First TAU Theory and Praxis Training From CAD to Grid

Size: px
Start display at page:

Download "First TAU Theory and Praxis Training From CAD to Grid"

Transcription

1 First TAU Theory and Praxis Training From CAD to Grid S. Melber-Wilkending

2 First TAU Theory and Praxis Training From CAD to Grid or How to use the Centaur-Grid-Generator S. Melber-Wilkending

3 Outline Introduction Demonstration of Centaur: RAE 2822 Airfoil ONERA M6 Wing Generic Wing/Body/Engine Config. Individual CENTAUR User Training

4 Introduction Grid-generators used in the institute: Centaur, GridGen, SOLAR, MegaCads focus on Centaur (hybrid unstructured) Presentation can/should be used as Handbook for first steps with CENTAUR Handbook with complete description of CENTAUR: Login: dlrbs, PWD: alvwal CENTAUR is a complex tool, the best way is Learning by doing Individual user training at the end of this talk Used Software: CENTAUR grid generator Viscalc (boundary layer calculation) Tecplot (visualization) First: Examples of CENTAUR grids build at DLR

5 Examples of CENTAUR grids

6 Examples of CENTAUR grids

7 Examples of CENTAUR grids

8 Examples of CENTAUR grids

9 Examples of CENTAUR grids

10 Examples of CENTAUR grids

11 Examples of CENTAUR grids

12 Examples of CENTAUR grids

13 Examples of CENTAUR grids

14 Examples of CENTAUR grids

15 Examples of CENTAUR grids

16 Examples of CENTAUR grids

17 Examples of CENTAUR grids

18 Examples of CENTAUR grids

19 Examples of CENTAUR grids

20 RAE 2822 transonic airfoil (2D-case)

21 RAE 2822 Airfoil (1) Case: RAE 2822 transonic airfoil (2D-case) Grid: Euler grid Commands: Setupgrid rae.dat Switch to 2d mode? -> Yes Define boundary conditions: Create Group Group Name -> Farfield Type -> Triangles Boundary Condition -> Farfield Select curves 1,2 -> Move All

22 Setupgrid Hotkeys Setupgrid: Selection / Translation / Rotation / Zoom Hotkey r : rotation mode Hotkey t : translation mode Hotkey z : zoom mode Hotkey s : selection mode Hotkey q : query mode Setupgrid input formats: *.dat: native Centaur-format (written e.g. by MegaCads, CadFix) *.igs: common CAD-format (written e.g. by Catia, CadFix )

23 RAE 2822 Airfoil (1) Case: RAE 2822 transonic airfoil (2D-case) Grid: Euler grid Commands: Setupgrid rae.dat Switch to 2d mode? -> Yes Define boundary condition: Create Group Group Name -> Farfield Type -> Triangles Boundary Condition -> Farfield Select curves 1,2 -> Move All Create Group Group Name -> Airfoil Type -> Triangles Boundary Condition -> Inviscid Wall Select curves 3,4 -> Move All

24 RAE 2822 Airfoil (2) Case: RAE 2822 transonic airfoil (2D-case) Grid: Euler grid Commands: Build initial files for grid generation: File -> Write output files -> rae Starting grid generation: makegrid rae Visualize final grid: Hybconvert rae.hyb -> Tecplot Format Binary Tecplot rae.hyb.plt Grid is a bit coarse...!

25 Stages & Inputfiles of Grid Generation Centaur grid generation is running in three stages: 1. Surface grid boundaries of the grid 2. Prism/Hexa grid boundary layer (only for NavierStokes grids) 3. Tetrahedral grid rest of the domain Important Input-files for grid generation: Surface input-file [case].sin: for the control of the surface-grids Prismatic input-file [case].pin: for the control of the prism/hexa-grids Tetrahedra input-file [case].tin: for the control of the tetrahedral-grids User defined sources: Source file [case].lin

26 RAE 2822 Airfoil (3) Case: RAE 2822 transonic airfoil (2D-case) Grid: Euler grid Commands: Global refinement of surface (located in rae.sin-file): Length Scale in absence of any features: 0.01 Global refinement of farfield (located in rae.tin-file): Stretching ratio: 1.8

27 RAE 2822 Airfoil (4) Case: RAE 2822 transonic airfoil (2D-case) Grid: Navier-Stokes grid Commands: Change boundary condition in setupgrid Set Group -> Airfoil Modifiy Group Type -> Quads Boundary Condition -> Viscous Wall Write output files Overwrite existing input files -> Yes Refine Surface and Farfield: sin-file: Length Scale in absence of any features: 0.01 Tin-file: Stretching ratio: 1.8

28 Boundary Layer Resolution (1) Prism/Hexa-grids are controlled by three parameters: Number of layers n Initial marching step y1 Stretching ratio q The final prism-layer thickness sn can be calculated from a geometrical series: sn = y1 * (qn-1) / (n-1) Initial marching step can be determined from y+ = 1 Number of layers is determined by the user Stretching ratio can be Set by the user Calculated from a given prism layer thickness sn

