Computer Organization (Autonomous)

Size: px
Start display at page:

Download "Computer Organization (Autonomous)"

Transcription

1 Computer Organization (Autonomous) UNIT IV Sections - A & D SYLLABUS The Memory System: Memory Hierarchy, - RAM and ROM Chips, Memory Address Maps, Memory Connection to, Auxiliary Magnetic Disks, Magnetic Tape, Associative Memory Hardware Organization, Match Logic, Cache Memory Associative Mapping, Direct Mapping, Set- Associative Mapping, Writing into Cache, Virtual Memory Address Space and Memory Space, Address Mapping using Pages, Associative Memory Page Table, Page Replacement. Prepared by Anil Kumar Prathipati, Asst. Prof., Dept. of CSE. 2 INDEX Memory Organization 2-4 Memory Hierarchy Main Memory Auxiliary Memory Associative Memory Cache Memory Virtual Memory 3 The system can be characterized with Location: Where it can be located, Processor, Internal, External. Capacity: size in terms of bytes, KB, MB, GB, etc Unit of transfer: How many bits can be moved like bytes, words, Blocks, etc. Access method: How you pick of data Sequential, Direct, Random, etc Performance: Transfer rate n terms of bps Physical type: Which material we are using like semiconductor, Magnetic, Optical, etc Physical characteristics: like power consumption, information loss, volatile, etc Organization: How it stored like continues, interleaved, etc.

2 Memory Organization Memory Hierarchy Memory hierarchy in a computer system Main Memory : unit that communicates directly with the (RAM) Auxiliary Memory : device that provide backup storage (Disk Drives) Cache Memory : special very-high-speed to increase the processing speed (Cache RAM) Auxiliary Magnetic tapes Magnetic disks I/O processor Main Cache Multiprogramming enable the to process a number of independent program concurrently Main Memory Bootstrap Loader A program whose function is to start the computer software operating when power is turned on RAM and ROM Chips Typical RAM chip» 28 X 8 RAM : 2 7 = 28 (7 bit lines) Typical ROM chip Chip select Chip select 2 52 X 8 ROM : 2 9 = 52 (9 bit lines) 7 bit 288 RAM (a) Block diagram Memory function State of data bus 8 bit data bus Input data to RAM Output data from RAM Chip select Chip select 2 9 bit AD9 528 ROM 8 bit data bus Memory Address Map Memory Configuration : 52 bytes RAM + 52 bytes ROM» x 52 byte ROM + 4 x 28 bytes RAM Memory Address Map» Address line 9 8 RAM : - 7F RAM : 8 - FF RAM : - 7F RAM : 8 - FF» Address line ROM : 2-3FF Memory Connection to» 2 x 4 Decoder : RAM select ()» Address line RAM select : ROM select : Invert Address bus Decoder RAM 288 RAM RAM RAM ROM AD9 bus (b) Function table 2

3 text 32K2 Cache Auxiliary Memory Tracks Magnetic Disk : FDD, HDD Magnetic Tape : Backup or Program Optical Disk : CDR, ODD, DVD 2-4 Associative Memory Content Addressable Memory (CAM) A unit accessed by content Block Diagram Sector / head Argument (A) Word A K C A j K j C j A n K n C n M Key (K) A Register K Register Argument Key (Mask) Match Word i C i C ij C in M i Word M = Word 2 M = Match Logic Input Associative array and logic m words n bits per word M Word m C m C mj C mn Bit Bit j Bit n Mm M = Output Cache Memory Locality of Reference the references to tend to be confined within a few localized areas in Cache Memory : a fast small keeping the most frequently accessed instructions and data in the fast cache Cache cache size : 256 K byte mapping method : ) associative, 2) direct, 3) set-associative replace algorithm : ) LRU, 2) LFU, 3) FIFO write policy : ) write-through, 2) write-back Hit Ratio the ratio of the number of hits divided by the total references (hits + misses) to» hit : the finds the word in the cache (.9)» miss : the word is not found in cache ( must read main ) cache access time = ns, main access time = ns, hit ratio =.9» miss : x ns + penalty time( x ns)» 9 hit : 9 x ns Mapping The transformation of data from main to cache» ) Associative mapping» 2) Direct mapping» 3) Set-associative mapping Example of cache main : 32 K x 2 bit word (5 bit lines) cache : 52 x 2 bit word» sends a 5-bit to cache Hit : accepts the 2-bit data from cache Miss : reads the data from main (then data is written to cache) Associative mapping Cache associative Address Cache Tag field (n - k) field (k) 2 k words cache + 2 n words main Tag = 6 bit (5-9), = 9 bit Cache Coherence (Sec. 3-5) (5 bits) Argument Address

