Exploiting the GPU for High Performance Geospatial Situational Awareness Involving Massive and Dynamic Data Sets

Size: px
Start display at page:

Download "Exploiting the GPU for High Performance Geospatial Situational Awareness Involving Massive and Dynamic Data Sets"

Transcription

1 Exploiting the GPU for High Performance Geospatial Situational Awareness Involving Massive and Dynamic Data Sets Intro text for this chapter Bart Adams Software Engineering Manager

2 Software Components for Geospatial Situational Awareness Target markets Security, Defense, Emergency, Aviation, Maritime 2 Mission critical deployments Focus on precision, performance, and interoperability

3 Foundations Our Vision GPU Acceleration Main Challenges No Pre-Processing Big Data Customizable and Extensible API Exploiting the GPU Orthorectified Video Feeds Dynamic Plot Filtering and Styling Line-of-Sight Computations Intro text for this chapter

4 Foundations Our Vision GPU Acceleration Main Challenges No Pre-Processing Big Data Customizable and Extensible API Exploiting the GPU Orthorectified Video Feeds Dynamic Plot Filtering and Styling Line-of-Sight Computations Intro text for this chapter

5 1999: Luciad s Founding Vision Organizations like NATO and EUROCONTROL were struggling with data Existing tools could not deal with different sources Often long pre-processing needed Our vision Use the data as is - in real-time No pre-processing Still stands after 15 years of innovation 5

6 Key Product: LuciadLightspeed Performance obtained through intelligent use of Graphics Processing Unit (GPU) Visualization Analysis 6

7 Key Product: LuciadLightspeed Target also low-end hardware OpenGL 2.0 Some advanced features require ARB_framebuffer_object GLSL 1.1 OpenCL 1.0 With software fallbacks Important for virtualized and/or certified hardware, legacy systems 7

8 Foundations Our Vision GPU Acceleration Main Challenges No Pre-Processing Big Data Customizable and Extensible API Exploiting the GPU Orthorectified Video Feeds Dynamic Plot Filtering and Styling Line-of-Sight Computations 8

9 Challenge 1: No Pre-Processing Support over 40 formats and 100 standards Shape, GML, DTED, S-57, AIXM5, NITF, GRIB, GeoTIFF, Most not optimized for GPU rendering Input often very high-level description <gml:polygon srsname="epsg:4326"> <gml:linearring> <gml:coordinates> lon0, lat0, lon1, lat1,... </gml:coordinates> </gml:linearring> </gml:polygon> 9

10 Challenge 1: No Pre-Processing Need to transform between coordinate reference systems (CRS) Need to adaptively discretize shape boundaries E.g., introduce vertices for ellipsoidal shortest-path interpolation (geodesics) <gml:polygon srsname="epsg:4326"> <gml:linearring> <gml:coordinates> lon0, lat0, lon1, lat1,... </gml:coordinates> </gml:linearring> </gml:polygon> Need to triangulate interior on-the-fly Custom high-performance tesselation algorithm Clip against projection boundaries Non-planar tesselation in 3D 10

11 Challenge 2: Big Data Can expect a large number of big data sets Hundreds of data sources not uncommon Often covering the same area Many pixels touched multiple times Also in 2D due to layered rendering 11

12 Challenge 2: Big Data Keep object count manageable Frustum culling Object-size culling Distance-based culling and LOD Scale-based culling and LOD Adaptive scale-based discretization Pixel-density based culling and LOD Label deconfliction 12

13 Challenge 3: Customizable and Extensible API Our API allows to dynamically generate any geometry and style for any input object public class MyStyler extends Styler public void style( Collection aobjects, StyleCollector astylecollector) { Example: Input = Shape and properties of France Output = Animated population pie chart for (Object object: aobjects) { astylecollector.object( object ).geometry( getgeometry ( object ) ).styles( getfillstyle( object ), getlinestyle( object )).submit(); 13

14 Challenge 3: Customizable and Extensible API Our API allows to dynamically generate any geometry and style for any input object Customers want performance without any fuss Avoid state changes, group commonly styled shapes in batches Dynamic texture atlases for icons, labels, and textures Order-independent rendering algorithms Example: Input = Shape and properties of France Output = Animated population pie chart 14

15 Challenge 3: Customizable and Extensible API Customers need capability to perform own OpenGL rendering public class MyPainter extends Painter public void paintobjects( Collection aobjects ) { // Do any OpenGL painting here gl.gldrawarrays(...); and automatically want to benefit from Single code path for 2D and 3D rendering Automatic draping on terrain if needed Correct handling of transparent shapes 15