29 Boundary Layer Resolution (2) Calculation of the stretching ratio q: Calculation of the boundary layer thickness using the analogy of an flat plate Assumption: prism layer has (minimum) the same thickness as the boundary layer Program Viscalc: Compile: cc o viscalc viscalc.c -lm Input: Re, Ma, T, y+ Output: n (given q) q (given n)

30 RAE 2822 Airfoil (5) Case: RAE 2822 transonic airfoil (2D-case) Grid: Navier-Stokes grid Commands: Change boundary-layer grid ([case].pin-file) using data calculated with Viscalc final grid Attention: the minimum nominal marching step has to be about 1/10 of the initial marching step! After finalizing a grid: makegrid [case] clean to save disc space

31 ONERA M6 Wing (3D-case)

32 ONERA M6 Wing (1) Case: Simple trapezoid wing (3D-case) Grid: Navier-Stokes grid Commands: Setupgrid M6.dat Create Group -> Farfield (Tetrahedra, Farfield) Select panels & Move All Create Group -> Symmetry (Hybrid, Symmetry) Select panels & Move All Create Group -> Wing (Prism, Viscous Wall) Select panels & Move All Write Output files -> m6

33 ONERA M6 Wing (2) Case: Simple trapezoid wing (3D-case) Grid: Navier-Stokes grid Commands: Calculate prism layer with Viscalc Put data in m6.pin makegrid m6 Visualize final grid: hybconvert m6.hyp Visualize surface grid: hybconvert m6.fvs Grid is to coarse on the nose: Increase Factor for curvature clustering: 40 in m6.sin Re-build surface grid: makegrid m6 surface To much cells in span-wise direction: Build panel-source Anisotropy in Setupgrid Direction of anisotropy: u-direction (full lines) Change of u/v-direction: setupgrid CAD -> Panels -> Swap u/v for selected panels

34 Sources in CENTAUR Sources: To add points to the mesh where extra resolution is needed To control locally features of the grid The sources are created with setupgrid Different types of sources available: Geometric: Point, Line, Quadrilateral, Hexahedron, Sphere, Cylinder, Cone, Frustum CAD: Curve, Panel, Group

35 ONERA M6 Wing (3) Case: Simple trapezoid wing (3D-case) Grid: Navier-Stokes grid Commands: Define a Cylinder-source for surface and tetrahedra above the wing to improve shock resolution: Surface / Tetrahedra 0.01, Radius 0.2 To define a source use of /Tools/Point List/Add highlighted to point list

36 Chopping Generation of different number of prism layers over the geometry e.g. Figure: only one layer of prisms can fit in the cavity, but the full 5 layers can be generated elsewhere

37 Chopping Generation of different number of prism layers over the geometry e.g. Figure: only one layer of prisms can fit in the cavity, but the full 5 layers can be generated elsewhere Advantages: In regions of small cavities, growing full prism layers results in very fine cells reduction the time step in flow solvers The tetrahedra are forced to match the length scales of the final prism layer. A small final layer thickness resulting in very large meshes (small elements) or a crash of the tetrahedra-stage Technique: Iterative reduction of the marching step to minimum allowable marching step If the algorithm requires marching steps smaller than this value, instead of reducing the marching step further, the number of layers are reduced effectively reduce the overall prismatic layer thickness

38 ONERA M6 Wing (4) Case: Simple trapezoid wing (3D-case) Grid: Navier-Stokes grid Commands: Demonstration of chopping: Create a point source with number of prism layers eq. zero Visalize final prims layer (hybconvert m6.fvp) Remember: Outputfiles from Centaur [case].fvs: surface grid [case].fvp: BL-Grid [case].hyb: final grid

39 Generative Wing/Body/Engine Configuration (3D-case)

40 Generative Wing/Body/Engine Configuration (1) Case: Half-Model Wing/Body/Engine Configuration (3D-case) Grid: Navier-Stokes grid Commands: CAD-Cleaning: Setupgrid gen.unclean.igs View By -> Curve: red curves, means problems in CAD data CAD-cleaning: CAD -> Curve -> Merge selected curves Split selected curves Attention: possible change of CAD geometry! Small, unneeded curves can be killed (CAD-fragments) Automatic Diagnostic / Cleaning: CAD -> Run CAD Diagnostics CAD -> Run CAD Cleaning

41 Generative Wing/Body/Engine Configuration (2) Case: Half-Model Wing/Body/Engine Configuration (3D-case) Grid: Navier-Stokes grid Commands: Set Farfield, Symmetrie, Wing, Body,Tail, Engine, Pylon Panels Set prism layer data Generate grid...