4 Tag (6 bit) - 63 (9 bit) - 5 Direct mapping cache organization 6 bits 9 bits Tag Hex Address 3F FF 32K2 Address = 5 bits = 2 bits Memory Octal Memory data 2 2 FF 522 Cache Address = 9 bits = 2 bits Tag 2 2 Direct mapping cache with block size of 8 words 64 block x 8 word = 52 cache words size 8 word block update Block Tag Tag Block Word Tag Tag Block (b) Cache Set-associative mapping : Fig. 2-5 (two-way) Direct mapping tag ( 2, ) (a) Replacement Algorithm : cache miss or full ) LRU (Least Recently Used): On a miss, the frame that was least recently used in replaced. 2) LFU (Least Frequently Used): It looks forward in time to see which frame to replace on a cache miss. 3) FIFO (First-In First-Out): On a miss, the frame that has been in the longest is replaced. Ex: Writing to Cache : Cache Coherence» ) -through» 2) -back Cache Initialization Cache is initialized» ) when power is applied to the computer» 2) when main is loaded with a complete set of programs from auxiliary valid bit» indicate whether or not the word contains valid data 2-6 Virtual Memory Virtual Memory : Auxiliary Translate program-generated (Aux. Memory) into main location» Give programmers the illusion that they have a very large, even though the computer actually has a relatively small main Intel Pentium Processor» Physical Address Lines = A - A 3 : 2 32 = 2 3 X 2 2 = 4 Giga» Logical Address = 46 bits : 2 46 = 2 4 X 2 6 = 64 Tera Auxiliary Address Space & Memory Space Address Space : Virtual Address» Address used by a programmer Program Program Memory Space : Physical Address(Location),» Address in main,2 Figure, space (N) = 24 K = 2 2 Program 2» Auxiliary Memory space (M) = 32 K = 2 5» main Memory 2, Address space N = 24K = 2 2 Memory space M = 32K = 2 5 4

5 Memory table for mapping a virtual Translate the 2 bits Virtual into the 5 bits Physical Virtual Memory table in a paged system Line number Virtual Virtual Memory maping (2 bits) table Memory table buffer Address Mapping Using Pages Address mapping Address space space fixed size Address space : K page Memory space : k block (5 bits) Main buffer Page Page Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Address space N = 8K = 2 3 Block Block 2 Block 3 Memory space M = 4K = 2 2 Table Memory page table Presence bit Block Block 2 Block 3 MBR 2-9 Associative page table Associative block number() Virtual Line number Argument Key Associative Block no. Page(Block) Replacement Page Fault : the page referenced by the is not in main» a new page should be transferred from auxiliary to main Replacement algorithm 5

Chap. 12 Memory Organization

Chap. 12 Memory Organization 12-1 12-1 Memory Hierarchy Memory hierarchy in a computer system : Fig. 12-1 Main Memory : memory unit that communicates directly with the CPU (RAM) Auxiliary Memory : device that provide backup storage

More information

Memory Organization MEMORY ORGANIZATION. Memory Hierarchy. Main Memory. Auxiliary Memory. Associative Memory. Cache Memory.

Memory Organization MEMORY ORGANIZATION. Memory Hierarchy. Main Memory. Auxiliary Memory. Associative Memory. Cache Memory. MEMORY ORGANIZATION Memory Hierarchy Main Memory Auxiliary Memory Associative Memory Cache Memory Virtual Memory MEMORY HIERARCHY Memory Hierarchy Memory Hierarchy is to obtain the highest possible access

More information

UNIT:4 MEMORY ORGANIZATION

UNIT:4 MEMORY ORGANIZATION 1 UNIT:4 MEMORY ORGANIZATION TOPICS TO BE COVERED. 4.1 Memory Hierarchy 4.2 Memory Classification 4.3 RAM,ROM,PROM,EPROM 4.4 Main Memory 4.5Auxiliary Memory 4.6 Associative Memory 4.7 Cache Memory 4.8

More information

Computer & Microprocessor Architecture HCA103

Computer & Microprocessor Architecture HCA103 Computer & Microprocessor Architecture HCA103 Cache Memory UTM-RHH Slide Set 4 1 Characteristics Location Capacity Unit of transfer Access method Performance Physical type Physical characteristics Organisation

More information

Characteristics. Microprocessor Design & Organisation HCA2102. Unit of Transfer. Location. Memory Hierarchy Diagram

Characteristics. Microprocessor Design & Organisation HCA2102. Unit of Transfer. Location. Memory Hierarchy Diagram Microprocessor Design & Organisation HCA2102 Cache Memory Characteristics Location Unit of transfer Access method Performance Physical type Physical Characteristics UTM-RHH Slide Set 5 2 Location Internal

