 Random Access If the CPU wants to activate particular cell. It does not search for the target cell from top to bottom. It does put the address of the target cell in the address line, then the cell will be activated. This type of accessing information is called Random Access

15 The need for other type of memories. Main memory Fast as all the exchange between CPU and Main memory is done electronically. However, it is volatile. Information lost when the machine is turned off. The need for non-volatile memory: Hold information when the machine is off. i.e. Magnetic disk, optical disk, magnetic tape

16 A Magnetic Disk Storage System Each track contains same number of sectors Location of tracks and sectors not permanent (formatting) Examples: hard disks, floppy disks,...

17 Magnetic Disk Terminology Platter: rigid metal or glass platter Coated with magnetic material. rotating at constant angular velocity Arm: With movable magnetic read/write heads Track: A complete ring of data The disk surface is divided into tracks Sectors: Each track is subdivided into sectors Cylinder (see slides 71-72): A vertical collection of tracks at the same radial position

18 Main memory RAM Low storage capacity Fast (electrical signals) Volatile. Magnetic memory Floppy disk Hard disk Magnetic tape Optical memory CD_ROM disk DVD Summary

19 MEMORY ORGANIZATION Memory Hierarchy Main Memory Auxiliary Memory Associative Memory Cache Memory Virtual Memory Memory Management Hardware` 19

20 Memory Hierarchy The main memory occupies a central position by being able to communicate directly with the CPU and with auxiliary memory devices through an I/O processor A special very-high-speed memory called cache is used to increase the speed of processing by making current programs and data available to the CPU at a rapid rate 20

21 Memory Hierarchy CPU logic is usually faster than main memory access time, with the result that processing speed is limited primarily by the speed of main memory The cache is used for storing segments of programs currently being executed in the CPU and temporary data frequently needed in the present calculations The typical access time ratio between cache and main memory is about 1to7 Auxiliary memory access time is usually 1000 times that of main memory 21

22 Memory Main memory consists of a number of storage locations, each of which is identified by a unique address The ability of the CPU to identify each location is known as its addressability Each location stores a word i.e. the number of bits that can be processed by the CPU in a single operation. Word length may be typically 16, 24, 32 or as many as 64 bits. A large word length improves system performance, though may be less efficient on occasions when the full word length is not used 22

23 MEMORY HIERARCHY Memory Hierarchy Memory Hierarchy is to obtain the highest possible access speed while minimizing the total cost of the memory system Auxiliary memory Magnetic tapes Magnetic disks I/O processor CPU Main memory Cache memory Register Cache Main Memory Magnetic Disk Magnetic Tape 23

24 Memory Memory is a place to where the programs and data are loaded in order to be executed. RAM ( Random Access Memory ) and ROM ( Read Only Memory ). RAM is read /write memory while ROMisread-onlymemory; RAM is volatile, (the contents are lost when power is removed ) while ROM is nonvolatile (the contents are not lost when power is removed). Dynamic Ram (DRAM), Static RAM (SRAM), Cache, Read only memory (ROM), Flash Memory,...

25 Random-Access Memory (RAM) Static RAM (SRAM) Each cell stores bit with a six-transistor circuit. Retains value indefinitely, as long as it is kept powered. Relatively insensitive to disturbances such as electrical noise. Faster and more expensive than DRAM. Dynamic RAM (DRAM) Each cell stores bit with a capacitor and transistor. Value must be refreshed every ms. Sensitive to disturbances. Slower and cheaper than SRAM. 25

26 ROM ROM is used for storing programs that are PERMENTLY resident in the computer and for tables of constants that do not change in value once the production of the computer is completed The ROM portion of main memory is needed for storing an initial program called bootstrap loader, witch is to start the computer software operating when power is turned off 26

27 Main Memory Most of the main memory in a general purpose computer is made up of RAM integrated circuits chips, but a portion of the memory may be constructed with ROM chips RAM Random Access memory In tegated RAM are available in two possible operating modes, Static and Dynamic ROM Read Only memory 27

28 Main Memory A RAM chip is better suited for communication with the CPU if it has one or more control inputs that select the chip when needed The Block diagram of a RAM chip is shown next slide, the capacity of the memory is 128 words of 8 bits (one byte) per word 28

29 RAM 29

30 ROM 30

31 Cache memory If the active portions of the program and data are placed in a fast small memory, the average memory access time can be reduced, Thus reducing the total execution time of the program Such a fast small memory is referred to as cache memory The cache is the fastest component in the memory hierarchy and approaches the speed of CPU component When CPU needs to access memory, the cache is examined If the word is found in the cache, it is read from the fast memory If the word addressed by the CPU is not found in the cache, the main memory is accessed to read the word 31

32 Cache memory The performance of cache memory is frequently measured in terms of a quantity called hit ratio When the CPU refers to memory and finds the word in cache, it is said to produce a hit Otherwise, it is a miss Hit ratio = hit / (hit+miss) The basic characteristic of cache memory is its fast access time, Therefore, very little or no time must be wasted when searching the words in the cache The transformation of data from main memory to cache memory is referred to as a mapping process, there are three types of mapping: Associative mapping Direct mapping Set-associative mapping 32

33 Cache memory To help understand the mapping procedure, we have the following example: 33

34 Memory Mapping

35 Memory, I/O Mapping Primary or Main Memory Storage area which can be directly accessed by microprocessor Store programs and data prior to execution Should not have speed disparity with processor Semi Conductor memories using CMOS technology ROM, EPROM, Static RAM, DRAM Secondary Memory Storage media comprising of slow devices such as magnetic tapes and disks Hold large data files and programs: Operating system, compilers, databases, permanent programs etc. Memory mapping, I/O mapping When memory mapping is used for I/O devices, full memory address space cannot be used for addressing memory.

