GEOMETRY MODELING & GRID GENERATION

Size: px
Start display at page:

Download "GEOMETRY MODELING & GRID GENERATION"

Transcription

1 GEOMETRY MODELING & GRID GENERATION Dr.D.Prakash Senior Assistant Professor School of Mechanical Engineering SASTRA University, Thanjavur

2 OBJECTIVE The objectives of this discussion are to relate experiences and offer some practical tips to : 1. Modeling geometry for CFD analysis 2. Generating a grid for the CFD analysis Geometry modeling and grid generation are often the most difficult and time-intensive aspects of a CFD analysis.

3 GEOMETRY The starting point for all problems is a geometry. The geometry describes the shape of the problem to be analyzed. Can consist of volumes, faces (surfaces), edges (curves) and vertices (points).

4 GEOMETRY CREATION-APPROACH Geometries can be created top-down or bottom-up. Top-down refers to an approach where the computational domain is created by performing logical operations on primitive shapes such as cylinders, bricks, and spheres. Bottom-up refers to an approach where one first creates vertices (points), connects those to form edges (lines), connects the edges to create faces, and combines the faces to create volumes. Geometries can be created using the same pre-processor software that is used to create the grid, or created using other programs (e.g. CAD, graphics).

5 LAYOUT OF MODELING PACKAGE- GAMBIT Geometry & Grid are saved in a database file (*.dbs) The mesh is saved into a solver-dependent file (*.msh) At the end of each session Gambit automatically saves a journal file (*.jou)

6

7 GEOMETRY CFD Workshop: Geometry Modeling & Grid Generation

8 GEOMETRY TYPES IN GAMBIT Real Geometry: entities characterized by a direct definition of their geometry example: a vertex defined by its coordinates (0,0,0) Virtual Geometry: entities characterized ONLY by an indirect definition, i.e. a reference to another entity. example: a vertex is defined as the mid-point of an edge Faceted Geometry : entities characterized ONLY by an indirect definition with respect to an underlying grid example: a vertex is defined as the corner of a mesh element

9 GEOMETRY CFD Workshop: Geometry Modeling & Grid Generation

10 GEOMETRY CFD Workshop: Geometry Modeling & Grid Generation

11 MANIPULATION OF GEOMETRY Boolean operations are used to manipulate

12 IMPORTING GEOMETRY CFD Workshop: Geometry Modeling & Grid Generation

13 IMPORTING FROM OTHER SOFTWARE 1. Catia V5 R12 2. UG NX2 3. Pro/ENGINEER Wildfire 4. Autodesk Inventor 8 5. Autodesk Mechanical Desktop 2004 DX 6. Solid Works Solid Edge Parasolid ACIS R12

14 ERROR IN IMPORTING FROM OTHER SOFTWARE Tolerance issues Untrimmed surfaces Trimmed surface not split Poor surface definitions Excessive detailing/featuring Unsupported entities All or Nothing reality (crashes) Topology Repair Geometry Repair Geometry Simplification Entity Support Robustness

15 SIMPLIFICATION OF GEOMETRY

16 SIMPLIFICATION OF GEOMETRY

17 IMPORTING FROM VARIOUS MODEL CFD Workshop: Geometry Modeling & Grid Generation

18 MODELING SIMPLIFICATION CFD Workshop: Geometry Modeling & Grid Generation

19 MODELING SIMPLIFICATION CFD Workshop: Geometry Modeling & Grid Generation

20 MODELING SIMPLIFICATION CFD Workshop: Geometry Modeling & Grid Generation

21

22 WIND TURBINE

23 VEHICLES

24 HEAT EXCHANGER

25

26

27 BUILDINGS

28

29 ICENGINES CFD Workshop: Geometry Modeling & Grid Generation

30 GRID GENERATION Why is a grid needed? The grid: Designates the cells or elements on which the flow is solved. Is a discrete representation of the geometry of the problem. Has cells grouped into boundary zones where b.c. s are applied. The grid has a significant impact on: Rate of convergence (or even lack of convergence). Solution accuracy. CPU time required. Importance of mesh quality for good solutions. Grid density. Adjacent cell length/volume ratios. Skewness. Tetvs. hex. Boundary layer mesh. Mesh refinement through adaption.

31 TYPICAL CELL SHAPES Many different cell/element and grid types are available. Choice depends on the problem and the solver capabilities. Cell or element types: CFD Workshop: Geometry Modeling & Grid Generation

32 GRID NOMENCLATURE CFD Workshop: Geometry Modeling & Grid Generation Terminology Cell = control volume into which domain is broken up. Node = grid point. Cell center= centerof a cell. Edge = boundary of a face. Face = boundary of a cell. Zone = grouping of nodes, faces, and cells: Wall boundary zone. Fluid cell zone. Domain = group of node, face and cell zones.