42 Generative Wing/Body/Engine Configuration (3) Case: Half-Model Wing/Body/Engine Configuration (3D-case) Grid: Navier-Stokes grid Commands: Convert CENTAUR to TAU-grid: centaur2tau [case.hyb]

43 and now its time to generate your own grids

TAU mesh deformation. Thomas Gerhold

TAU mesh deformation. Thomas Gerhold TAU mesh deformation Thomas Gerhold The parallel mesh deformation of the DLR TAU-Code Introduction Mesh deformation method & Parallelization Results & Applications Conclusion & Outlook Introduction CFD

More information

HPC Computer Aided CINECA

HPC Computer Aided CINECA HPC Computer Aided Engineering @ CINECA Raffaele Ponzini Ph.D. CINECA SuperComputing Applications and Innovation Department SCAI 16-18 June 2014 Segrate (MI), Italy Outline Open-source CAD and Meshing

More information

Viscous Hybrid Mesh Generation

Viscous Hybrid Mesh Generation Tutorial 4. Viscous Hybrid Mesh Generation Introduction In cases where you want to resolve the boundary layer, it is often more efficient to use prismatic cells in the boundary layer rather than tetrahedral

More information

Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions

Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions Wei Liao National Institute of Aerospace, Hampton, Virginia Collaborators: Mujeeb R. Malik, Elizabeth M. Lee- Rausch,

More information

Recent developments for the multigrid scheme of the DLR TAU-Code

Recent developments for the multigrid scheme of the DLR TAU-Code www.dlr.de Chart 1 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Recent developments for the multigrid scheme of the DLR TAU-Code

More information

AN INVERSE DESIGN METHOD FOR ENGINE NACELLES AND WINGS

AN INVERSE DESIGN METHOD FOR ENGINE NACELLES AND WINGS 24th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AN INVERSE DESIGN METHOD FOR ENGINE NACELLES AND WINGS Roland Wilhelm German Aerospace Center DLR, Lilienthalplatz 7, D-388 Braunschweig, Germany

More information

FAR-Wake Workshop, Marseille, May 2008

FAR-Wake Workshop, Marseille, May 2008 Wake Vortices generated by an Aircraft Fuselage : Comparison of Wind Tunnel Measurements on the TAK Model with RANS and RANS-LES Simulations T. Louagie, L. Georges & P. Geuzaine Cenaero CFD-Multiphysics

More information

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids Patrice Castonguay and Antony Jameson Aerospace Computing Lab, Stanford University GTC Asia, Beijing, China December 15 th, 2011

More information

Contribution to GMGW-1

Contribution to GMGW-1 Contribution to GMGW-1 Vivek Ahuja, Shaunak Pai, John Wilson, Rajesh Kumar, Michael Stubert Inc. (003) Restricted Siemens AG 2017 Realize innovation. Summary of meshes generated Star-CCM+ Geometry Core

More information

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method DLR - German Aerospace Center State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method J. Brezillon, C. Ilic, M. Abu-Zurayk, F. Ma, M. Widhalm

More information

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options Chapter 10. Generating Prisms This chapter describes the automatic and manual procedure for creating prisms in TGrid. It also discusses the solution to some common problems that you may face while creating

More information

A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS

A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS Akio OCHI, Eiji SHIMA Kawasaki Heavy Industries, ltd Keywords: CFD, Drag prediction, Validation Abstract A CFD drag prediction validation

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

GEOMETRY MODELING & GRID GENERATION

GEOMETRY MODELING & GRID GENERATION GEOMETRY MODELING & GRID GENERATION Dr.D.Prakash Senior Assistant Professor School of Mechanical Engineering SASTRA University, Thanjavur OBJECTIVE The objectives of this discussion are to relate experiences

More information

Contribution to GMGW 1

Contribution to GMGW 1 Contribution to GMGW 1 Rocco Nastasia, Saurabh Tendulkar, Mark Beall Simmetrix Inc., Clifton Park, NY 12065 Riccardo Balin, Scott Wurst, Ryan Skinner, Kenneth E. Jansen Department of Aerospace Engineering

More information

Aerodynamic optimization using Adjoint methods and parametric CAD models

Aerodynamic optimization using Adjoint methods and parametric CAD models Aerodynamic optimization using Adjoint methods and parametric CAD models ECCOMAS Congress 2016 P. Hewitt S. Marques T. Robinson D. Agarwal @qub.ac.uk School of Mechanical and Aerospace Engineering Queen

More information

CAD-BASED WORKFLOWS. VSP Workshop 2017

CAD-BASED WORKFLOWS. VSP Workshop 2017 CAD-BASED WORKFLOWS VSP Workshop 2017 RESEARCH IN FLIGHT COMPANY Established 2012 Primary functions are the development, marketing and support of FlightStream and the development of aerodynamic solutions

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

ANSYS ICEM CFD User's Manual

ANSYS ICEM CFD User's Manual ANSYS ICEM CFD User's Manual ANSYS, Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA 15317 ansysinfo@ansys.com http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494 Release 17.0 January 2016 ANSYS, Inc.