36 Memory Address Generation The BIU has a dedicated adder for determining physical memory addresses Offset Value (16 bits) Segment Register (16 bits) Adder Physical Address (20 Bits)

37 Intel Example Address Calculation If the data segment starts at location 1000h and a data reference contains the address 29h where is the actual data? 2 9 Offset: Segment: Address:

38 Segment:Offset Address Logical Address is specified as segment:offset Physical address is obtained by shifting the segment address 4 bits to the left and adding the offset address Thus the physical address of the logical address A4FB:4872 is A4FB A9822

39

40 The Code Segment 0H CS: 0400H 4000H IP 0056H 4056H CS:IP = 400:56 Logical Address Segment Register Memory Offset Physical or Absolute Address 04056H 0FFFFFH The offset is the distance in bytes from the start of the segment. The offset is given by the IP for the Code Segment. Instructions are always fetched with using the CS register. The physical address is also called the absolute address.

41 The Data Segment 0H DS: 05C0 05C00H SI C50H DS:EA Segment Register 05C0 0 Memory Offset Physical Address 05C50H 0FFFFFH Data is usually fetched with respect to the DS register. The effective address (EA) is the offset. The EA depends on the addressing mode.

42 The Stack Segment 0H SS: 0A00 0A000H SP A100H SS:SP Segment Register 0A00 0 Memory Offset Physical Address 0A100H 0FFFFFH The offset is given by the SP register. The stack is always referenced with respect to the stack segment register. The stack grows toward decreasing memory locations. The SP points to the last or top item on the stack. PUSH - pre-decrement the SP POP - post-increment the SP

43 Memory Address Map Memory Address Map is a pictorial representation of assigned address space for each chip in the system To demonstrate an example, assume that a computer system needs 512 bytes of RAM and 512 bytes of ROM The RAM have 128 byte and need seven address lines, where the ROM have 512 bytes and need 9 address lines 43

44 Memory Address Map 44

45 Memory Address Map The hexadecimal address assigns a range of hexadecimal equivalent address for each chip Line 8 and 9 represent four distinct binary combination to specify which RAM we chose When line 10 is 0, CPU selects a RAM. And when it s 1, it selects the ROM 45

46 Direct Mapping Associative memory is expensive compared to RAM In general case, there are 2^k words in cache memory and 2^n words in main memory (in our case, k=9, n=15) The n bit memory address is divided into two fields: k-bits for the index and n-k bits for the tag field 46

47 Direct Mapping 47

48 Direct Mapping 48

49 UYGULAMA -1 10Mbyte, 6Mbyte, 4 Byte 1. Belleğin başlangıç adresi 0 byte: 0 byte 2. Belleğin başlangıç adresi 10 Mbyte: (2^3+2^1) x 2^20 byte 3. Belleğin başlangıç adresi 16 Mbyte: 2^4 x 2^20 byte Boşluğun başlagıç adresi 20 Byte: (2^4 + 2^2) x 2^20 byte

50 Uygulama-1 A24 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A Mbyte FFFFF 2^23+2^ A Mbyte FFFFFF 2^ Mbyte FFFFF 2^24+2^

51 Interfacing Memory and I/O ports

52 Memory Processor Memory Registers inside a microcomputer Store data and results temporarily No speed disparity Cost Primary or Main Memory Memory Store Programs and Data Storage area which can be directly accessed by microprocessor Store programs and data prior to execution Should not have speed disparity with processor Semi Conductor memories using CMOS technology ROM, EPROM, Static RAM, DRAM Secondary Memory Storage media comprising of slow devices such as magnetic tapes and disks Hold large data files and programs: Operating system, compilers, databases, permanent programs etc. 52

53 Memory organization Memory IC s : Byte oriented 8086 : 16-bit Word : Stored by two consecutive memory locations; for LSB and MSB Address of word : Address of LSB Bank 0 : A 0 = 0 Even addressed memory bank Bank 1 : BHE = 0 Odd addressed memory bank 53

54 Memory organization Operation BHE A 0 Data Lines Used 1 Read/ Write byte at an even address 1 0 D 7 D 0 2 Read/ Write byte at an odd address 0 1 D 15 D 8 3 Read/ Write word at an even address 0 0 D 15 D 0 4 Read/ Write word at an odd address 0 1 D 15 D 0 in first operation byte from odd bank is transferred 1 0 D 7 D 0 in first operation byte from odd bank is transferred 54

55 Memory organization Available memory space = EPROM + RAM Allot equal address space in odd and even bank for both EPROM and RAM Can be implemented in two IC s (one for even and other for odd) or in multiple IC s 55

56 Interfacing SRAM and EPROM Memory interface Read from and write in to a set of semiconductor memory IC chip EPROM Read operations RAM Read and Write In order to perform read/ write operations, Memory access time read / write time of the processor Chip Select (CS) signal has to be generated Control signals for read / write operations Allot address for each memory location 56

57 Interfacing SRAM and EPROM Typical Semiconductor IC Chip No of Address pins Memory capacity Range of address in hexa In Decimal In kilo In hexa = 10,48, k = 1M to FFFFF 57

58 Interfacing SRAM and EPROM Memory map EPROM s are mapped at FFFFF H Facilitate automatic execution of monitor programs and creation of interrupt vector table RAM are mapped at the beginning; 00000H is allotted to RAM 58

59 Interfacing SRAM and EPROM Monitor Programs Programing 8279 for keyboard scanning and display refreshing Programming peripheral IC s 8259, 8257, 8255, 8251, 8254 etc Initialization of stack Display a message on display (output) Initializing interrupt vector table Note : 8279 Programmable keyboard/ display controller 8257 DMA controller 8259 Programmable interrupt controller 8255 Programmable peripheral interface 59