33 STRUCTURED GRID CFD Workshop: Geometry Modeling & Grid Generation Single-block, structured grid. Connectivity with the neighbouring vertices are same Grid lines must pass all through domain. Obviously can t be used for very complicated geometries. Algebraic method- linear interpolation Partial differentiation approach- elliptic pde

34 STRUCTURED GRID TYPES CFD Workshop: Geometry Modeling & Grid Generation

35 UNSTRUCTURED GRID CFD Workshop: Geometry Modeling & Grid Generation Unstructured grid. The cells are arranged in an arbitrary fashion. No i,j,kgrid index, no constraints on cell layout. There is some memory and CPU overhead for unstructured referencing. Triangulation method Delaunay triangulation method Circumcircle test is important

36 HYBRID GRID CFD Workshop: Geometry Modeling & Grid Generation Hybrid grid. Use the most appropriate cell type in any combination. Triangles and quadrilaterals in 2D. Tetrahedra, prisms and pyramids in 3D. Can be non-conformal: grids lines don t need to match at block boundaries

37 MESH GENERATION PROCESS CFD Workshop: Geometry Modeling & Grid Generation Create, read (or import) boundary mesh(es). 2. Check quality of boundary mesh. 3. Improve and repair boundary mesh. 4. Generate volume mesh. 5. Perform further refinement if required. 6. Inspect quality of volume mesh. 7. Remove sliver and degenerate cells. 8. Save volume mesh.

38 MESH QUALITY For the same cell count, hexahedral meshes will give more accurate solutions, especially if the grid lines are aligned with the flow. The mesh density should be high enough to capture all relevant flow features. The mesh adjacent to the wall should be fine enough to resolve the boundary layer flow. In boundary layers, quad, hex, and prism/wedge cells are preferred over tri s, tets, or pyramids. Three measures of quality: Skewness, Smoothness (change in size). Aspect ratio.

39 MESH SKEWNESS CFD Workshop: Geometry Modeling & Grid Generation Two methods for determining skewness: 1. Based on the equilateral volume: Skewness = optimal cell size cell size optimal cell size Applies only to triangles and tetrahedra. optimal (equilateral) cell circumcircle 2. Based on the deviation from a normalized equilateral angle: Skewness(for a quad) = Applies to all cell and face shapes. Always used for prisms and pyramids. θ θ 90 max min max, θ min θ max actual cell

40 EQUIANGLESKEW CFD Workshop: Geometry Modeling & Grid Generation Common measure of quality is based on equiangle skew. Definition of equiangle skew: where: θ max = largest angle in face or cell. θ min = smallest angle in face or cell. θ e = angle for equiangular face or cell. e.g., 60 for triangle, 90 for square. Range of skewness: θ θ max e 180 θe max, θ θ e θ e min 0 1 best worst θ min θ max Value of Skewness Degenerate 1 bad (sliver) 0.9 <1 Poor Fair Good Excellent > Equilateral 0

41 GRID-ASPECT RATIO CFD Workshop: Geometry Modeling & Grid Generation Change in size should be gradual (smooth). smooth change large jump in in cell size cell size Aspect ratio is ratio of longest edge length to shortest edge length. Equal to 1 (ideal) for an equilateral triangle or a square. aspect ratio = 1 high-aspect-ratio quad aspect ratio = 1 high-aspect-ratio triangle

42 ADAPTIVE GRID Solution adaption How do you ensure adequate grid resolution, when you don t necessarily know the flow features? Solution-based grid adaption! The grid can be refined or coarsened by the solver based on the developing flow: Solution values. Gradients. Along a boundary. Inside a certain region.

43 ADAPTIVE GRID Methods : Moving mesh- reposition of grid points Mesh Enrichment- Adding of grid points

44 ADAPTION EXAMPLE: FINAL GRID AND SOLUTION

45 SOURCES OF ERRORS Main sources of errors Mesh too coarse. High skewness. Large jumps in volume between adjacent cells. Large aspect ratios. Interpolation errors at nonconformal interfaces. Inappropriate boundary layer mesh. CFD Workshop: Geometry Modeling & Grid Generation

46 MESHING-TIPS CFD Workshop: Geometry Modeling & Grid Generation More cells can give higher accuracy. The downside is increased memory and CPU time. Cell counts of the order: 1E4 are relatively small problems. 1E5 are intermediate size problems. 1E6 are large. Such problems can be efficiently run using multiple CPUs, but mesh generation and post-processing may become slow. 1E7 are huge and should be avoided if possible. However, they are common in aerospace and automotive applications. 1E8 and more are department of defense style applications.