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

UNSTRUCTURED MESH CAPABILITES FOR SUPERSONIC WING DESIGN AT LOW SPEED CONDITIONS

UNSTRUCTURED MESH CAPABILITES FOR SUPERSONIC WING DESIGN AT LOW SPEED CONDITIONS CFD & OPTIMIZATION 2011-048 An ECCOMAS Thematic Conference 23-25 May 2011, Antalya TURKEY UNSTRUCTURED MESH CAPABILITES FOR SUPERSONIC WING DESIGN AT LOW SPEED CONDITIONS Michele Gaffuri, Joël Brezillon

More information

15. SAILBOAT GEOMETRY

15. SAILBOAT GEOMETRY SAILBOAT GEOMETRY 15. SAILBOAT GEOMETRY In this tutorial you will import a STEP file that describes the geometry of a sailboat hull. You will split the hull along the symmetry plane, create a flow volume

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

Algorithmic Developments in TAU

Algorithmic Developments in TAU Algorithmic Developments in TAU Ralf Heinrich, Richard Dwight, Markus Widhalm, and Axel Raichle DLR Institute of Aerodynamics and Flow Technology, Lilienthalplatz 7, 38108, Germany ralf.heinrich@dlr.de,

More information

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN Adeel Khalid *, Daniel P. Schrage + School of Aerospace Engineering, Georgia Institute of Technology

More information

Structured Grid Generation for Turbo Machinery Applications using Topology Templates

Structured Grid Generation for Turbo Machinery Applications using Topology Templates Structured Grid Generation for Turbo Machinery Applications using Topology Templates January 13th 2011 Martin Spel martin.spel@rtech.fr page 1 Agenda: R.Tech activities Grid Generation Techniques Structured

More information

Geometry Parameterization for Shape Optimization. Arno Ronzheimer

Geometry Parameterization for Shape Optimization. Arno Ronzheimer Geometry Parameterization for Shape Optimization Arno Ronzheimer Dokumentname > 11.07.2006 23.11.2004 Overview Motivation for Geometry Parameterization Classification of Methods Criteria for Choosing a

More information

SHOCK WAVES IN A CHANNEL WITH A CENTRAL BODY

SHOCK WAVES IN A CHANNEL WITH A CENTRAL BODY SHOCK WAVES IN A CHANNEL WITH A CENTRAL BODY A. N. Ryabinin Department of Hydroaeromechanics, Faculty of Mathematics and Mechanics, Saint-Petersburg State University, St. Petersburg, Russia E-Mail: a.ryabinin@spbu.ru

More information

CFD Methods for Aerodynamic Design

CFD Methods for Aerodynamic Design CFD Methods for Aerodynamic Design Afandi Darlington Optimal Aerodynamics Ltd Why CFD? Datasheet methods are still very relevant today (ESDU, USAF DATCOM) Validated estimates of lift, drag, moments, stability

More information

Case 3.1: Turbulent Flow over a 2D Multi-Element Airfoil. Summary of Results. Marco Ceze

Case 3.1: Turbulent Flow over a 2D Multi-Element Airfoil. Summary of Results. Marco Ceze Case 3.1: Turbulent Flow over a 2D Multi-Element Airfoil Summary of Results Marco Ceze (mceze@umich.edu) 2 nd International Workshop on High-Order CFD Methods, May 27-28, Cologne, Germany C3.1 1/14 Case

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES VI International Conference on Adaptive Modeling and Simulation ADMOS 2013 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE

More information

Workshop 3: Cutcell Mesh Generation. Introduction to ANSYS Fluent Meshing Release. Release ANSYS, Inc.

Workshop 3: Cutcell Mesh Generation. Introduction to ANSYS Fluent Meshing Release. Release ANSYS, Inc. Workshop 3: Cutcell Mesh Generation 14.5 Release Introduction to ANSYS Fluent Meshing 1 2011 ANSYS, Inc. December 21, 2012 I Introduction Workshop Description: CutCell meshing is a general purpose meshing

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 4-28-2016 Application

More information

Unstructured Mesh Related Issues In Computational Fluid Dynamics (CFD) Based Analysis And Design

Unstructured Mesh Related Issues In Computational Fluid Dynamics (CFD) Based Analysis And Design Unstructured Mesh Related Issues In Computational Fluid Dynamics (CFD) Based Analysis And Design Dimitri J. Mavriplis ICASE NASA Langley Research Center Hampton, VA 23681 USA 11 th International Meshing

More information

German Aerospace Center, Institute of Aerodynamics and Flow Technology, Numerical Methods