16 Challenge 3: Customizable and Extensible API Work with 3 global paint passes 1. Paint draped shapes 2. Paint non-draped opaque shapes 3. Paint non-draped transparent shapes 16

17 Challenge 3: Customizable and Extensible API Work with 3 global paint passes 1. Paint draped shapes 2. Paint non-draped opaque shapes 3. Paint non-draped transparent shapes 17

18 Challenge 3: Customizable and Extensible API Work with 3 global paint passes 1. Paint draped shapes 2. Paint non-draped opaque shapes 3. Paint non-draped transparent shapes 18

19 Foundations Our Vision GPU Acceleration Main Challenges No Pre-Processing Big Data Customizable and Extensible API Exploiting the GPU Orthorectified Video Feeds Dynamic Plot Filtering and Styling Line-of-Sight Computations 19

20 Exploiting the GPU 1: Orthorectified Video Feeds Improve Situational Awareness by draping UAV/Satellite video feeds on terrain (in 3D and 2D) 20

21 Exploiting the GPU 1: Orthorectified Video Feeds This process is called orthorectification Trace ray back from terrain to UAV camera Sample pixel color from UAV video frame UAV camera frustum Wait - isn t this projective texturing? Not quite Treated as separate layer to support hundreds of video feeds and arbitrary layer ordering UAV CRS not necessarily the same as the terrain CRS Additional vertex attribute corresponding to 3D terrain coordinates in UAV CRS Also works in 2D, in any projection terrain 21

22 Exploiting the GPU 1: Orthorectified Video Feeds GPU benefits Orthorectification almost as efficient as simple texture lookup Can handle multiple UAV feeds with almost no CPU overhead Improved Situational Awareness by combining video feeds with other layers GPU technical hindsight Avoid floating point accuracy issues by using local coordinate origins 22

23 Exploiting the GPU 2: Dynamic Plot Filtering and Styling Satellite AIS - Automatic ship identification and tracking system Installed on thousands of ships worldwide > 500,000,000 position updates per day 23

24 Exploiting the GPU 2: Dynamic Plot Filtering and Styling Filter and style using expressions based on plot properties Visually detect patterns, anomalies, Example: Only paint plots in time range Expression visibilityfunction = between( timestampattr, timeminparam, timemaxparam ); 24

25 Exploiting the GPU 2: Dynamic Plot Filtering and Styling GPU implementation Expression visibilityfunction = between( timestampattr, timeminparam, timemaxparam ); #version 110 attribute float timestamp; uniform float timemin; uniform float timemax; void main() { if (timestamp>=timemin && timestamp<=timemax) { // Compute dynamic styling // Transform vertex to view coordinates else { // Discard vertex 25

26 Exploiting the GPU 2: Dynamic Plot Filtering and Styling Parameters become vertex shader uniforms Parameter timeminparam = parameter( "timemin", getmintime() ); Expression visibilityfunction = between( timestampattr, timeminparam, timemaxparam ); #version 110 attribute float timestamp; uniform float timemin; uniform float timemax; void main() { if (timestamp>=timemin && timestamp<=timemax) { // Compute dynamic styling // Transform vertex to view coordinates else { // Discard vertex 26

27 Exploiting the GPU 2: Dynamic Plot Filtering and Styling Attribute expressions become vertex attributes Expression timestampattr = attribute( "timestamp", (AttributeValueProvider) (aobject) -> { return ((AISPlot)aObject).getTimeStamp(); ); Expression visibilityfunction = between( timestampattr, timeminparam, timemaxparam ); #version 110 attribute float timestamp; uniform float timemin; uniform float timemax; void main() { if (timestamp>=timemin && timestamp<=timemax) { // Compute dynamic styling // Transform vertex to view coordinates else { // Discard vertex 27

28 Exploiting the GPU 2: Dynamic Plot Filtering and Styling Resulting expression compiled to GLSL vertex shader code Expression visibilityfunction = between( timestampattr, timeminparam, timemaxparam ); #version 110 attribute float timestamp; uniform float timemin; uniform float timemax; void main() { if (timestamp>=timemin && timestamp<=timemax) { // Compute dynamic styling // Transform vertex to view coordinates else { // Discard vertex 28

29 29 Exploiting the GPU 2: Dynamic Plot Filtering and Styling

30 Exploiting the GPU 2: Dynamic Plot Filtering and Styling GPU benefits Highly parallelizable dynamic filtering and styling on millions of plots Complex and dynamic expressions and styling Very smooth interactive user experience GPU technical hindsight Dynamic GLSL shader generation Mixed experiences with asynchronous shader compilation implemented using context sharing 30