47 FINAL POINTS Design and construction of a quality grid is crucial to the success of the CFD analysis. Appropriate choice of grid type depends on: Geometric complexity. Flow field. Cell and element types supported by solver. Hybrid meshing offers the greatest flexibility. Take advantage of solution adaption.

48

HPC Computer Aided CINECA

HPC Computer Aided CINECA HPC Computer Aided Engineering @ CINECA Raffaele Ponzini Ph.D. CINECA SuperComputing Applications and Innovation Department SCAI 16-18 June 2014 Segrate (MI), Italy Outline Open-source CAD and Meshing

More information

Reporting Mesh Statistics

Reporting Mesh Statistics Chapter 15. Reporting Mesh Statistics The quality of a mesh is determined more effectively by looking at various statistics, such as maximum skewness, rather than just performing a visual inspection. Unlike

More information

Lecture 7: Mesh Quality & Advanced Topics. Introduction to ANSYS Meshing Release ANSYS, Inc. February 12, 2015

Lecture 7: Mesh Quality & Advanced Topics. Introduction to ANSYS Meshing Release ANSYS, Inc. February 12, 2015 Lecture 7: Mesh Quality & Advanced Topics 15.0 Release Introduction to ANSYS Meshing 1 2015 ANSYS, Inc. February 12, 2015 Overview In this lecture we will learn: Impact of the Mesh Quality on the Solution

More information

Introduction to ANSYS ICEM CFD

Introduction to ANSYS ICEM CFD Lecture 4 Volume Meshing 14. 0 Release Introduction to ANSYS ICEM CFD 1 2011 ANSYS, Inc. March 21, 2012 Introduction to Volume Meshing To automatically create 3D elements to fill volumetric domain Generally

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

Edge and Face Meshing

Edge and Face Meshing dge and Face Meshing 5-1 Meshing - General To reduce overall mesh size, confine smaller cells to areas where they are needed Locations of large flow field gradients. Locations of geometric details you

More information

Structured Grid Generation for Turbo Machinery Applications using Topology Templates

Structured Grid Generation for Turbo Machinery Applications using Topology Templates Structured Grid Generation for Turbo Machinery Applications using Topology Templates January 13th 2011 Martin Spel martin.spel@rtech.fr page 1 Agenda: R.Tech activities Grid Generation Techniques Structured

More information

15. SAILBOAT GEOMETRY

15. SAILBOAT GEOMETRY SAILBOAT GEOMETRY 15. SAILBOAT GEOMETRY In this tutorial you will import a STEP file that describes the geometry of a sailboat hull. You will split the hull along the symmetry plane, create a flow volume

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Introduction to ANSYS FLUENT Meshing

Introduction to ANSYS FLUENT Meshing Workshop 02 Volume Fill Methods Introduction to ANSYS FLUENT Meshing 1 2011 ANSYS, Inc. December 21, 2012 I Introduction Workshop Description: Mesh files will be read into the Fluent Meshing software ready

More information

Lecture 6: CAD Import Release. Introduction to ANSYS Fluent Meshing

Lecture 6: CAD Import Release. Introduction to ANSYS Fluent Meshing Lecture 6: CAD Import 14.5 Release Introduction to ANSYS Fluent Meshing 1 Fluent Meshing 14.5 Assembly meshing Workflow This Lecture Tessellated or Conformal CAD import Cap Inlet/Outlets, Create Domains/BOI

More information

Best Practices: Volume Meshing Kynan Maley

Best Practices: Volume Meshing Kynan Maley Best Practices: Volume Meshing Kynan Maley Volume Meshing Volume meshing is the basic tool that allows the creation of the space discretization needed to solve most of the CAE equations for: CFD Stress

More information

3. MODELING A THREE-PIPE INTERSECTION (3-D)

3. MODELING A THREE-PIPE INTERSECTION (3-D) 3. MODELING A THREE-PIPE INTERSECTION (3-D) This tutorial employs primitives that is, predefined GAMBIT modeling components and procedures. There are two types of GAMBIT primitives: Geometry Mesh Geometry

More information

1. CREATING AND MESHING BASIC GEOMETRY

1. CREATING AND MESHING BASIC GEOMETRY 1. CREATING AND MESHING BASIC GEOMETRY This tutorial illustrates geometry creation and mesh generation for a simple geometry using GAMBIT. In this tutorial you will learn how to: Start GAMBIT Use the Operation

More information

You can read a TGrid mesh file using the File/Read/Mesh... menu item or the text command file/read-mesh.

You can read a TGrid mesh file using the File/Read/Mesh... menu item or the text command file/read-mesh. Appendix E. Tips This appendix contains tips on the following topics: Section E.1: Reading Files Section E.2: Writing Files Section E.3: Saving Hard Copy Files Section E.4: Importing Meshes Section E.5:

More information

Overview of Unstructured Mesh Generation Methods

Overview of Unstructured Mesh Generation Methods Overview of Unstructured Mesh Generation Methods Structured Meshes local mesh points and cells do not depend on their position but are defined by a general rule. Lead to very efficient algorithms and storage.