German Aerospace Center, Institute of Aerodynamics and Flow Technology, Numerical Methods Automatische Transitionsvorhersage im DLR TAU Code Status der Entwicklung und Validierung Automatic Transition Prediction in the DLR TAU Code - Current Status of Development and Validation Andreas Krumbein

More information

The Numerical Simulation of Civil Transportation High-lift Configuration

The Numerical Simulation of Civil Transportation High-lift Configuration Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

An Investigation of Directional-Coarsening And Line-Implicit Smoothing Applied to Agglomeration Multigrid

An Investigation of Directional-Coarsening And Line-Implicit Smoothing Applied to Agglomeration Multigrid An Investigation of Directional-Coarsening And Line-Implicit Smoothing Applied to Agglomeration Multigrid J. V. Lassaline Ryerson University 35 Victoria St, Toronto, ON, M5B 2K3, Canada D. W. Zingg University

More information

Shrinkwrap developments for computational electromagnetics in ICE NITe

Shrinkwrap developments for computational electromagnetics in ICE NITe Shrinkwrap developments for computational electromagnetics in ICE NITe Preparing CAD models for electromagnetic analysis remains a complex, time consuming process. Typically, the CAD model will contain

More information

Lecture 6: CAD Import Release. Introduction to ANSYS Fluent Meshing

Lecture 6: CAD Import Release. Introduction to ANSYS Fluent Meshing Lecture 6: CAD Import 14.5 Release Introduction to ANSYS Fluent Meshing 1 Fluent Meshing 14.5 Assembly meshing Workflow This Lecture Tessellated or Conformal CAD import Cap Inlet/Outlets, Create Domains/BOI

More information

Free Convection Cookbook for StarCCM+

Free Convection Cookbook for StarCCM+ ME 448/548 February 28, 2012 Free Convection Cookbook for StarCCM+ Gerald Recktenwald gerry@me.pdx.edu 1 Overview Figure 1 depicts a two-dimensional fluid domain bounded by a cylinder of diameter D. Inside

More information

Topological Issues in Hexahedral Meshing

Topological Issues in Hexahedral Meshing Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Outline I. What is meshing? Problem statement Types of mesh Quality issues

More information

5. Release Notes - Version 15

5. Release Notes - Version 15 Gridgen Version 15.18 - Release Date: August 2012 5. Release Notes - Version 15 5.1 Gridgen Version 15.18 - Release Date: August 2012 The following is a list of new features included in V15.18: 1. Improvements

More information

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 -

More information

A GRAPHICALLY INTERACTIVE APPROACH TO STRUCTURED AND UNSTRUCTURED SURFACE GRID QUALITY ANALYSIS. John E. Stewart * Jamshid S.

A GRAPHICALLY INTERACTIVE APPROACH TO STRUCTURED AND UNSTRUCTURED SURFACE GRID QUALITY ANALYSIS. John E. Stewart * Jamshid S. A GRAPHICALLY INTERACTIVE APPROACH TO STRUCTURED AND UNSTRUCTURED SURFACE GRID QUALITY ANALYSIS John E. Stewart * Jamshid S. Abolhassani Abstract A graphically interactive approach to structured and unstructured

More information

Computational Fluid Dynamics for Engineers

Computational Fluid Dynamics for Engineers Tuncer Cebeci Jian P. Shao Fassi Kafyeke Eric Laurendeau Computational Fluid Dynamics for Engineers From Panel to Navier-Stokes Methods with Computer Programs With 152 Figures, 19 Tables, 84 Problems and

More information

Verification of Moving Mesh Discretizations

Verification of Moving Mesh Discretizations Verification of Moving Mesh Discretizations Krzysztof J. Fidkowski High Order CFD Workshop Kissimmee, Florida January 6, 2018 How can we verify moving mesh results? Goal: Demonstrate accuracy of flow solutions

More information

Introduction to ANSYS ICEM CFD

Introduction to ANSYS ICEM CFD Lecture 4 Volume Meshing 14. 0 Release Introduction to ANSYS ICEM CFD 1 2011 ANSYS, Inc. March 21, 2012 Introduction to Volume Meshing To automatically create 3D elements to fill volumetric domain Generally

More information

The Quality Of 3D Models

The Quality Of 3D Models The Quality Of 3D Models Problems and Solutions for Applications Post-Design Fathi El-Yafi Senior Product Engineer Product Department of EXA Corporation 1 : Overview Status Problems Identified Defect Sources

More information

Development of mesh refinement methods at CFD codes for computational fluid mechanics problems DIPLOMA THESIS

Development of mesh refinement methods at CFD codes for computational fluid mechanics problems DIPLOMA THESIS NATIONAL TECHNICAL UNIVERSITY OF ATHENS DEPARTMENT OF MECHANICAL ENGINEERING SECTION OF FLUID MECHANICS Development of mesh refinement methods at CFD codes for computational fluid mechanics problems DIPLOMA