60 Interfacing I/O and peripheral devices I/O devices For communication between microprocessor and Keyboards, CRT displays, Printers, Compact Discs outside world etc. Data transfer types Microprocessor Ports / Buffer IC s (interface circuitry) I/ O devices Memory mapped Programmed I/ O Data transfer is accomplished controlled by software through an I/O port I/O mapped Interrupt driven I/ O I/O device interrupts the processor and initiate data transfer Direct memory access Data transfer is achieved by bypassing the microprocessor 60

61 I/O read/write The I/O read and write operations are similar to the memory read and write operations. A processor may use: memory mapped I/O (when the address of the I/O device is in the direct memory space, and the sequence to read/write data in the device are the same with the memory read/write sequence) isolated I/O the process is similar, but the processor has a second set of control signals to make the distinction between a memory access and an I/O access (memory locations and I/O devices can be located at the same address, which makes this extra control signal necessary); for I/O operations, the processor holds IO/M (or similar) signal high for the duration of the I/O operation

62 Assemby Addressing

63 Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement (Indexed) Stack 63

64 Every instruction of a program has to operate on a data. The different ways in which a source operand is denoted in an instruction are known as addressing modes. 1. Register Addressing 2. Immediate Addressing Group I : Addressing modes for register and immediate data 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing Group II : Addressing modes for memory data 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing 12. Implied Addressing Group III : Addressing modes for I/O ports Group IV : Relative Addressing mode Group V : Implied Addressing 64 mode

65 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing The instruction will specify the name of the register which holds the data to be operated by the instruction. Example: MOV CL, DH The content of 8-bit register DH is moved to another 8-bit register CL (CL) (DH) 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing 12. Implied Addressing 65

66 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing In immediate addressing mode, an 8-bit or 16-bit data is specified as part of the instruction Example: MOV DL, 08H The 8-bit data (08 H ) given in the instruction is moved to DL (DL) 08 H MOV AX, 0A9FH The 16-bit data (0A9F H ) given in the instruction is moved to AX register (AX) 0A9F H 11. Relative Addressing 12. Implied Addressing 66

67 Memory Access Offset Value (16 bits) Segment Register (16 bits) Adder Physical Address (20 Bits) 67

68 Memory Access To access memory we use these four registers: BX, SI, DI, BP Combining these registers inside [ ] symbols, we can get different memory locations (Effective Address, EA) Supported combinations: [BX + SI] [BX + DI] [BP + SI] [BP + DI] [SI] [DI] d16 (variable offset only) [BX] [BX + SI + d8] [BX + DI + d8] [BP + SI + d8] [BP + DI + d8] [SI + d8] [DI + d8] [BP + d8] [BX + d8] [BX + SI + d16] [BX + DI + d16] [BP + SI + d16] [BP + DI + d16] [SI + d16] [DI + d16] [BP + d16] [BX + d16] BX BP SI DI + disp 68

69 Memory Access 20 Address lines 8086 can address up to 2 20 = 1M bytes of memory However, the largest register is only 16 bits Physical Address will have to be calculated Physical Address : Actual address of a byte in memory. i.e. the value which goes out onto the address bus. Memory Address represented in the form Seg : Offset (Eg - 89AB:F012) Each time the processor wants to access memory, it takes the contents of a segment register, shifts it one hexadecimal place to the left (same as multiplying by ), then add the required offset to form the 20- bit address 16 bytes of contiguous memory 89AB : F012 89AB 89AB0 (Paragraph to byte 89AB x 10 = 89AB0) F012 0F012 (Offset is already in byte unit) AC2 (The absolute address) 69

70 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing Here, the effective address of the memory location at which the data operand is stored is given in the instruction. The effective address is just a 16-bit number written directly in the instruction. Example: MOV BX, [1354H] MOV BL, [0400H] The square brackets around the 1354 H denotes the contents of the memory location. When executed, this instruction will copy the contents of the memory location into BX register. This addressing mode is called direct because the displacement of the operand from the segment base is specified directly in the instruction. 11. Relative Addressing 12. Implied Addressing 70

71 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing 12. Implied Addressing In Register indirect addressing, name of the register which holds the effective address (EA) will be specified in the instruction. Registers used to hold EA are any of the following registers: BX, BP, DI and SI. Content of the DS register is used for base address calculation. Example: MOV CX, [BX] Operations: EA = (BX) BA = (DS) x MA = BA + EA (CX) (MA) or, (CL) (MA) (CH) (MA +1) Note : Register/ memory enclosed in brackets refer to content of register/ memory 71

72 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing 12. Implied Addressing In Based Addressing, BX or BP is used to hold the base value for effective address and a signed 8-bit or unsigned 16-bit displacement will be specified in the instruction. In case of 8-bit displacement, it is sign extended to 16-bit before adding to the base value. When BX holds the base value of EA, 20-bit physical address is calculated from BX and DS. When BP holds the base value of EA, BP and SS is used. Example: MOV AX, [BX + 08H] Operations: 0008 H 08 H (Sign extended) EA = (BX) H BA = (DS) x MA = BA + EA (AX) (MA) or, (AL) (MA) (AH) (MA + 1) 72

73 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing 12. Implied Addressing SI or DI register is used to hold an index value for memory data and a signed 8-bit or unsigned 16-bit displacement will be specified in the instruction. Displacement is added to the index value in SI or DI register to obtain the EA. In case of 8-bit displacement, it is sign extended to 16-bit before adding to the base value. Example: MOV CX, [SI + 0A2H] Operations: FFA2 H A2 H (Sign extended) EA = (SI) + FFA2 H BA = (DS) x MA = BA + EA (CX) (MA) or, (CL) (MA) (CH) (MA + 1) 73