More information

Advances in Pre-Processing

Advances in Pre-Processing Advances in Pre-Processing Laz Foley Confidence by Design Chicago June 14, 2012 1 Outline ANSYS DesignModeler Modeling Improvements ANSYS SpaceClaim Direct Modeler Workbench Integration and Model Preparation

More information

Viscous Hybrid Mesh Generation

Viscous Hybrid Mesh Generation Tutorial 4. Viscous Hybrid Mesh Generation Introduction In cases where you want to resolve the boundary layer, it is often more efficient to use prismatic cells in the boundary layer rather than tetrahedral

More information

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY 13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 23 Dr. W. Cho Prof. N. M. Patrikalakis Copyright c 2003 Massachusetts Institute of Technology Contents 23 F.E. and B.E. Meshing Algorithms 2

More information

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Stores Separation Introduction Flight Test Expensive, high-risk, sometimes catastrophic

More information

Section 8.3: Examining and Repairing the Input Geometry. Section 8.5: Examining the Cartesian Grid for Leakages

Section 8.3: Examining and Repairing the Input Geometry. Section 8.5: Examining the Cartesian Grid for Leakages Chapter 8. Wrapping Boundaries TGrid allows you to create a good quality boundary mesh using a bad quality surface mesh as input. This can be done using the wrapper utility in TGrid. The following sections

More information

ANSYS ICEM CFD User's Manual

ANSYS ICEM CFD User's Manual ANSYS ICEM CFD User's Manual ANSYS, Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA 15317 ansysinfo@ansys.com http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494 Release 17.0 January 2016 ANSYS, Inc.

More information

Mesh Generation. Timothy J. Tautges. Principle Member Technical Staff Sandia National Laboratories

Mesh Generation. Timothy J. Tautges. Principle Member Technical Staff Sandia National Laboratories Mesh Generation Timothy J. Tautges Principle Member Technical Staff Sandia National Laboratories Adjunct Professor, Engineering Physics University of Wisconsin-Madison Sandia is a multiprogram laboratory

More information

Workshop 3: Cutcell Mesh Generation. Introduction to ANSYS Fluent Meshing Release. Release ANSYS, Inc.

Workshop 3: Cutcell Mesh Generation. Introduction to ANSYS Fluent Meshing Release. Release ANSYS, Inc. Workshop 3: Cutcell Mesh Generation 14.5 Release Introduction to ANSYS Fluent Meshing 1 2011 ANSYS, Inc. December 21, 2012 I Introduction Workshop Description: CutCell meshing is a general purpose meshing

More information

TGrid 5.0 Tutorial Guide

TGrid 5.0 Tutorial Guide TGrid 5.0 Tutorial Guide April 2008 Copyright c 2008 by ANSYS, Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without express written permission from

More information

Mesh Generation for Geological Applications

Mesh Generation for Geological Applications Mesh Generation for Geological Applications Carl W. Gable Earth & Environmental Sciences Division http://meshing.lanl.gov http://lagrit.lanl.gov Numerical Modeling of Crustal Deformation and Earthquake

More information

Contribution to GMGW 1

Contribution to GMGW 1 Contribution to GMGW 1 Rocco Nastasia, Saurabh Tendulkar, Mark Beall Simmetrix Inc., Clifton Park, NY 12065 Riccardo Balin, Scott Wurst, Ryan Skinner, Kenneth E. Jansen Department of Aerospace Engineering

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Surface Mesh Generation

Surface Mesh Generation Surface Mesh Generation J.-F. Remacle Université catholique de Louvain September 22, 2011 0 3D Model For the description of the mesh generation process, let us consider the CAD model of a propeller presented

More information

Ulrich Heck, DHCAE-Tools UG. techniques. CastNet: CAD-based Pre-Processor for OpenFOAM. Attributes: Concept of CAD associated mesh and solution set-up

Ulrich Heck, DHCAE-Tools UG. techniques. CastNet: CAD-based Pre-Processor for OpenFOAM. Attributes: Concept of CAD associated mesh and solution set-up Ulrich Heck, DHCAE-Tools UG CAD geometry based pre-processing for CFD using abstract modeling techniques CastNet: CAD-based Pre-Processor for OpenFOAM Attributes: Concept of CAD associated mesh and solution

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Geometry Modeling & Grid Generation ME469B/2/GI 1

Geometry Modeling & Grid Generation ME469B/2/GI 1 Geometry Modeling & Grid Generation ME469B/2/GI 1 Geometry Modeling & Grid Generation Geometry definition (simple shapes, CAD import) Grid generation algorithms GAMBIT Grid quality and improvement Automation