More information

Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration

Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration Kedar C. Chitale MANE Dept., Rensselaer Polytechnic Institute, NY 12180 Michel Rasquin Leadership Computing Facility, Argonne

More information

Introduction to ANSYS FLUENT Meshing

Introduction to ANSYS FLUENT Meshing Workshop 02 Volume Fill Methods Introduction to ANSYS FLUENT Meshing 1 2011 ANSYS, Inc. December 21, 2012 I Introduction Workshop Description: Mesh files will be read into the Fluent Meshing software ready

More information

The use of gas-kinetic schemes for the simulation of compressible flows become widespread in the two last

The use of gas-kinetic schemes for the simulation of compressible flows become widespread in the two last A Gas-Kinetic BGK Scheme for Parallel Solution of 3-D Viscous Flows on Unstructured Hybrid Grids Murat Ilgaz Defense Industries Research and Development Institute, Ankara, 626, Turkey and Ismail H. Tuncer

More information

EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS

EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS Edisson Sávio de Góes Maciel, edissonsavio@yahoo.com.br Mechanical

More information

Modeling External Compressible Flow

Modeling External Compressible Flow Tutorial 3. Modeling External Compressible Flow Introduction The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a nonzero angle of attack. You will use the Spalart-Allmaras

More information

MULTI-OBJECTIVE OPTIMISATION IN MODEFRONTIER FOR AERONAUTIC APPLICATIONS

MULTI-OBJECTIVE OPTIMISATION IN MODEFRONTIER FOR AERONAUTIC APPLICATIONS EVOLUTIONARY METHODS FOR DESIGN, OPTIMIZATION AND CONTROL P. Neittaanmäki, J. Périaux and T. Tuovinen (Eds.) CIMNE, Barcelona, Spain 2007 MULTI-OBJECTIVE OPTIMISATION IN MODEFRONTIER FOR AERONAUTIC APPLICATIONS

More information

NUMERICAL SIMULATIONS OF TURBULENT FLOWS OVER THE ONERA-M6 AND DLR-F6 CONFIGURATIONS

NUMERICAL SIMULATIONS OF TURBULENT FLOWS OVER THE ONERA-M6 AND DLR-F6 CONFIGURATIONS NUMERICAL SIMULATIONS OF TURBULENT FLOWS OVER THE ONERA-M6 AND DLR-F6 CONFIGURATIONS Ricardo Galdino da Silva, João Luiz F. Azevedo Instituto de Aeronáutica e Espaço, DCTA/IAE/ALA, São José dos Campos,

More information

CGT 581 G Geometric Modeling Surfaces (part I)

CGT 581 G Geometric Modeling Surfaces (part I) CGT 581 G Geometric Modeling Surfaces (part I) Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology Polygonal Representation The common representation is a mesh of triangles

More information

Abstract. Introduction

Abstract. Introduction EULER SOLUTIONS AS LIMIT OF INFINITE REYNOLDS NUMBER FOR SEPARATION FLOWS AND FLOWS WITH VORTICES Wolfgang Schmidt and Antony Jameson Dornier GmbH, D-7990 Friedrichshafen, FRG and Princeton University,

More information

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions Milovan Perić Contents The need to couple STAR-CCM+ with other theoretical or numerical solutions Coupling approaches: surface and volume

More information

simulations to capture boundary layers efficiently with semi-structured elements or anisotropic, rightangled tetrahedra. The unstructured meshes can b

simulations to capture boundary layers efficiently with semi-structured elements or anisotropic, rightangled tetrahedra. The unstructured meshes can b Challenges in Unstructured Mesh Generation for Practical and Efficient Computational Fluid Dynamics Simulations Yasushi Ito a,* a Japan Aerospace Exploration Agency (JAXA), 6-13-1 Osawa, Mitaka, Tokyo

More information

X-31A VECTOR High Angle of Attack Descent Euler and Navier-Stokes Simulations of Unsteady Manoeuvres

X-31A VECTOR High Angle of Attack Descent Euler and Navier-Stokes Simulations of Unsteady Manoeuvres X-31A VECTOR High Angle of Attack Descent Euler and Navier-Stokes Simulations of Unsteady Manoeuvres Stephan M. Hitzel, Edwin van der Weide, Udo Tremel, Herbert Rieger Numerical Flow Simulation, EADS Military

More information

Unstructured Grid Generation Using Automatic Point Insertion and Local Reconnection

Unstructured Grid Generation Using Automatic Point Insertion and Local Reconnection 18 Unstructured Grid Generation Using Automatic Point Insertion and Local Reconnection David L. Marcum 18.1 Introduction 18.2 Unstructured Grid Generation Procedure 18.3 Two-Dimensional Application Examples