More information

Chapter 4 Main Memory

Chapter 4 Main Memory Chapter 4 Main Memory Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering fundamentals

More information

Overview IN this chapter we will study. William Stallings Computer Organization and Architecture 6th Edition

Overview IN this chapter we will study. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 4 Cache Memory Overview IN this chapter we will study 4.1 COMPUTER MEMORY SYSTEM OVERVIEW 4.2 CACHE MEMORY PRINCIPLES 4.3 ELEMENTS

More information

William Stallings Computer Organization and Architecture 8th Edition. Cache Memory

William Stallings Computer Organization and Architecture 8th Edition. Cache Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 4 Cache Memory Characteristics Location Capacity Unit of transfer Access method Performance Physical type Physical characteristics

More information

Unit 2. Chapter 4 Cache Memory

Unit 2. Chapter 4 Cache Memory Unit 2 Chapter 4 Cache Memory Characteristics Location Capacity Unit of transfer Access method Performance Physical type Physical characteristics Organisation Location CPU Internal External Capacity Word

More information

Characteristics of Memory Location wrt Motherboard. CSCI 4717 Computer Architecture. Characteristics of Memory Capacity Addressable Units

Characteristics of Memory Location wrt Motherboard. CSCI 4717 Computer Architecture. Characteristics of Memory Capacity Addressable Units CSCI 4717/5717 Computer Architecture Topic: Cache Memory Reading: Stallings, Chapter 4 Characteristics of Memory Location wrt Motherboard Inside CPU temporary memory or registers Motherboard main memory

More information

COMPUTER ARCHITECTURE AND ORGANIZATION

COMPUTER ARCHITECTURE AND ORGANIZATION Memory System 1. Microcomputer Memory Memory is an essential component of the microcomputer system. It stores binary instructions and datum for the microcomputer. The memory is the place where the computer

More information

Physical characteristics (such as packaging, volatility, and erasability Organization.

Physical characteristics (such as packaging, volatility, and erasability Organization. CS 320 Ch 4 Cache Memory 1. The author list 8 classifications for memory systems; Location Capacity Unit of transfer Access method (there are four:sequential, Direct, Random, and Associative) Performance

More information

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY 1 Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored

More information

Eastern Mediterranean University School of Computing and Technology CACHE MEMORY. Computer memory is organized into a hierarchy.

Eastern Mediterranean University School of Computing and Technology CACHE MEMORY. Computer memory is organized into a hierarchy. Eastern Mediterranean University School of Computing and Technology ITEC255 Computer Organization & Architecture CACHE MEMORY Introduction Computer memory is organized into a hierarchy. At the highest

More information

1. Creates the illusion of an address space much larger than the physical memory

1. Creates the illusion of an address space much larger than the physical memory Virtual memory Main Memory Disk I P D L1 L2 M Goals Physical address space Virtual address space 1. Creates the illusion of an address space much larger than the physical memory 2. Make provisions for

More information

1. Explain in detail memory classification.[summer-2016, Summer-2015]

1. Explain in detail memory classification.[summer-2016, Summer-2015] 1. Explain in detail memory classification.[summer-2016, Summer-2015] RAM The memory is a basic component of a microcomputer system. It stores binary instructions and data for the microprocessor. There

More information

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory Memory Hierarchy Contents Memory System Overview Cache Memory Internal Memory External Memory Virtual Memory Memory Hierarchy Registers In CPU Internal or Main memory Cache RAM External memory Backing

More information

Chapter 6 Objectives

Chapter 6 Objectives Chapter 6 Memory Chapter 6 Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

Computer Organization. Chapter 12: Memory organization

Computer Organization. Chapter 12: Memory organization Computer Organization Chapter 12: Memory organization Memory Organization Recall: Information is stored in the memory as a collection of bits. Collection of bits that are stored or retrieved simultaneously

More information

Structure of Computer Systems

Structure of Computer Systems 222 Structure of Computer Systems Figure 4.64 shows how a page directory can be used to map linear addresses to 4-MB pages. The entries in the page directory point to page tables, and the entries in a

More information

CPSC 352. Chapter 7: Memory. Computer Organization. Principles of Computer Architecture by M. Murdocca and V. Heuring

CPSC 352. Chapter 7: Memory. Computer Organization. Principles of Computer Architecture by M. Murdocca and V. Heuring 7- CPSC 352 Computer Organization 7-2 Chapter Contents 7. The Memory Hierarchy 7.2 Random Access Memory 7.3 Chip Organization 7.4 Commercial Memory Modules 7.5 Read-Only Memory 7.6 Cache Memory 7.7 Virtual

More information

CPU issues address (and data for write) Memory returns data (or acknowledgment for write)

CPU issues address (and data for write) Memory returns data (or acknowledgment for write) The Main Memory Unit CPU and memory unit interface Address Data Control CPU Memory CPU issues address (and data for write) Memory returns data (or acknowledgment for write) Memories: Design Objectives

More information

WEEK 7. Chapter 4. Cache Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved.