74 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing In Based Index Addressing, the effective address is computed from the sum of a base register (BX or BP), an index register (SI or DI) and a displacement. Example: MOV DX, [BX + SI + 0AH] Operations: 000A H 0A H (Sign extended) EA = (BX) + (SI) + 000A H BA = (DS) x MA = BA + EA (DX) (MA) or, (DL) (MA) (DH) (MA + 1) 12. Implied Addressing 74

75 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing 12. Implied Addressing Note : Effective address of the Extra segment register Employed in string operations to operate on string data. The effective address (EA) of source data is stored in SI register and the EA of destination is stored in DI register. Segment register for calculating base address of source data is DS and that of the destination data is ES Example: MOVS BYTE Operations: Calculation of source memory location: EA = (SI) BA = (DS) x MA = BA + EA Calculation of destination memory location: EA E = (DI) BA E = (ES) x MA E = BA E + EA E (MAE) (MA) If DF = 1, then (SI) (SI) 1 and (DI) = (DI) - 1 If DF = 0, then (SI) (SI) +1 and (DI) = (DI)

76 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing These addressing modes are used to access data from standard I/O mapped devices or ports. In direct port addressing mode, an 8-bit port address is directly specified in the instruction. Example: IN AL, [09H] Operations: PORT addr = 09 H (AL) (PORT) Content of port with address 09 H is moved to AL register In indirect port addressing mode, the instruction will specify the name of the register which holds the port address. In 8086, the 16-bit port address is stored in the DX register. Example: OUT [DX], AX 11. Relative Addressing 12. Implied Addressing Operations: PORT addr = (DX) (PORT) (AX) Content of AX is moved to port by DX register. whose address is specified 76

77 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing 12. Implied Addressing In this addressing mode, the effective address of a program instruction is specified relative to Instruction Pointer (IP) by an 8-bit signed displacement. Example: JZ 0AH Operations: 000A H 0A H If ZF = 1, then EA = (IP) + 000A H BA = (CS) x MA = BA + EA (sign extend) If ZF = 1, then the program control jumps to new address calculated above. If ZF = 0, then next instruction of the program is executed. 77

78 1. Register Addressing 2. Immediate Addressing 3. Direct Addressing 4. Register Indirect Addressing Instructions using this mode have no operands. The instruction itself will specify the data to be operated by the instruction. Example: CLC This clears the carry flag to zero. 5. Based Addressing 6. Indexed Addressing 7. Based Index Addressing 8. String Addressing 9. Direct I/O port Addressing 10. Indirect I/O port Addressing 11. Relative Addressing 12. Implied Addressing 78

79 Kaynaklar While preparing this document has been based on the document on the following web page; Architecture 8086 Microprocessor, The History of The Microprocessor, Bell Labs Technical Journal, Autumn, rise.cse.iitm.ac.in/people/faculty/kama/prof/x86_1.ppt Microprocessor, Atul P. Godse, Deepali A. Gode, Technical publications, Chap 11

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

Memory memories memory

Memory memories memory Memory Organization Memory Hierarchy Memory is used for storing programs and data that are required to perform a specific task. For CPU to operate at its maximum speed, it required an uninterrupted and

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

icroprocessor istory of Microprocessor ntel 8086:

icroprocessor istory of Microprocessor ntel 8086: Microprocessor A microprocessor is an electronic device which computes on the given input similar to CPU of a computer. It is made by fabricating millions (or billions) of transistors on a single chip.

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN

MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN ROAD MAP SDK-86 Intel 8086 Features 8086 Block Diagram 8086 Architecture Bus Interface Unit Execution Unit 8086 Architecture 8086 Programmer s Model Flag Register

More information

Internal architecture of 8086

Internal architecture of 8086 Case Study: Intel Processors Internal architecture of 8086 Slide 1 Case Study: Intel Processors FEATURES OF 8086 It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 220 memory locations (1

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

Hardware and Software Architecture. Chapter 2

Hardware and Software Architecture. Chapter 2 Hardware and Software Architecture Chapter 2 1 Basic Components The x86 processor communicates with main memory and I/O devices via buses Data bus for transferring data Address bus for the address of a

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

A Presentation created By Ramesh.K Press Ctrl+l for full screen view

A Presentation created By Ramesh.K Press Ctrl+l for full screen view Press Ctrl+l for full screen view A Presentation created By Ramesh.K rameshpkd@gmail.com Press Ctrl+l for full screen view A Microprocessor sor is a multipurpose, programmable logic device that reads binary

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

16-Bit Intel Processor Architecture

16-Bit Intel Processor Architecture IBM-PC Organization 16-Bit Intel Processor Architecture A-16 bit microprocessor can operate on 16 bits of data at a time. 8086/8088 have the simplest structure 8086/8088 have the same instruction set,

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) UNIT I THE 8086 MICROPROCESSOR PART A (2 MARKS) 1. What are the functional

More information

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Digital Logic Design Ch1-1 8086 Microprocessor Features: The 8086 microprocessor is a 16 bit microprocessor. The term 16 bit means

More information

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM EXPERIMENT WRITE UP AIM: Assembly language program for 16 bit BCD addition LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM TOOLS/SOFTWARE

More information

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit 1 1. introduction The internal function of 8086 processor are partitioned logically into processing units,bus Interface Unit(BIU)

More information

8086 INTERNAL ARCHITECTURE

8086 INTERNAL ARCHITECTURE 8086 INTERNAL ARCHITECTURE Segment 2 Intel 8086 Microprocessor The 8086 CPU is divided into two independent functional parts: a) The Bus interface unit (BIU) b) Execution Unit (EU) Dividing the work between

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 3 The Microprocessor and its Architecture Dr Hashim Ali Fall - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides

More information

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions.