31 Exploiting the GPU 3,4,5, : Demo! Line-of-Sight Analysis Terrain Analysis Image Processing Complex Stroking Cross-terrain Routing 31

32 Conclusion Situational Awareness applications require connecting to, visualizing, and analyzing any data source on-the-fly Such applications preclude pre-processing and optimizing the data as is done for example in geodatabases, computer games, and classical mapping engines Performance of GPU allows handling real-time, big, and dynamic data sets enabling a new generation of Situational Awareness applications 32

33 Thank You 33

BROWSER. LuciadRIA DATA SHEET

BROWSER. LuciadRIA DATA SHEET BROWSER LuciadRIA DATA SHEET V2017 V2017.0 DATA SHEET LuciadRIA is the answer to today s demands for powerful, lightweight applications in the browser. Driven by today s most advanced web technologies,

More information

MOBILE. LuciadMobile DATA SHEET

MOBILE. LuciadMobile DATA SHEET MOBILE LuciadMobile DATA SHEET V2017 V2017.0 DATA SHEET LuciadMobile enables the rapid development of geospatial situational awareness applications on mobile devices running Android, and is specifically

More information

_ LUCIADRIA V PRODUCT DATA SHEET _ LUCIADRIA PRODUCT DATA SHEET

_ LUCIADRIA V PRODUCT DATA SHEET _ LUCIADRIA PRODUCT DATA SHEET _ LUCIADRIA PRODUCT DATA SHEET V2016 LuciadRIA offers browser-based geospatial situational awareness with the fluidity and speed of a desktop application. The software components of LuciadRIA have been

More information

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts MSc Computer Games and Entertainment Maths & Graphics II 2013 Lecturer(s): FFL (with Gareth Edwards) Fractal Terrain Based on

More information

Programming shaders & GPUs Christian Miller CS Fall 2011

Programming shaders & GPUs Christian Miller CS Fall 2011 Programming shaders & GPUs Christian Miller CS 354 - Fall 2011 Fixed-function vs. programmable Up until 2001, graphics cards implemented the whole pipeline for you Fixed functionality but configurable

More information

Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters.

Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters. 1 2 Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters. Crowd rendering in large environments presents a number of challenges,

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline (and its implementation on GPUs) Computer Graphics CMU 15-462/15-662, Fall 2015 What you know how to do (at this point in the course) y y z x (w, h) z x Position objects

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

Graphics Hardware. Instructor Stephen J. Guy

Graphics Hardware. Instructor Stephen J. Guy Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

More information

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský Real - Time Rendering Pipeline optimization Michal Červeňanský Juraj Starinský Motivation Resolution 1600x1200, at 60 fps Hw power not enough Acceleration is still necessary 3.3.2010 2 Overview Application

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

Working with Metal Overview

Working with Metal Overview Graphics and Games #WWDC14 Working with Metal Overview Session 603 Jeremy Sandmel GPU Software 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015 Enhancing Traditional Rasterization Graphics with Ray Tracing October 2015 James Rumble Developer Technology Engineer, PowerVR Graphics Overview Ray Tracing Fundamentals PowerVR Ray Tracing Pipeline Using

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 What We ve Covered So Far z x y z x y (0, 0) (w, h) Position objects and the camera in the world

More information

Adaptive Point Cloud Rendering

Adaptive Point Cloud Rendering 1 Adaptive Point Cloud Rendering Project Plan Final Group: May13-11 Christopher Jeffers Eric Jensen Joel Rausch Client: Siemens PLM Software Client Contact: Michael Carter Adviser: Simanta Mitra 4/29/13

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

POWERVR MBX & SGX OpenVG Support and Resources

POWERVR MBX & SGX OpenVG Support and Resources POWERVR MBX & SGX OpenVG Support and Resources Kristof Beets 3 rd Party Relations Manager - Imagination Technologies kristof.beets@imgtec.com Copyright Khronos Group, 2006 - Page 1 Copyright Khronos Group,

More information

Copyright Khronos Group Page 1

Copyright Khronos Group Page 1 Gaming Market Briefing Overview of APIs GDC March 2016 Neil Trevett Khronos President NVIDIA Vice President Developer Ecosystem ntrevett@nvidia.com @neilt3d Copyright Khronos Group 2016 - Page 1 Copyright

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

_ LUCIADLIGHTSPEED PRODUCT DATA SHEET

_ LUCIADLIGHTSPEED PRODUCT DATA SHEET _ LUCIADLIGHTSPEED PRODUCT DATA SHEET V2016 1 LuciadLightspeed is a software product that enables you to rapidly develop situational awareness applications. It provides a base application and software