More information

Design Intent of Geometric Models

Design Intent of Geometric Models School of Computer Science Cardiff University Design Intent of Geometric Models Frank C. Langbein GR/M78267 GR/S69085/01 NUF-NAL 00638/G Auckland University 15th September 2004; Version 1.1 Design Intent

More information

Introduction to ANSYS FLUENT Meshing

Introduction to ANSYS FLUENT Meshing Workshop 04 CAD Import and Meshing from Conformal Faceting Input 14.5 Release Introduction to ANSYS FLUENT Meshing 2011 ANSYS, Inc. December 21, 2012 1 I Introduction Workshop Description: CAD files will

More information

Introduction to ANSYS DesignModeler

Introduction to ANSYS DesignModeler Lecture 5 Modeling 14. 5 Release Introduction to ANSYS DesignModeler 2012 ANSYS, Inc. November 20, 2012 1 Release 14.5 Preprocessing Workflow Geometry Creation OR Geometry Import Geometry Operations Meshing

More information

Design Intent of Geometric Models

Design Intent of Geometric Models School of Computer Science Cardiff University Design Intent of Geometric Models Frank C. Langbein GR/M78267 GR/S69085/01 NUF-NAL 00638/G Massey University 22nd September 2004; Version 1.0 Design Intent

More information

Kubotek KeyCreator V8.5 What s New Page 1 of 12. Kubotek KeyCreator V8.5 What s New

Kubotek KeyCreator V8.5 What s New Page 1 of 12. Kubotek KeyCreator V8.5 What s New Page 1 of 12 Kubotek KeyCreator V8.5 What s New Page 2 of 12 Table of Contents File Management 3 General Interface 4 Detailing/Drawing 5 Modeling 10 Display and Graphics 12 Page 3 of 12 File Management

More information

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES VI International Conference on Adaptive Modeling and Simulation ADMOS 2013 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE

More information

Repairing a Boundary Mesh

Repairing a Boundary Mesh Tutorial 1. Repairing a Boundary Mesh Introduction TGrid offers several tools for mesh repair. While there is no right or wrong way to repair a mesh, the goal is to improve the quality of the mesh with

More information

Introduction to Gambit 2.2. Training Notes

Introduction to Gambit 2.2. Training Notes Introduction to Gambit 2.2 Training Notes Introduction to GAMBIT 1-1 What is GAMBIT? Geometry And Mesh Building Intelligent Toolkit A single, integrated preprocessor for CFD analysis: Geometry construction

More information

Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences

Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences 1 This is just a taste Note that full 14.0 update webinars of an hour per product will be scheduled closer to the release This presentation

More information

NX Advanced FEM. fact sheet

NX Advanced FEM. fact sheet Advanced FEM fact sheet www.ugs.com Summary Advanced FEM is a comprehensive multi-cad finite element modeling and results visualization product that is designed to meet the needs of experienced CAE analysts.

More information

OVERLAY GRID BASED GEOMETRY CLEANUP

OVERLAY GRID BASED GEOMETRY CLEANUP OVERLAY GRID BASED GEOMETRY CLEANUP Jiangtao Hu, Y. K. Lee, Ted Blacker and Jin Zhu FLUENT INC, 500 Davis St., Suite 600, Evanston, Illinois 60201 ABSTRACT A newly developed system for defining watertight

More information

Meshing of flow and heat transfer problems

Meshing of flow and heat transfer problems Meshing of flow and heat transfer problems Luyao Zou a, Zhe Li b, Qiqi Fu c and Lujie Sun d School of, Shandong University of science and technology, Shandong 266590, China. a zouluyaoxf@163.com, b 1214164853@qq.com,

More information

Hexa Meshing. Defining Surface Parameters for the Mesh Defining Edge Parameters to Adjust the Mesh Checking mesh quality for determinants and angle

Hexa Meshing. Defining Surface Parameters for the Mesh Defining Edge Parameters to Adjust the Mesh Checking mesh quality for determinants and angle 4.2.6: Pipe Blade Overview This tutorial example uses the Collapse function to create a degenerate topology in a Conjugate Heat transfer problem around a blade located in the center of a cylindrical pipe.

More information

ANSYS 14.0 Geometry and Meshing Update Steve Varnam ANSYS UK Ltd.