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. 8086 Microprocessor Microprocessor Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. It is used as CPU (Central Processing Unit) in computers.

More information

COA. Prepared By: Dhaval R. Patel Page 1. Q.1 Define MBR.

COA. Prepared By: Dhaval R. Patel Page 1. Q.1 Define MBR. Q.1 Define MBR. MBR( Memory buffer register) A Memory Buffer Register (MBR) is the register in a computers processor that stores the data being transferred to and from the devices It allowing the processor

More information

UNIT 2 PROCESSORS ORGANIZATION CONT.

UNIT 2 PROCESSORS ORGANIZATION CONT. UNIT 2 PROCESSORS ORGANIZATION CONT. Types of Operand Addresses Numbers Integer/floating point Characters ASCII etc. Logical Data Bits or flags x86 Data Types Operands in 8 bit -Byte 16 bit- word 32 bit-

More information

Chapter 2 COMPUTER SYSTEM HARDWARE

Chapter 2 COMPUTER SYSTEM HARDWARE Chapter 2 COMPUTER SYSTEM HARDWARE A digital computer system consists of hardware and software. The hardware consists of the physical components of the system, whereas the software is the collection of

More information

INTRODUCTION TO MICROPROCESSORS

INTRODUCTION TO MICROPROCESSORS INTRODUCTION TO MICROPROCESSORS Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu January 7, 2016 Richa Upadhyay Prabhu (MPSTME) INTRODUCTION January 7, 2016 1 / 63 Course Design Prerequisite:

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

Northern India Engineering College, Delhi (GGSIP University) PAPER I

Northern India Engineering College, Delhi (GGSIP University) PAPER I PAPER I Q1.Explain IVT? ANS. interrupt vector table is a memory space for storing starting addresses of all the interrupt service routine. It stores CS:IP PAIR corresponding to each ISR. An interrupt vector

More information

MICROPROCESSOR MCQs. 1) What does the microprocessor comprise of? a. Register section b. One or more ALU c. Control unit d.

MICROPROCESSOR MCQs. 1) What does the microprocessor comprise of? a. Register section b. One or more ALU c. Control unit d. 1) What does the microprocessor comprise of? a. Register section b. One or more ALU c. Control unit 2) What is stored by a register? a. data b. operands c. memory MICROPROCESSOR MCQs 3) Accumulator based

More information

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers.

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers. Lecture 5: Computer Organization Instruction Execution Computer Organization Addressing Buses Fetch-Execute Cycle Computer Organization CPU Control Unit U Input Output Memory Components Control Unit fetches

More information

BAHAR DÖNEMİ MİKROİŞLEMCİLER LAB3 FÖYÜ

BAHAR DÖNEMİ MİKROİŞLEMCİLER LAB3 FÖYÜ INTRODUCTION OF SEGMENT A typical program on 8086 consists of at least three segments Code segment: Contains instructions that accomplish certain tasks Data segment: Stores information to be processed

More information

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

CREATED BY M BILAL & Arslan Ahmad Shaad Visit: CREATED BY M BILAL & Arslan Ahmad Shaad Visit: www.techo786.wordpress.com Q1: Define microprocessor? Short Questions Chapter No 01 Fundamental Concepts Microprocessor is a program-controlled and semiconductor

More information

ADVANCE MICROPROCESSOR & INTERFACING

ADVANCE MICROPROCESSOR & INTERFACING VENUS INTERNATIONAL COLLEGE OF TECHNOLOGY Gandhinagar Department of Computer Enggineering ADVANCE MICROPROCESSOR & INTERFACING Name : Enroll no. : Class Year : 2014-15 : 5 th SEM C.E. VENUS INTERNATIONAL

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

Chapter Three Addressing Mode MOV AX, BX

Chapter Three Addressing Mode MOV AX, BX Chapter Three The 8086 The 8086 When the 8086 executes an instruction, it performs the specified function on data. The data are called its operands and may be part of the instruction reside in one of the

More information

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,...

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,... COMPUTER ARCHITECTURE II: MICROPROCESSOR PROGRAMMING We can study computer architectures by starting with the basic building blocks Transistors and logic gates To build more complex circuits Adders, decoders,

More information

Moodle WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics

Moodle WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics Moodle 4 WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics Advanced Microprocessors and Introduction to Microcontroller Moodle developed By Dr. S. R. Kumbhar Department of Electronics Willingdon

More information

8086 Microprocessors & Peripherals

8086 Microprocessors & Peripherals 8086 Microprocessors & Peripherals (06IT/BM - 52) Sessions handled by Prof. M.V. SREENIVAS RAO. GSSSIETW, MYSORE Prof. M. SHIVAKUMAR. BIET, DAVANGERE Prof. VAGEESH.V.KANTLI. BIET, DAVANGERE 1 8086 MICROPROCESSOR

More information

Read this before starting!