More information

PowerVR Performance Recommendations. The Golden Rules

PowerVR Performance Recommendations. The Golden Rules PowerVR Performance Recommendations Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind. Redistribution

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

TSBK 07! Computer Graphics! Ingemar Ragnemalm, ISY

TSBK 07! Computer Graphics! Ingemar Ragnemalm, ISY 1(46) Information Coding / Computer Graphics, ISY, LiTH TSBK 07 Computer Graphics Ingemar Ragnemalm, ISY 1(46) TSBK07 Computer Graphics Spring 2017 Course leader/examiner/lecturer: Ingemar Ragnemalm ingis@isy.liu.se

More information

Sign up for crits! Announcments

Sign up for crits! Announcments Sign up for crits! Announcments Reading for Next Week FvD 16.1-16.3 local lighting models GL 5 lighting GL 9 (skim) texture mapping Modern Game Techniques CS248 Lecture Nov 13 Andrew Adams Overview The

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL CS4621/5621 Fall 2015 Computer Graphics Practicum Intro to OpenGL/GLSL Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang

More information

Hardware Displacement Mapping

Hardware Displacement Mapping Matrox's revolutionary new surface generation technology, (HDM), equates a giant leap in the pursuit of 3D realism. Matrox is the first to develop a hardware implementation of displacement mapping and

More information

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics Why GPU? Chapter 1 Graphics Hardware Graphics Processing Unit (GPU) is a Subsidiary hardware With massively multi-threaded many-core Dedicated to 2D and 3D graphics Special purpose low functionality, high

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Profiling and Debugging Games on Mobile Platforms

Profiling and Debugging Games on Mobile Platforms Profiling and Debugging Games on Mobile Platforms Lorenzo Dal Col Senior Software Engineer, Graphics Tools Gamelab 2013, Barcelona 26 th June 2013 Agenda Introduction to Performance Analysis with ARM DS-5

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

Real-Time Hair Simulation and Rendering on the GPU. Louis Bavoil

Real-Time Hair Simulation and Rendering on the GPU. Louis Bavoil Real-Time Hair Simulation and Rendering on the GPU Sarah Tariq Louis Bavoil Results 166 simulated strands 0.99 Million triangles Stationary: 64 fps Moving: 41 fps 8800GTX, 1920x1200, 8XMSAA Results 166

More information

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18 CS 498 VR Lecture 18-4/4/18 go.illinois.edu/vrlect18 Review and Supplement for last lecture 1. What is aliasing? What is Screen Door Effect? 2. How image-order rendering works? 3. If there are several

More information

The Application Stage. The Game Loop, Resource Management and Renderer Design

The Application Stage. The Game Loop, Resource Management and Renderer Design 1 The Application Stage The Game Loop, Resource Management and Renderer Design Application Stage Responsibilities 2 Set up the rendering pipeline Resource Management 3D meshes Textures etc. Prepare data

More information

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University Graphics Programming Computer Graphics, VT 2016 Lecture 2, Chapter 2 Fredrik Nysjö Centre for Image analysis Uppsala University Graphics programming Typically deals with How to define a 3D scene with a

More information

Could you make the XNA functions yourself?

Could you make the XNA functions yourself? 1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

More information

Me Again! Peter Chapman. if it s important / time-sensitive

Me Again! Peter Chapman.  if it s important / time-sensitive Me Again! Peter Chapman P.Chapman1@bradford.ac.uk pchapman86@gmail.com if it s important / time-sensitive Issues? Working on something specific? Need some direction? Don t hesitate to get in touch http://peter-chapman.co.uk/teaching

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel But you really want shadows, reflections, global illumination, antialiasing

More information

LPGPU Workshop on Power-Efficient GPU and Many-core Computing (PEGPUM 2014)

LPGPU Workshop on Power-Efficient GPU and Many-core Computing (PEGPUM 2014) A practitioner s view of challenges faced with power and performance on mobile GPU Prashant Sharma Samsung R&D Institute UK LPGPU Workshop on Power-Efficient GPU and Many-core Computing (PEGPUM 2014) SERI

More information

This work is about a new method for generating diffusion curve style images. Although this topic is dealing with non-photorealistic rendering, as you

This work is about a new method for generating diffusion curve style images. Although this topic is dealing with non-photorealistic rendering, as you This work is about a new method for generating diffusion curve style images. Although this topic is dealing with non-photorealistic rendering, as you will see our underlying solution is based on two-dimensional