WEEK 7. Chapter 4. Cache Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved. WEEK 7 + Chapter 4 Cache Memory Location Internal (e.g. processor registers, cache, main memory) External (e.g. optical disks, magnetic disks, tapes) Capacity Number of words Number of bytes Unit of Transfer

More information

Lecture 2: Memory Systems

Lecture 2: Memory Systems Lecture 2: Memory Systems Basic components Memory hierarchy Cache memory Virtual Memory Zebo Peng, IDA, LiTH Many Different Technologies Zebo Peng, IDA, LiTH 2 Internal and External Memories CPU Date transfer

More information

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (4 th Week)

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (4 th Week) + (Advanced) Computer Organization & Architechture Prof. Dr. Hasan Hüseyin BALIK (4 th Week) + Outline 2. The computer system 2.1 A Top-Level View of Computer Function and Interconnection 2.2 Cache Memory

More information

MIPS) ( MUX

MIPS) ( MUX Memory What do we use for accessing small amounts of data quickly? Registers (32 in MIPS) Why not store all data and instructions in registers? Too much overhead for addressing; lose speed advantage Register

More information

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved.

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved. + William Stallings Computer Organization and Architecture 10 th Edition 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 2 + Chapter 4 Cache Memory 3 Location Internal (e.g. processor registers,

More information

Computer Organization

Computer Organization University of Pune S.E. I.T. Subject code: 214442 Computer Organization Part 20 : Memory Organization Basics UNIT IV Tushar B. Kute, Department of Information Technology, Sandip Institute of Technology

More information

Chapter 4. Cache Memory. Yonsei University

Chapter 4. Cache Memory. Yonsei University Chapter 4 Cache Memory Contents Computer Memory System Overview Cache Memory Principles Elements of Cache Design Pentium 4 and Power PC Cache 4-2 Key Characteristics 4-3 Location Processor Internal (main)

More information

Chapter Seven. SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors)

Chapter Seven. SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) Chapter Seven emories: Review SRA: value is stored on a pair of inverting gates very fast but takes up more space than DRA (4 to transistors) DRA: value is stored as a charge on capacitor (must be refreshed)

More information

Computer Organization

Computer Organization University of Pune S.E. I.T. Subject code: 214442 Computer Organization Part 20 : Memory Organization Basics UNIT IV Tushar B. Kute, Department of Information Technology, Sandip Institute of Technology

More information

Principles of Computer Architecture. Chapter 7: Memory

Principles of Computer Architecture. Chapter 7: Memory 7-1 Chapter 7 - Memory Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 7: Memory 7-2 Chapter 7 - Memory Chapter Contents 7.1 The Memory Hierarchy 7.2 Random Access Memory

More information

Computer Architecture and Organization

Computer Architecture and Organization 7-1 Chapter 7 - Memory Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 7 Memory 7-2 Chapter 7 - Memory Chapter Contents 7.1 The Memory Hierarchy 7.2 Random-Access Memory

More information

The Memory System. Components of the Memory System. Problems with the Memory System. A Solution

The Memory System. Components of the Memory System. Problems with the Memory System. A Solution Datorarkitektur Fö 2-1 Datorarkitektur Fö 2-2 Components of the Memory System The Memory System 1. Components of the Memory System Main : fast, random access, expensive, located close (but not inside)

More information

Memory hierarchy and cache

Memory hierarchy and cache Memory hierarchy and cache QUIZ EASY 1). What is used to design Cache? a). SRAM b). DRAM c). Blend of both d). None. 2). What is the Hierarchy of memory? a). Processor, Registers, Cache, Tape, Main memory,

More information

Cache memory. Lecture 4. Principles, structure, mapping

Cache memory. Lecture 4. Principles, structure, mapping Cache memory Lecture 4 Principles, structure, mapping Computer memory overview Computer memory overview By analyzing memory hierarchy from top to bottom, the following conclusions can be done: a. Cost

More information

ADDRESS TRANSLATION AND TLB

ADDRESS TRANSLATION AND TLB ADDRESS TRANSLATION AND TLB Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 3 submission deadline: Nov.