Read this before starting! Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 3 for Fall Semester,

More information

Computer Organization. Chapter 12: Memory organization

Computer Organization. Chapter 12: Memory organization Computer Organization Chapter 12: Memory organization Memory Organization Recall: Information is stored in the memory as a collection of bits. Collection of bits that are stored or retrieved simultaneously

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

CS 16: Assembly Language Programming for the IBM PC and Compatibles

CS 16: Assembly Language Programming for the IBM PC and Compatibles CS 16: Assembly Language Programming for the IBM PC and Compatibles Discuss the general concepts Look at IA-32 processor architecture and memory management Dive into 64-bit processors Explore the components

More information

Computer Organization

Computer Organization Chapter 5 Computer Organization Figure 5-1 Computer hardware :: Review Figure 5-2 CPU :: Review CPU:: Review Registers are fast stand-alone storage locations that hold data temporarily Data Registers Instructional

More information

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil Microprocessor By Mrs. R.P.Chaudhari Mrs.P.S.Patil Chapter 1 Basics of Microprocessor CO-Draw Architecture Of 8085 Salient Features of 8085 It is a 8 bit microprocessor. It is manufactured with N-MOS technology.

More information

CG2007 Microprocessor systems.

CG2007 Microprocessor systems. CG2007 Microprocessor systems Tutorial 1 Semester 2 AY 2011-12 Ganesh Iyer ganesh.vigneswara@gmail.com http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore, India. I

More information

Section 001. Read this before starting!

Section 001. Read this before starting! Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 3 for Fall Semester,

More information

UNIT 1. Introduction to microprocessor. Block diagram of simple computer or microcomputer.

UNIT 1. Introduction to microprocessor. Block diagram of simple computer or microcomputer. UNIT 1 Unit 1 contents at a glance: 1. Architecture of 8086 microprocessor, 2. Register organization, 3. 8086 flag register and its functions, 4. addressing modes of 8086, 5. Pin diagram of 8086, 6. Minimum

More information

Unit I Introduction. Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad , India.

Unit I Introduction. Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad , India. Unit I Introduction Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad 501218, India. Pre-requisites Digital Logic Design (A1404) Computer Architecture

More information

UNIT:4 MEMORY ORGANIZATION

UNIT:4 MEMORY ORGANIZATION 1 UNIT:4 MEMORY ORGANIZATION TOPICS TO BE COVERED. 4.1 Memory Hierarchy 4.2 Memory Classification 4.3 RAM,ROM,PROM,EPROM 4.4 Main Memory 4.5Auxiliary Memory 4.6 Associative Memory 4.7 Cache Memory 4.8

More information

The Instruction Set. Chapter 5

The Instruction Set. Chapter 5 The Instruction Set Architecture Level(ISA) Chapter 5 1 ISA Level The ISA level l is the interface between the compilers and the hardware. (ISA level code is what a compiler outputs) 2 Memory Models An

More information

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات 1) Input/output In computing, input/output or I/O, is the communication between an information processing system (such as a computer) and the outside world, possibly a human or another information processing

More information

Memory Study Material

Memory Study Material Computer memory refers to the devices that are used to store data or programs on a temporary or permanent basis for use in a computer. Any data or instruction entered into the memory of a computer is considered

More information

eaymanelshenawy.wordpress.com

eaymanelshenawy.wordpress.com Lectures on Memory Interface Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. Al-Azhar University Email : eaymanelshenawy@yahoo.com eaymanelshenawy.wordpress.com Lecture

More information

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017)

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017) Microprocessor and Assembly Language Week-5 System Programming, BCS 6th, IBMS (2017) High Speed Memory Registers CPU store data temporarily in these location CPU process, store and transfer data from one

More information

UNIT II OVERVIEW MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Introduction to 8086 microprocessors. Architecture of 8086 processors

UNIT II OVERVIEW MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Introduction to 8086 microprocessors. Architecture of 8086 processors OVERVIEW UNIT II Introduction to 8086 microprocessors Architecture of 8086 processors Register Organization of 8086 Memory Segmentation of 8086 Pin Diagram of 8086 Timing Diagrams for 8086 Interrupts of

More information

IA-32 Architecture COE 205. Computer Organization and Assembly Language. Computer Engineering Department

IA-32 Architecture COE 205. Computer Organization and Assembly Language. Computer Engineering Department IA-32 Architecture COE 205 Computer Organization and Assembly Language Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Basic Computer Organization Intel

More information

EE2007 Microprocessor systems.

EE2007 Microprocessor systems. EE2007 Microprocessor systems Tutorial 1 Semester 1 AY 2010-11 Ganesh Iyer ganesh.vigneswara@gmail.com (facebook, gtalk) http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore,

More information

Chapter One. Introduction to Computer System

Chapter One. Introduction to Computer System Principles of Programming-I / 131101 Prepared by: Dr. Bahjat Qazzaz -------------------------------------------------------------------------------------------- Chapter One Introduction to Computer System

More information

M. Sc (CS) (II Semester) Examination, Subject: Computer System Architecture Paper Code: M.Sc-CS-203. Time: Three Hours] [Maximum Marks: 60

M. Sc (CS) (II Semester) Examination, Subject: Computer System Architecture Paper Code: M.Sc-CS-203. Time: Three Hours] [Maximum Marks: 60 M. Sc (CS) (II Semester) Examination, 2012-13 Subject: Computer System Architecture Paper Code: M.Sc-CS-203 Time: Three Hours] [Maximum Marks: 60 Note: Question Number 1 is compulsory. Answer any four

More information

US06CCSC04: Introduction to Microprocessors and Assembly Language UNIT 1: Assembly Language Terms & Directives

US06CCSC04: Introduction to Microprocessors and Assembly Language UNIT 1: Assembly Language Terms & Directives Introduction: US06CCSC04: Introduction to Microprocessors and A microprocessor is the chip containing some control and logic circuits that is capable of a making arithmetic and logical decision based on

More information

Question Bank Part-A UNIT I- THE 8086 MICROPROCESSOR 1. What is microprocessor? A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device that reads binary information