ANSYS 14.0 Geometry and Meshing Update Steve Varnam ANSYS UK Ltd. ANSYS 14.0 Geometry and Meshing Update Steve Varnam ANSYS UK Ltd. 1 ANSYS Workbench Platform The most comprehensive platform for Multiphysics Simulations ANSYS Workbench Framework ANSYS DesignXplorer ANSYS

More information

Geometric Modeling Topics

Geometric Modeling Topics Geometric Modeling Topics George Allen, george.allen@siemens.com Outline General background Convergent modeling Multi-material objects Giga-face lattices Page 2 Boundary Representation (b-rep) Topology

More information

NX Advanced FEM. Benefits

NX Advanced FEM. Benefits Advanced FEM fact sheet Siemens PLM Software www.siemens.com/plm Summary Advanced FEM software is a comprehensive multi-cad finite element modeling and results visualization product that is designed to

More information

Introduction to ANSYS

Introduction to ANSYS Lecture 1 Introduction to ANSYS ICEM CFD 14. 0 Release Introduction to ANSYS ICEM CFD 1 2011 ANSYS, Inc. March 22, 2015 Purpose/Goals Ansys ICEM CFD is a general purpose grid generating program Grids for

More information

WORKSHOP 10 HEX VS TET SOLID ELEMENT MESH

WORKSHOP 10 HEX VS TET SOLID ELEMENT MESH WORKSHOP 10 HEX VS TET SOLID ELEMENT MESH VS WS10-1 WS10-2 Problem Description This workshop is for creating a tetrahedral and hexahedral element mesh for a geometric solid. The tetrahedral mesh can be

More information

Advanced geometry tools for CEM

Advanced geometry tools for CEM Advanced geometry tools for CEM Introduction Modern aircraft designs are extremely complex CAD models. For example, a BAE Systems aircraft assembly consists of over 30,000 individual components. Since

More information

The Quality Of 3D Models

The Quality Of 3D Models The Quality Of 3D Models Problems and Solutions for Applications Post-Design Fathi El-Yafi Senior Product Engineer Product Department of EXA Corporation 1 : Overview Status Problems Identified Defect Sources

More information

Topological Issues in Hexahedral Meshing

Topological Issues in Hexahedral Meshing Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Outline I. What is meshing? Problem statement Types of mesh Quality issues

More information

ANSYS FLUENT. Lecture 3. Basic Overview of Using the FLUENT User Interface L3-1. Customer Training Material

ANSYS FLUENT. Lecture 3. Basic Overview of Using the FLUENT User Interface L3-1. Customer Training Material Lecture 3 Basic Overview of Using the FLUENT User Interface Introduction to ANSYS FLUENT L3-1 Parallel Processing FLUENT can readily be run across many processors in parallel. This will greatly speed up

More information

Introduction to ANSYS ICEM CFD

Introduction to ANSYS ICEM CFD Lecture 1 Introduction to ANSYS ICEM CFD 14.5 Release Introduction to ANSYS ICEM CFD 2012 ANSYS, Inc. April 1, 2013 1 Release 14.5 Purpose/Goals Ansys ICEM CFD is a general purpose grid generating program

More information

1 Automatic Mesh Generation

1 Automatic Mesh Generation 1 AUTOMATIC MESH GENERATION 1 1 Automatic Mesh Generation 1.1 Mesh Definition Mesh M is a discrete representation of geometric model in terms of its geometry G, topology T, and associated attributes A.

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

Module 3 Mesh Generation

Module 3 Mesh Generation Module 3 Mesh Generation 1 Lecture 3.1 Introduction 2 Mesh Generation Strategy Mesh generation is an important pre-processing step in CFD of turbomachinery, quite analogous to the development of solid

More information

Introduction to ANSYS DesignModeler

Introduction to ANSYS DesignModeler Lecture 7 CAD Connections 14. 5 Release Introduction to ANSYS DesignModeler 2012 ANSYS, Inc. November 20, 2012 1 Release 14.5 CAD Connections What will you learn from this presentation: Geometry Import

More information

Contribution to GMGW-1

Contribution to GMGW-1 Contribution to GMGW-1 Vivek Ahuja, Shaunak Pai, John Wilson, Rajesh Kumar, Michael Stubert Inc. (003) Restricted Siemens AG 2017 Realize innovation. Summary of meshes generated Star-CCM+ Geometry Core

More information

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options Chapter 10. Generating Prisms This chapter describes the automatic and manual procedure for creating prisms in TGrid. It also discusses the solution to some common problems that you may face while creating

More information

Parallel Unstructured Mesh Generation by an Advancing Front Method

Parallel Unstructured Mesh Generation by an Advancing Front Method MASCOT04-IMACS/ISGG Workshop University of Florence, Italy Parallel Unstructured Mesh Generation by an Advancing Front Method Yasushi Ito, Alan M. Shih, Anil K. Erukala, and Bharat K. Soni Dept. of Mechanical

More information

5. Release Notes - Version 15

5. Release Notes - Version 15 Gridgen Version 15.18 - Release Date: August 2012 5. Release Notes - Version 15 5.1 Gridgen Version 15.18 - Release Date: August 2012 The following is a list of new features included in V15.18: 1. Improvements

More information

DISCONTINUOUS FINITE ELEMENT VISUALIZATION

DISCONTINUOUS FINITE ELEMENT VISUALIZATION 1 1 8th International Symposium on Flow Visualisation (1998) DISCONTINUOUS FINITE ELEMENT VISUALIZATION A. O. Leone P. Marzano E. Gobbetti R. Scateni S. Pedinotti Keywords: visualization, high-order finite

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Part I : Solid geometry

Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Part I : Solid geometry Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Surfaces Part I : Solid geometry hachar Fleishman Tel Aviv University David Levin Claudio T.