More information

Memory Hierarchy. Cache Memory. Virtual Memory

Memory Hierarchy. Cache Memory. Virtual Memory MEMORY ORGANIZATION Memory Hierarchy Main Memory Cache Memory Virtual Memory MEMORY HIERARCHY Memory Hierarchy Memory Hierarchy is to obtain the highest possible access speed while minimizing the total

More information

ADDRESS TRANSLATION AND TLB

ADDRESS TRANSLATION AND TLB ADDRESS TRANSLATION AND TLB Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 4 submission deadline: Mar.

More information

Memory. Objectives. Introduction. 6.2 Types of Memory

Memory. Objectives. Introduction. 6.2 Types of Memory Memory Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured. Master the concepts

More information

CSE Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100

CSE Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100 CSE 30321 Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100 Problem 1: (30 points) Background: One possible organization

More information

Advanced Memory Organizations

Advanced Memory Organizations CSE 3421: Introduction to Computer Architecture Advanced Memory Organizations Study: 5.1, 5.2, 5.3, 5.4 (only parts) Gojko Babić 03-29-2018 1 Growth in Performance of DRAM & CPU Huge mismatch between CPU

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Cache 11232011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Review Memory Components/Boards Two-Level Memory Hierarchy

More information

CHAPTER 6 Memory. CMPS375 Class Notes (Chap06) Page 1 / 20 Dr. Kuo-pao Yang

CHAPTER 6 Memory. CMPS375 Class Notes (Chap06) Page 1 / 20 Dr. Kuo-pao Yang CHAPTER 6 Memory 6.1 Memory 341 6.2 Types of Memory 341 6.3 The Memory Hierarchy 343 6.3.1 Locality of Reference 346 6.4 Cache Memory 347 6.4.1 Cache Mapping Schemes 349 6.4.2 Replacement Policies 365

More information

Cache Memory COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Cache Memory COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Cache Memory COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline The Need for Cache Memory The Basics

More information

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction Chapter 6 Objectives Chapter 6 Memory Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

COSC 243. Memory and Storage Systems. Lecture 10 Memory and Storage Systems. COSC 243 (Computer Architecture)

COSC 243. Memory and Storage Systems. Lecture 10 Memory and Storage Systems. COSC 243 (Computer Architecture) COSC 243 1 Overview This Lecture Source: Chapters 4, 5, and 6 (10 th edition) Next Lecture Control Unit and Microprogramming 2 Electromagnetic Induction Move a magnet through a coil to induce a current

More information

Chapter Seven Morgan Kaufmann Publishers

Chapter Seven Morgan Kaufmann Publishers Chapter Seven Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored as a charge on capacitor (must be

More information

Memory Hierarchy. Goal: Fast, unlimited storage at a reasonable cost per bit.

Memory Hierarchy. Goal: Fast, unlimited storage at a reasonable cost per bit. Memory Hierarchy Goal: Fast, unlimited storage at a reasonable cost per bit. Recall the von Neumann bottleneck - single, relatively slow path between the CPU and main memory. Fast: When you need something

More information

Chapter 8. Virtual Memory

Chapter 8. Virtual Memory Operating System Chapter 8. Virtual Memory Lynn Choi School of Electrical Engineering Motivated by Memory Hierarchy Principles of Locality Speed vs. size vs. cost tradeoff Locality principle Spatial Locality:

More information

CHAPTER 6 Memory. CMPS375 Class Notes Page 1/ 16 by Kuo-pao Yang

CHAPTER 6 Memory. CMPS375 Class Notes Page 1/ 16 by Kuo-pao Yang CHAPTER 6 Memory 6.1 Memory 233 6.2 Types of Memory 233 6.3 The Memory Hierarchy 235 6.3.1 Locality of Reference 237 6.4 Cache Memory 237 6.4.1 Cache Mapping Schemes 239 6.4.2 Replacement Policies 247

More information

Locality. Cache. Direct Mapped Cache. Direct Mapped Cache

Locality. Cache. Direct Mapped Cache. Direct Mapped Cache Locality A principle that makes having a memory hierarchy a good idea If an item is referenced, temporal locality: it will tend to be referenced again soon spatial locality: nearby items will tend to be

More information

Fig 7.30 The Cache Mapping Function. Memory Fields and Address Translation

Fig 7.30 The Cache Mapping Function. Memory Fields and Address Translation 7-47 Chapter 7 Memory System Design Fig 7. The Mapping Function Example: KB MB CPU Word Block Main Address Mapping function The cache mapping function is responsible for all cache operations: Placement

More information

OPERATING SYSTEM. PREPARED BY : DHAVAL R. PATEL Page 1. Q.1 Explain Memory

OPERATING SYSTEM. PREPARED BY : DHAVAL R. PATEL Page 1. Q.1 Explain Memory Q.1 Explain Memory Data Storage in storage device like CD, HDD, DVD, Pen drive etc, is called memory. The device which storage data is called storage device. E.g. hard disk, floppy etc. There are two types