More information

TGrid 5.0 Tutorial Guide

TGrid 5.0 Tutorial Guide TGrid 5.0 Tutorial Guide April 2008 Copyright c 2008 by ANSYS, Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without express written permission from

More information

Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016

Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016 Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016 ADINA R&D, Inc., 2016 1 Topics Presented ADINA에서쓰이는 Geometry 종류 Simple (AUI) geometry ADINA-M geometry ADINA-M

More information

Best Practices: Volume Meshing Kynan Maley

Best Practices: Volume Meshing Kynan Maley Best Practices: Volume Meshing Kynan Maley Volume Meshing Volume meshing is the basic tool that allows the creation of the space discretization needed to solve most of the CAE equations for: CFD Stress

More information

Fully Automated, Parallel and Topology Agnostic Domain Connectivity For Overlapping Surface Meshes Fields

Fully Automated, Parallel and Topology Agnostic Domain Connectivity For Overlapping Surface Meshes Fields Overset and Composite Grid Symposium, University of Maryland Oct 1-3, 2018 Fully Automated, Parallel and Topology Agnostic Domain Connectivity For Overlapping Surface Meshes Fields Approved for public

More information

Calypso Construction Features. Construction Features 1

Calypso Construction Features. Construction Features 1 Calypso 1 The Construction dropdown menu contains several useful construction features that can be used to compare two other features or perform special calculations. Construction features will show up

More information

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4 UMEÅ UNIVERSITY Department of Physics Claude Dion Olexii Iukhymenko May 15, 2015 Strömningslära Fluid Dynamics (5FY144) Computer laboratories using COMSOL v4.4!! Report requirements Computer labs must

More information

The gas-kinetic methods have become popular for the simulation of compressible fluid flows in the last

The gas-kinetic methods have become popular for the simulation of compressible fluid flows in the last Parallel Implementation of Gas-Kinetic BGK Scheme on Unstructured Hybrid Grids Murat Ilgaz Defense Industries Research and Development Institute, Ankara, 626, Turkey and Ismail H. Tuncer Middle East Technical

More information

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Stores Separation Introduction Flight Test Expensive, high-risk, sometimes catastrophic

More information

Best Practices for Aerospace Aerodynamics. Peter Ewing

Best Practices for Aerospace Aerodynamics. Peter Ewing Best Practices for Aerospace Aerodynamics Peter Ewing Agenda Pre-processing Geometry Origin/Import Geometry Prep Surface Mesh Volume Mesh Solver Settings Defining Flight Physics Setting Up Solvers Post-processing

More information

DISCONTINUOUS FINITE ELEMENT VISUALIZATION

DISCONTINUOUS FINITE ELEMENT VISUALIZATION 1 1 8th International Symposium on Flow Visualisation (1998) DISCONTINUOUS FINITE ELEMENT VISUALIZATION A. O. Leone P. Marzano E. Gobbetti R. Scateni S. Pedinotti Keywords: visualization, high-order finite

More information

TAU User Meeting, Göttingen,

TAU User Meeting, Göttingen, TAU User Meeting, Göttingen, 22.9.2005 Fluid-Structure-Coupling Using the TAU Code: Developments and Applications at the DLR Institute of Aeroelasticity Wolf Krüger DLR Institute of Aeroelasticity Fluid-Structure-Coupling

More information

Tutorial 2. Modeling Periodic Flow and Heat Transfer

Tutorial 2. Modeling Periodic Flow and Heat Transfer Tutorial 2. Modeling Periodic Flow and Heat Transfer Introduction: Many industrial applications, such as steam generation in a boiler or air cooling in the coil of an air conditioner, can be modeled as

More information

FEMLAB Exercise 1 for ChE366

FEMLAB Exercise 1 for ChE366 FEMLAB Exercise 1 for ChE366 Problem statement Consider a spherical particle of radius r s moving with constant velocity U in an infinitely long cylinder of radius R that contains a Newtonian fluid. Let

More information

Comparisons of Compressible and Incompressible Solvers: Flat Plate Boundary Layer and NACA airfoils

Comparisons of Compressible and Incompressible Solvers: Flat Plate Boundary Layer and NACA airfoils Comparisons of Compressible and Incompressible Solvers: Flat Plate Boundary Layer and NACA airfoils Moritz Kompenhans 1, Esteban Ferrer 2, Gonzalo Rubio, Eusebio Valero E.T.S.I.A. (School of Aeronautics)

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING M. Figat Warsaw University of Technology Keywords: Aerodynamic design, CFD Abstract This paper presents an aerodynamic design process

More information

Module D: Laminar Flow over a Flat Plate

Module D: Laminar Flow over a Flat Plate Module D: Laminar Flow over a Flat Plate Summary... Problem Statement Geometry and Mesh Creation Problem Setup Solution. Results Validation......... Mesh Refinement.. Summary This ANSYS FLUENT tutorial

More information

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm P.A. Sherar, C.P. Thompson, B. Xu, B. Zhong Abstract A new method is presented to deal with shape optimization problems.