More information

Hexahedral Meshing of Non-Linear Volumes Using Voronoi Faces and Edges

Hexahedral Meshing of Non-Linear Volumes Using Voronoi Faces and Edges Hexahedral Meshing of Non-Linear Volumes Using Voronoi Faces and Edges Alla Sheffer and Michel Bercovier Institute of Computer Science, The Hebrew University, Jerusalem 91904, Israel. sheffa berco @cs.huji.ac.il.

More information

Unstructured Grid Generation Using Automatic Point Insertion and Local Reconnection

Unstructured Grid Generation Using Automatic Point Insertion and Local Reconnection 18 Unstructured Grid Generation Using Automatic Point Insertion and Local Reconnection David L. Marcum 18.1 Introduction 18.2 Unstructured Grid Generation Procedure 18.3 Two-Dimensional Application Examples

More information

Workshop 1: Basic Skills

Workshop 1: Basic Skills Workshop 1: Basic Skills 14.5 Release Introduction to ANSYS Fluent Meshing 2011 ANSYS, Inc. December 21, 2012 1 I Introduction Workshop Description: This workshop shows some of the clean up tools in Tgrid

More information

From CAD surface models to quality meshes. Patrick LAUG. Projet GAMMA. INRIA Rocquencourt. Outline

From CAD surface models to quality meshes. Patrick LAUG. Projet GAMMA. INRIA Rocquencourt. Outline From CAD surface models to quality meshes Patrick LAUG Projet GAMMA INRIA Rocquencourt Tetrahedron II Oct. 2007 1 Outline 1. Introduction B-Rep, patches 2. CAD repair ant topology recovery 3. Discretization

More information

Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences

Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences Automatic & Robust Meshing in Fluids 2011 ANSYS Regional Conferences 1 Automatic & Robust Meshing Assembly Meshing Assembly Meshing enables dramatically reduced time to mesh for typical CAD models by eliminating

More information

Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016

Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016 Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016 ADINA R&D, Inc., 2016 1 Topics Presented ADINA에서쓰이는 Geometry 종류 Simple (AUI) geometry ADINA-M geometry ADINA-M

More information

Advanced Techniques for Greater Accuracy, Capacity, and Speed using Maxwell 11. Julius Saitz Ansoft Corporation

Advanced Techniques for Greater Accuracy, Capacity, and Speed using Maxwell 11. Julius Saitz Ansoft Corporation Advanced Techniques for Greater Accuracy, Capacity, and Speed using Maxwell 11 Julius Saitz Ansoft Corporation Overview Curved versus Faceted Surfaces Mesh Operations Data Link Advanced Field Plotting

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Dwarf #5 Structured Grids Michael Bader Winter 2012/2013 Dwarf #5 Structured Grids, Winter 2012/2013 1 Dwarf #5 Structured Grids 1. dense linear algebra 2. sparse linear

More information

TAU mesh deformation. Thomas Gerhold

TAU mesh deformation. Thomas Gerhold TAU mesh deformation Thomas Gerhold The parallel mesh deformation of the DLR TAU-Code Introduction Mesh deformation method & Parallelization Results & Applications Conclusion & Outlook Introduction CFD

More information

VoroCrust: Simultaneous Surface Reconstruction and Volume Meshing with Voronoi cells

VoroCrust: Simultaneous Surface Reconstruction and Volume Meshing with Voronoi cells VoroCrust: Simultaneous Surface Reconstruction and Volume Meshing with Voronoi cells Scott A. Mitchell (speaker), joint work with Ahmed H. Mahmoud, Ahmad A. Rushdi, Scott A. Mitchell, Ahmad Abdelkader

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

iric Software Changing River Science River2D Tutorials

iric Software Changing River Science River2D Tutorials iric Software Changing River Science River2D Tutorials iric Software Changing River Science Confluence of the Colorado River, Blue River and Indian Creek, Colorado, USA 1 TUTORIAL 1: RIVER2D STEADY SOLUTION