More information

The Memory Hierarchy & Cache

The Memory Hierarchy & Cache Removing The Ideal Memory Assumption: The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. SRAM The Motivation for The Memory

More information

Lecture 17 Introduction to Memory Hierarchies" Why it s important " Fundamental lesson(s)" Suggested reading:" (HP Chapter

Lecture 17 Introduction to Memory Hierarchies Why it s important  Fundamental lesson(s) Suggested reading: (HP Chapter Processor components" Multicore processors and programming" Processor comparison" vs." Lecture 17 Introduction to Memory Hierarchies" CSE 30321" Suggested reading:" (HP Chapter 5.1-5.2)" Writing more "

More information

Question?! Processor comparison!

Question?! Processor comparison! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 5.1-5.2!! (Over the next 2 lectures)! Lecture 18" Introduction to Memory Hierarchies! 3! Processor components! Multicore processors and programming! Question?!

More information

Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved. 1 Memory + 2 Location Internal (e.g. processor registers, cache, main memory) External (e.g. optical disks, magnetic disks, tapes) Capacity Number of words Number of bytes Unit of Transfer Word Block Access

More information

3. Which of the following is volatile? [ ] A) Bubble memory B) RAM C) ROM D) Magneticdisk

3. Which of the following is volatile? [ ] A) Bubble memory B) RAM C) ROM D) Magneticdisk Code No: 05210505 Set No. 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD III B.Tech. II Sem. II Mid-Term Examinations, April 2009 COMPUTER ORGANIZATION Objective Exam Name: Hall Ticket No. Answer

More information

Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory

Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory Lecture 3 Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory Key Characterics of Memories / Storage (Sta06 Table 4.1) 26.1.2010 2 Goals I want my memory lightning

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Principle of Locality Programs access a small proportion of their address space at any time Temporal locality Items accessed recently are likely to

More information

Chapter 7: Large and Fast: Exploiting Memory Hierarchy

Chapter 7: Large and Fast: Exploiting Memory Hierarchy Chapter 7: Large and Fast: Exploiting Memory Hierarchy Basic Memory Requirements Users/Programmers Demand: Large computer memory ery Fast access memory Technology Limitations Large Computer memory relatively

More information

UNIT-V MEMORY ORGANIZATION

UNIT-V MEMORY ORGANIZATION UNIT-V MEMORY ORGANIZATION 1 The main memory of a computer is semiconductor memory.the main memory unit is basically consists of two kinds of memory: RAM (RWM):Random access memory; which is volatile in

More information

Pipelined processors and Hazards

Pipelined processors and Hazards Pipelined processors and Hazards Two options Processor HLL Compiler ALU LU Output Program Control unit 1. Either the control unit can be smart, i,e. it can delay instruction phases to avoid hazards. Processor

More information

CENG3420 Lecture 08: Memory Organization

CENG3420 Lecture 08: Memory Organization CENG3420 Lecture 08: Memory Organization Bei Yu byu@cse.cuhk.edu.hk (Latest update: February 22, 2018) Spring 2018 1 / 48 Overview Introduction Random Access Memory (RAM) Interleaving Secondary Memory

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 Data representation: (CHAPTER-3) 1. Discuss in brief about Data types, (8marks)

More information

LECTURE 12. Virtual Memory

LECTURE 12. Virtual Memory LECTURE 12 Virtual Memory VIRTUAL MEMORY Just as a cache can provide fast, easy access to recently-used code and data, main memory acts as a cache for magnetic disk. The mechanism by which this is accomplished

More information

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook CS356: Discussion #9 Memory Hierarchy and Caches Marco Paolieri (paolieri@usc.edu) Illustrations from CS:APP3e textbook The Memory Hierarchy So far... We modeled the memory system as an abstract array

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 5. Large and Fast: Exploiting Memory Hierarchy

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 5. Large and Fast: Exploiting Memory Hierarchy COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 5 Large and Fast: Exploiting Memory Hierarchy Principle of Locality Programs access a small proportion of their address

More information

Memory Hierarchy: Motivation

Memory Hierarchy: Motivation Memory Hierarchy: Motivation The gap between CPU performance and main memory speed has been widening with higher performance CPUs creating performance bottlenecks for memory access instructions. The memory

More information

Memory Hierarchy Recall the von Neumann bottleneck - single, relatively slow path between the CPU and main memory.