More information

Lecture 18: Memory Systems. Spring 2018 Jason Tang

Lecture 18: Memory Systems. Spring 2018 Jason Tang Lecture 18: Memory Systems Spring 2018 Jason Tang 1 Topics Memory hierarchy Memory operations Cache basics 2 Computer Organization Computer Processor Memory Devices Control Datapath Input Output So far,

More information

machine cycle, the CPU: (a) Fetches an instruction, (b) Decodes the instruction, (c) Executes the instruction, and (d) Stores the result.

machine cycle, the CPU: (a) Fetches an instruction, (b) Decodes the instruction, (c) Executes the instruction, and (d) Stores the result. Central Processing Unit (CPU) A processor is also called the CPU, and it works hand in hand with other circuits known as main memory to carry out processing. The CPU is the "brain" of the computer; it

More information

Chapter 4 Main Memory

Chapter 4 Main Memory Chapter 4 Main Memory Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering fundamentals

More information

Pharmacy college.. Assist.Prof. Dr. Abdullah A. Abdullah

Pharmacy college.. Assist.Prof. Dr. Abdullah A. Abdullah The kinds of memory:- 1. RAM(Random Access Memory):- The main memory in the computer, it s the location where data and programs are stored (temporally). RAM is volatile means that the data is only there

More information

Interface DAC to a PC. Control Word of MC1480 DAC (or DAC 808) 8255 Design Example. Engineering 4862 Microprocessors

Interface DAC to a PC. Control Word of MC1480 DAC (or DAC 808) 8255 Design Example. Engineering 4862 Microprocessors Interface DAC to a PC Engineering 4862 Microprocessors Lecture 22 Cheng Li EN-4012 licheng@engr.mun.ca DAC (Digital-to-Analog Converter) Device used to convert digital pulses to analog signals Two methods

More information

Intel 8086: Instruction Set

Intel 8086: Instruction Set IUST-EE (Chapter 6) Intel 8086: Instruction Set 1 Outline Instruction Set Data Transfer Instructions Arithmetic Instructions Bit Manipulation Instructions String Instructions Unconditional Transfer Instruction

More information

MICROPROCESSOR MEMORY ORGANIZATION

MICROPROCESSOR MEMORY ORGANIZATION MICROPROCESSOR MEMORY ORGANIZATION 1 3.1 Introduction 3.2 Main memory 3.3 Microprocessor on-chip memory management unit and cache 2 A memory unit is an integral part of any microcomputer, and its primary

More information

Memory hierarchy and cache

Memory hierarchy and cache Memory hierarchy and cache QUIZ EASY 1). What is used to design Cache? a). SRAM b). DRAM c). Blend of both d). None. 2). What is the Hierarchy of memory? a). Processor, Registers, Cache, Tape, Main memory,

More information

Module 3 Instruction Set Architecture (ISA)

Module 3 Instruction Set Architecture (ISA) Module 3 Instruction Set Architecture (ISA) I S A L E V E L E L E M E N T S O F I N S T R U C T I O N S I N S T R U C T I O N S T Y P E S N U M B E R O F A D D R E S S E S R E G I S T E R S T Y P E S O

More information

CS401 Assembly Language Solved MCQS From Midterm Papers

CS401 Assembly Language Solved MCQS From Midterm Papers CS401 Assembly Language Solved MCQS From Midterm Papers May 14,2011 MC100401285 Moaaz.pk@gmail.com MC100401285@gmail.com PSMD01(IEMS) Question No:1 ( Marks: 1 ) - Please choose one The first instruction

More information

Module 5a: Introduction To Memory System (MAIN MEMORY)

Module 5a: Introduction To Memory System (MAIN MEMORY) Module 5a: Introduction To Memory System (MAIN MEMORY) R E F E R E N C E S : S T A L L I N G S, C O M P U T E R O R G A N I Z A T I O N A N D A R C H I T E C T U R E M O R R I S M A N O, C O M P U T E

More information

COMPUTER ARCHITECTURE AND ORGANIZATION

COMPUTER ARCHITECTURE AND ORGANIZATION Memory System 1. Microcomputer Memory Memory is an essential component of the microcomputer system. It stores binary instructions and datum for the microcomputer. The memory is the place where the computer

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: November 28, 2017 at 14:31 CS429 Slideset 18: 1 Random-Access Memory

More information

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions.

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. 2 Microprocessor Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. It is used as CPU (Central Processing Unit) in computers. 3 Microprocessor

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: April 9, 2018 at 12:16 CS429 Slideset 17: 1 Random-Access Memory

More information

Tutorial Letter 103/3/2012 Computer Organization COS2621 Semesters 1 & 2

Tutorial Letter 103/3/2012 Computer Organization COS2621 Semesters 1 & 2 COS2621/103/3/2012 Tutorial Letter 103/3/2012 Computer Organization COS2621 Semesters 1 & 2 School of Computing Solutions to self tests Bar code 2 Self-test A Question 1 Alternative 1 Which one of the

More information

The Microprocessor and its Architecture

The Microprocessor and its Architecture The Microprocessor and its Architecture Contents Internal architecture of the Microprocessor: The programmer s model, i.e. The registers model The processor model (organization) Real mode memory addressing

More information

Addressing Modes on the x86

Addressing Modes on the x86 Addressing Modes on the x86 register addressing mode mov ax, ax, mov ax, bx mov ax, cx mov ax, dx constant addressing mode mov ax, 25 mov bx, 195 mov cx, 2056 mov dx, 1000 accessing data in memory There

More information

Microprocessors I MICROCOMPUTERS AND MICROPROCESSORS

Microprocessors I MICROCOMPUTERS AND MICROPROCESSORS Microprocessors I Outline of the Lecture Microcomputers and Microprocessors Evolution of Intel 80x86 Family Microprocessors Binary and Hexadecimal Number Systems MICROCOMPUTERS AND MICROPROCESSORS There

More information

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory Memory Hierarchy Contents Memory System Overview Cache Memory Internal Memory External Memory Virtual Memory Memory Hierarchy Registers In CPU Internal or Main memory Cache RAM External memory Backing

More information

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor?