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

A NEW TYPE OF SIZE FUNCTION RESPECTING PREMESHED ENTITIES

A NEW TYPE OF SIZE FUNCTION RESPECTING PREMESHED ENTITIES A NEW TYPE OF SIZE FUNCTION RESPECTING PREMESHED ENTITIES Jin Zhu Fluent, Inc. 1007 Church Street, Evanston, IL, U.S.A. jz@fluent.com ABSTRACT This paper describes the creation of a new type of size function

More information

Coupling of Smooth Faceted Surface Evaluations in the SIERRA FEA Code

Coupling of Smooth Faceted Surface Evaluations in the SIERRA FEA Code Coupling of Smooth Faceted Surface Evaluations in the SIERRA FEA Code Timothy J. Tautges Steven J. Owen Sandia National Laboratories University of Wisconsin-Madison Mini-symposium on Computational Geometry

More information

Hexahedral Mesh Generation for Volumetric Image Data

Hexahedral Mesh Generation for Volumetric Image Data Hexahedral Mesh Generation for Volumetric Image Data Jason Shepherd University of Utah March 27, 2006 Outline Hexahedral Constraints Topology Boundary Quality Zhang et al. papers Smoothing/Quality Existing

More information

Advanced Meshing Tools

Advanced Meshing Tools Page 1 Advanced Meshing Tools Preface Using This Guide More Information Conventions What's New? Getting Started Entering the Advanced Meshing Tools Workbench Defining the Surface Mesh Parameters Setting

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

SEOUL NATIONAL UNIVERSITY

SEOUL NATIONAL UNIVERSITY Fashion Technology 5. 3D Garment CAD-1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Feature-based design Pattern Design 2D Parametric design 3D

More information

What is visualization? Why is it important?

What is visualization? Why is it important? What is visualization? Why is it important? What does visualization do? What is the difference between scientific data and information data Cycle of Visualization Storage De noising/filtering Down sampling

More information

Adjacency Data Structures

Adjacency Data Structures Last Time? Simple Transformations Adjacency Data Structures material from Justin Legakis Classes of Transformations Representation homogeneous coordinates Composition not commutative Orthographic & Perspective

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

Geometric Modeling Systems

Geometric Modeling Systems Geometric Modeling Systems Wireframe Modeling use lines/curves and points for 2D or 3D largely replaced by surface and solid models Surface Modeling wireframe information plus surface definitions supports

More information

SimLab Release Notes. 1 A l t a i r E n g i n e e r i n g

SimLab Release Notes. 1 A l t a i r E n g i n e e r i n g SimLab 11.0 Release Notes 1 A l t a i r E n g i n e e r i n g System Support extended to load and save GDA/SLB files of size greater than 4GB. Memory allocation is enhanced to support large models. Kubrix

More information

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics School of Mechanical Aerospace and Civil Engineering CFD-1 T. J. Craft George Begg Building, C41 Msc CFD-1 Reading: J. Ferziger, M. Peric, Computational Methods for Fluid Dynamics H.K. Versteeg, W. Malalasekara,

More information

Multiphysics Software Applications in Reverse Engineering. COMSOL Conference Boston 2012

Multiphysics Software Applications in Reverse Engineering. COMSOL Conference Boston 2012 Multiphysics Software Applications in Reverse Engineering COMSOL Conference Boston 2012 Wego Wang, Sc.D. University of Massachusetts Lowell Kerim Genc, Ph.D. Simpleware Slide 1 Excerpt from the Proceedings

More information

Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach

Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach Dipl.-Ing. (FH) Günther Lang, CFDnetwork Engineering Dipl.-Ing. Burkhard Lewerich, CFDnetwork

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Tips for a Good Meshing Experience

Tips for a Good Meshing Experience Tips for a Good Meshing Experience Meshes are very powerful and flexible for modeling 2D overland flows in a complex urban environment. However, complex geometries can be frustrating for many modelers

More information

Automatic hybrid mesh generation for the boundary face method

Automatic hybrid mesh generation for the boundary face method Boundary Elements and Other Mesh Reduction Methods XXXVI 139 Automatic hybrid mesh generation for the boundary face method Cheng Huang & Jianming Zhang State Key Laboratory of Advanced Design and Manufacturing

More information

RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent

RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent Gilles Eggenspieler Senior Product Manager 1 Morphing & Smoothing A mesh morpher is a tool capable of performing mesh modifications in order

More information

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D.

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D. Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D. Outline Introduction Aerospace Applications Summary New Capabilities for Aerospace Continuity Convergence Accelerator

More information

Shrinkwrap developments for computational electromagnetics in ICE NITe

Shrinkwrap developments for computational electromagnetics in ICE NITe Shrinkwrap developments for computational electromagnetics in ICE NITe Preparing CAD models for electromagnetic analysis remains a complex, time consuming process. Typically, the CAD model will contain

More information