Memory Hierarchy Recall the von Neumann bottleneck - single, relatively slow path between the CPU and main memory. Memory Hierarchy Goal: Fast, unlimited storage at a reasonable cost per bit. Recall the von Neumann bottleneck - single, relatively slow path between the CPU and main memory. Cache - 1 Typical system view

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 0 Introduction to Computer Engineering Study Problems, Set #9 Spring 01 1. Given the following series of address references given as word addresses:,,, 1, 1, 1,, 8, 19,,,,, 7,, and. Assuming a direct-mapped

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568/668

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568/668 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568/668 Part 11 Memory Hierarchy - I Israel Koren ECE568/Koren Part.11.1 ECE568/Koren Part.11.2 Ideal Memory

More information

Memory Hierarchy: The motivation

Memory Hierarchy: The motivation Memory Hierarchy: The motivation The gap between CPU performance and main memory has been widening with higher performance CPUs creating performance bottlenecks for memory access instructions. The memory

More information

TK2123: COMPUTER ORGANISATION & ARCHITECTURE. CPU and Memory (2)

TK2123: COMPUTER ORGANISATION & ARCHITECTURE. CPU and Memory (2) TK2123: COMPUTER ORGANISATION & ARCHITECTURE CPU and Memory (2) 1 Contents This lecture will discuss: Cache. Error Correcting Codes. 2 The Memory Hierarchy Trade-off: cost, capacity and access time. Faster

More information

Mismatch of CPU and MM Speeds

Mismatch of CPU and MM Speeds Fö 3 Cache-Minne Introduction Cache design Replacement and write policy Zebo Peng, IDA, LiTH Mismatch of CPU and MM Speeds Cycle Time (nano second) 0 4 0 3 0 0 Main Memory CPU Speed Gap (ca. one order

More information

MEMORY. Computer memory refers to the hardware device that are used to store and access data or programs on a temporary or permanent basis.

MEMORY. Computer memory refers to the hardware device that are used to store and access data or programs on a temporary or permanent basis. MEMORY Computer memory refers to the hardware device that are used to store and access data or programs on a temporary or permanent basis. There are TWO TYPE of nature of memory in a computer. Temporary/

More information

CSC 553 Operating Systems

CSC 553 Operating Systems CSC 553 Operating Systems Lecture 1- Computer System Overview Operating System Exploits the hardware resources of one or more processors Provides a set of services to system users Manages secondary memory

More information

Memory Hierarchies. Instructor: Dmitri A. Gusev. Fall Lecture 10, October 8, CS 502: Computers and Communications Technology

Memory Hierarchies. Instructor: Dmitri A. Gusev. Fall Lecture 10, October 8, CS 502: Computers and Communications Technology Memory Hierarchies Instructor: Dmitri A. Gusev Fall 2007 CS 502: Computers and Communications Technology Lecture 10, October 8, 2007 Memories SRAM: value is stored on a pair of inverting gates very fast

More information

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed)

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed) Computing Systems & Performance Memory Hierarchy MSc Informatics Eng. 2012/13 A.J.Proença Memory Hierarchy (most slides are borrowed) AJProença, Computer Systems & Performance, MEI, UMinho, 2012/13 1 2

More information

The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350):

The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350): The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350): Motivation for The Memory Hierarchy: { CPU/Memory Performance Gap The Principle Of Locality Cache $$$$$ Cache Basics:

More information

MEMORY. Objectives. L10 Memory

MEMORY. Objectives. L10 Memory MEMORY Reading: Chapter 6, except cache implementation details (6.4.1-6.4.6) and segmentation (6.5.5) https://en.wikipedia.org/wiki/probability 2 Objectives Understand the concepts and terminology of hierarchical

More information

We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -

We r e going to play Final (exam) Jeopardy! Answers: Questions: - 1 - . (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)

More information

HY225 Lecture 12: DRAM and Virtual Memory

HY225 Lecture 12: DRAM and Virtual Memory HY225 Lecture 12: DRAM and irtual Memory Dimitrios S. Nikolopoulos University of Crete and FORTH-ICS May 16, 2011 Dimitrios S. Nikolopoulos Lecture 12: DRAM and irtual Memory 1 / 36 DRAM Fundamentals Random-access

More information

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays.