More information

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators 1 of 7 Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators This document provides objectives to support planning for shape, space and measures in Key Stage 4.

More information

Pick up some wrapping paper.

Pick up some wrapping paper. Pick up some wrapping paper. What is the area of the following Christmas Tree? There is a nice theorem that allows one to compute the area of any simply-connected (i.e. no holes) grid polygon quickly.

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

Numerical and Mesh Resolution Requirements for. Accurate Sonic Boom Prediction of Complete Aircraft. configurations.

Numerical and Mesh Resolution Requirements for. Accurate Sonic Boom Prediction of Complete Aircraft. configurations. Numerical and Mesh Resolution Requirements for Accurate Sonic Boom Prediction of Complete Aircraft Configurations S. Choi, J. J. Alonso, and E. Van der Weide Department of Aeronautics & Astronautics Stanford

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

AN ADAPTIVE UNSTRUCTURED GRID METHOD BY GRID SUBDIVISION, LOCAL REMESHING, AND GRID MOVEMENT

AN ADAPTIVE UNSTRUCTURED GRID METHOD BY GRID SUBDIVISION, LOCAL REMESHING, AND GRID MOVEMENT AIAA AIAA 99 3255 AN ADAPTIVE UNSTRUCTURED GRID METHOD BY GRID SUBDIVISION, LOCAL REMESHING, AND GRID MOVEMENT S.Z. Pirzadeh Configuration Aerodynamics Branch MS 499, NASA Langley Research Center Hampton,

More information

AIAA A Computational Study of Subsonic Flows over A Medium Range Cargo Aircraft

AIAA A Computational Study of Subsonic Flows over A Medium Range Cargo Aircraft S AIAA 23-366 A Computational Study of Subsonic Flows over A Medium Range Cargo Aircraft 2st Applied Aerodynamic Conference 23-26 June 23 Orlando, Florida For permission to copy or to republish, contact

More information

The Spalart Allmaras turbulence model

The Spalart Allmaras turbulence model The Spalart Allmaras turbulence model The main equation The Spallart Allmaras turbulence model is a one equation model designed especially for aerospace applications; it solves a modelled transport equation

More information

Introduction to ANSYS FLUENT Meshing

Introduction to ANSYS FLUENT Meshing Workshop 04 CAD Import and Meshing from Conformal Faceting Input 14.5 Release Introduction to ANSYS FLUENT Meshing 2011 ANSYS, Inc. December 21, 2012 1 I Introduction Workshop Description: CAD files will

More information

Optimate CFD Evaluation Optimate Glider Optimization Case

Optimate CFD Evaluation Optimate Glider Optimization Case Optimate CFD Evaluation Optimate Glider Optimization Case Authors: Nathan Richardson LMMFC CFD Lead 1 Purpose For design optimization, the gold standard would be to put in requirements and have algorithm

More information

2D mesh generation using DeViSoR Grid and GiD

2D mesh generation using DeViSoR Grid and GiD 2D mesh generation using DeViSoR Grid and GiD Dipl.-Math. Jens Friedrich Acker Dipl.-Inform. (FH) Thomas Rohkämper Mathematics III: Applied Mathematics and Numerics TU Dortmund University Oct. 28, 2010

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information

High-order methods for the next generation of computational engineering software

High-order methods for the next generation of computational engineering software High-order methods for the next generation of computational engineering software Rubén Sevilla Zienkiewicz Centre for Computational Engineering College of Engineering Swansea University Swansea Wales,

More information

Repairing a Boundary Mesh

Repairing a Boundary Mesh Tutorial 1. Repairing a Boundary Mesh Introduction TGrid offers several tools for mesh repair. While there is no right or wrong way to repair a mesh, the goal is to improve the quality of the mesh with

More information

CATIA V5-6R2015 Product Enhancement Overview

CATIA V5-6R2015 Product Enhancement Overview Click to edit Master title style CATIA V5-6R2015 Product Enhancement Overview John Montoya, PLM Technical Support March 2015 1 2010 Inceptra LLC. All rights reserved. Overview of Enhanced Products Overview

More information

Generating Airplane Wings for Numerical Simulation and Manufacturing

Generating Airplane Wings for Numerical Simulation and Manufacturing Generating Airplane Wings for Numerical Simulation and Manufacturing Karl-Heinz Brakhage Philipp Lamby Institute of Geometry and Applied Mathematics RWTH Aachen, University of Technology D-52056 Aachen,

More information

Learning from Home Activity Booklet

Learning from Home Activity Booklet Year 2 Maths Geometry Properties of Shapes Learning from Home Activity Booklet Year 2 Programme of Study Statistics Statutory requirements Activity Sheet Page Number Notes Identify and describe the properties

More information