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor? UNIT-I INTRODUCTION TO MICROPROCESSOR A common way of categorizing microprocessors is by the no. of bits that their ALU can work with at a time. (i) The first commercially available microprocessor was

More information

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University Memory Overview Curtis Nelson Walla Walla University Overview - Memory Types n n n Magnetic tape (used primarily for long term archive) Magnetic disk n Hard disk (File, Directory, Folder) n Floppy disks

More information

UNIT-V MEMORY ORGANIZATION

UNIT-V MEMORY ORGANIZATION UNIT-V MEMORY ORGANIZATION 1 The main memory of a computer is semiconductor memory.the main memory unit is basically consists of two kinds of memory: RAM (RWM):Random access memory; which is volatile in

More information

Computer Architecture 1 ح 303

Computer Architecture 1 ح 303 Lecture 4 A. Addressing MODES 1. Introduction to assembly language programming: Program is a sequence of commands used to tell a microcomputer what to do. Each command in a program is an instruction Programs

More information

3- ADDRESSING MODES in 8086: In this section we use the MOV instruction to describe the data-addressing modes. Figure 3-1 shows the MOV instruction.

3- ADDRESSING MODES in 8086: In this section we use the MOV instruction to describe the data-addressing modes. Figure 3-1 shows the MOV instruction. 3- ADDRSING MOD in 8086: In this section we use the MOV instruction to describe the data-addressing modes. Figure 3-1 shows the MOV instruction. Fig 3-1 The MOV instruction An addressing mode is a method

More information

1. Introduction to Assembly Language

1. Introduction to Assembly Language www.vchowk.com 1. Introduction to Assembly Language Solved EXERCISE 1 Note: Dear fellows I tried my best to solve this exercise questions if there s any mistake or doubt in any question correct it and

More information

Advanced Parallel Architecture Lesson 4 bis. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 4 bis. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 4 bis Annalisa Massini - 2014/2015 Internal Memory RAM Many memory types are random access individual words of memory are directly accessed through wired-in addressing

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 4 Addressing Modes Dr Hashim Ali Spring - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides taken from Computer

More information

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Figure 1-5 Intel Corporation s 8086 Microprocessor. The 8086, announced in 1978, was the first 16-bit microprocessor

More information

Mr. Sapan Naik 1. Babu Madhav Institute of Information Technology, UTU

Mr. Sapan Naik 1. Babu Madhav Institute of Information Technology, UTU 5 Years Integrated M.Sc.(IT) Semester 4 060010402 System Programming Question Bank Unit 1: Introduction 1. Write the decimal equivalent for each integral power of 2 from 2! to 2!". 2. Convert the following

More information

Operating system Dr. Shroouq J.

Operating system Dr. Shroouq J. 2.2.2 DMA Structure In a simple terminal-input driver, when a line is to be read from the terminal, the first character typed is sent to the computer. When that character is received, the asynchronous-communication

More information

Section 001 & 002. Read this before starting!

Section 001 & 002. Read this before starting! Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 3 for Spring Semester,

More information

MEMORY BHARAT SCHOOL OF BANKING- VELLORE

MEMORY BHARAT SCHOOL OF BANKING- VELLORE A memory is just like a human brain. It is used to store data and instructions. Computer memory is the storage space in computer where data is to be processed and instructions required for processing are

More information

Computer Organization

Computer Organization INF 101 Fundamental Information Technology Computer Organization Assistant Prof. Dr. Turgay ĐBRĐKÇĐ Course slides are adapted from slides provided by Addison-Wesley Computing Fundamentals of Information

More information

THE MICROCOMPUTER SYSTEM CHAPTER - 2

THE MICROCOMPUTER SYSTEM CHAPTER - 2 THE MICROCOMPUTER SYSTEM CHAPTER - 2 20 2.1 GENERAL ASPECTS The first computer was developed using vacuum tubes. The computers thus developed were clumsy and dissipating more power. After the invention

More information

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language 4345 Assembly Language Assembly Language Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology Assembly Language 3-1 Overview of Assembly Language Advantages: Faster as compared

More information

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.)

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.) THE MEMORY SYSTEM SOME BASIC CONCEPTS Maximum size of the Main Memory byte-addressable CPU-Main Memory Connection, Processor MAR MDR k -bit address bus n-bit data bus Memory Up to 2 k addressable locations

More information

1. Explain in detail memory classification.[summer-2016, Summer-2015]

1. Explain in detail memory classification.[summer-2016, Summer-2015] 1. Explain in detail memory classification.[summer-2016, Summer-2015] RAM The memory is a basic component of a microcomputer system. It stores binary instructions and data for the microprocessor. There

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science ã Cengage Learning Objectives After studying this chapter, the student should be able to: q List the three subsystems of a computer. q Describe

More information

SYSC3601 Microprocessor Systems. Unit 2: The Intel 8086 Architecture and Programming Model

SYSC3601 Microprocessor Systems. Unit 2: The Intel 8086 Architecture and Programming Model SYSC3601 Microprocessor Systems Unit 2: The Intel 8086 Architecture and Programming Model Topics/Reading SYSC3601 2 Microprocessor Systems 1. Registers and internal architecture (Ch 2) 2. Address generation

More information