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays. CSE420 Virtual Memory Prof. Mokhtar Aboelaze York University Based on Slides by Prof. L. Bhuyan (UCR) Prof. M. Shaaban (RIT) Virtual Memory Virtual memory first used to relive programmers from the burden

More information

CSE Computer Architecture I Fall 2009 Homework 08 Pipelined Processors and Multi-core Programming Assigned: Due: Problem 1: (10 points)

CSE Computer Architecture I Fall 2009 Homework 08 Pipelined Processors and Multi-core Programming Assigned: Due: Problem 1: (10 points) CSE 30321 Computer Architecture I Fall 2009 Homework 08 Pipelined Processors and Multi-core Programming Assigned: November 17, 2009 Due: December 1, 2009 This assignment can be done in groups of 1, 2,

More information

Large and Fast: Exploiting Memory Hierarchy

Large and Fast: Exploiting Memory Hierarchy CSE 431: Introduction to Operating Systems Large and Fast: Exploiting Memory Hierarchy Gojko Babić 10/5/018 Memory Hierarchy A computer system contains a hierarchy of storage devices with different costs,

More information

Chapter 5A. Large and Fast: Exploiting Memory Hierarchy

Chapter 5A. Large and Fast: Exploiting Memory Hierarchy Chapter 5A Large and Fast: Exploiting Memory Hierarchy Memory Technology Static RAM (SRAM) Fast, expensive Dynamic RAM (DRAM) In between Magnetic disk Slow, inexpensive Ideal memory Access time of SRAM

More information

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 1 Multilevel Memories Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Based on the material prepared by Krste Asanovic and Arvind CPU-Memory Bottleneck 6.823

More information

LECTURE 10: Improving Memory Access: Direct and Spatial caches

LECTURE 10: Improving Memory Access: Direct and Spatial caches EECS 318 CAD Computer Aided Design LECTURE 10: Improving Memory Access: Direct and Spatial caches Instructor: Francis G. Wolff wolff@eecs.cwru.edu Case Western Reserve University This presentation uses

More information

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.)

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.) THE MEMORY SYSTEM SOME BASIC CONCEPTS Maximum size of the Main Memory byte-addressable CPU-Main Memory Connection, Processor MAR MDR k -bit address bus n-bit data bus Memory Up to 2 k addressable locations

More information

Let!s go back to a course goal... Let!s go back to a course goal... Question? Lecture 22 Introduction to Memory Hierarchies

Let!s go back to a course goal... Let!s go back to a course goal... Question? Lecture 22 Introduction to Memory Hierarchies 1 Lecture 22 Introduction to Memory Hierarchies Let!s go back to a course goal... At the end of the semester, you should be able to......describe the fundamental components required in a single core of

More information

Memory memories memory

Memory memories memory Memory Organization Memory Hierarchy Memory is used for storing programs and data that are required to perform a specific task. For CPU to operate at its maximum speed, it required an uninterrupted and

More information

Pharmacy college.. Assist.Prof. Dr. Abdullah A. Abdullah

Pharmacy college.. Assist.Prof. Dr. Abdullah A. Abdullah The kinds of memory:- 1. RAM(Random Access Memory):- The main memory in the computer, it s the location where data and programs are stored (temporally). RAM is volatile means that the data is only there

More information

EE 4683/5683: COMPUTER ARCHITECTURE

EE 4683/5683: COMPUTER ARCHITECTURE EE 4683/5683: COMPUTER ARCHITECTURE Lecture 6A: Cache Design Avinash Kodi, kodi@ohioedu Agenda 2 Review: Memory Hierarchy Review: Cache Organization Direct-mapped Set- Associative Fully-Associative 1 Major

More information

EE414 Embedded Systems Ch 5. Memory Part 2/2

EE414 Embedded Systems Ch 5. Memory Part 2/2 EE414 Embedded Systems Ch 5. Memory Part 2/2 Byung Kook Kim School of Electrical Engineering Korea Advanced Institute of Science and Technology Overview 6.1 introduction 6.2 Memory Write Ability and Storage

More information

Computer Architecture. Memory Hierarchy. Lynn Choi Korea University

Computer Architecture. Memory Hierarchy. Lynn Choi Korea University Computer Architecture Memory Hierarchy Lynn Choi Korea University Memory Hierarchy Motivated by Principles of Locality Speed vs. Size vs. Cost tradeoff Locality principle Temporal Locality: reference to

More information

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I)

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I) ECE7995 Caching and Prefetching Techniques in Computer Systems Lecture 8: Buffer Cache in Main Memory (I) 1 Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

Memory Technology. Chapter 5. Principle of Locality. Chapter 5 Large and Fast: Exploiting Memory Hierarchy 1

Memory Technology. Chapter 5. Principle of Locality. Chapter 5 Large and Fast: Exploiting Memory Hierarchy 1 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 5 Large and Fast: Exploiting Memory Hierarchy 5 th Edition Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic

More information

Module 5a: Introduction To Memory System (MAIN MEMORY)

Module 5a: Introduction To Memory System (MAIN MEMORY) Module 5a: Introduction To Memory System (MAIN MEMORY) R E F E R E N C E S : S T A L L I N G S, C O M P U T E R O R G A N I Z A T I O N A N D A R C H I T E C T U R E M O R R I S M A N O, C O M P U T E

More information