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

Programmable Shaders for Deformation Rendering

Programmable Shaders for Deformation Rendering Programmable Shaders for Deformation Rendering Carlos D. Correa, Deborah Silver Rutgers, The State University of New Jersey Motivation We present a different way of obtaining mesh deformation. Not a modeling,

More information

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Catmull-Clark Surface ACC-Patches Polygon Models Prevalent in game industry Very

More information

Optimizing and Profiling Unity Games for Mobile Platforms. Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June

Optimizing and Profiling Unity Games for Mobile Platforms. Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June Optimizing and Profiling Unity Games for Mobile Platforms Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June 1 Agenda Introduction ARM and the presenter Preliminary knowledge

More information

Viewport 2.0 API Porting Guide for Locators

Viewport 2.0 API Porting Guide for Locators Viewport 2.0 API Porting Guide for Locators Introduction This document analyzes the choices for porting plug-in locators (MPxLocatorNode) to Viewport 2.0 mostly based on the following factors. Portability:

More information

Dave Shreiner, ARM March 2009

Dave Shreiner, ARM March 2009 4 th Annual Dave Shreiner, ARM March 2009 Copyright Khronos Group, 2009 - Page 1 Motivation - What s OpenGL ES, and what can it do for me? Overview - Lingo decoder - Overview of the OpenGL ES Pipeline

More information

Level of Details in Computer Rendering

Level of Details in Computer Rendering Level of Details in Computer Rendering Ariel Shamir Overview 1. Photo realism vs. Non photo realism (NPR) 2. Objects representations 3. Level of details Photo Realism Vs. Non Pixar Demonstrations Sketching,

More information

Understanding M3G 2.0 and its Effect on Producing Exceptional 3D Java-Based Graphics. Sean Ellis Consultant Graphics Engineer ARM, Maidenhead

Understanding M3G 2.0 and its Effect on Producing Exceptional 3D Java-Based Graphics. Sean Ellis Consultant Graphics Engineer ARM, Maidenhead Understanding M3G 2.0 and its Effect on Producing Exceptional 3D Java-Based Graphics Sean Ellis Consultant Graphics Engineer ARM, Maidenhead Introduction M3G 1.x Recap ARM M3G Integration M3G 2.0 Update

More information

DOOM 3 : The guts of a rendering engine

DOOM 3 : The guts of a rendering engine DOOM 3 : The guts of a rendering engine Introduction Background Game Design Techniques Tradeoffs Problems and Solutions Background Doom One of the most successful PC games of all time Kicked off First

More information

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp Next-Generation Graphics on Larrabee Tim Foley Intel Corp Motivation The killer app for GPGPU is graphics We ve seen Abstract models for parallel programming How those models map efficiently to Larrabee

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Cloth Simulation on the GPU. Cyril Zeller NVIDIA Corporation

Cloth Simulation on the GPU. Cyril Zeller NVIDIA Corporation Cloth Simulation on the GPU Cyril Zeller NVIDIA Corporation Overview A method to simulate cloth on any GPU supporting Shader Model 3 (Quadro FX 4500, 4400, 3400, 1400, 540, GeForce 6 and above) Takes advantage

More information

The Terrain Rendering Pipeline. Stefan Roettger, Ingo Frick. VIS Group, University of Stuttgart. Massive Development, Mannheim

The Terrain Rendering Pipeline. Stefan Roettger, Ingo Frick. VIS Group, University of Stuttgart. Massive Development, Mannheim The Terrain Rendering Pipeline Stefan Roettger, Ingo Frick VIS Group, University of Stuttgart wwwvis.informatik.uni-stuttgart.de Massive Development, Mannheim www.massive.de Abstract: From a game developers

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

NVIDIA Parallel Nsight. Jeff Kiel

NVIDIA Parallel Nsight. Jeff Kiel NVIDIA Parallel Nsight Jeff Kiel Agenda: NVIDIA Parallel Nsight Programmable GPU Development Presenting Parallel Nsight Demo Questions/Feedback Programmable GPU Development More programmability = more

More information

Mattan Erez. The University of Texas at Austin

Mattan Erez. The University of Texas at Austin EE382V: Principles in Computer Architecture Parallelism and Locality Fall 2008 Lecture 10 The Graphics Processing Unit Mattan Erez The University of Texas at Austin Outline What is a GPU? Why should we

More information

Hardware Accelerated Graphics for High Performance JavaFX Mobile Applications

Hardware Accelerated Graphics for High Performance JavaFX Mobile Applications Hardware Accelerated Graphics for High Performance JavaFX Mobile Applications Pavel Petroshenko, Sun Microsystems Jan Valenta, Sun Microsystems Jerry Evans, Sun Microsystems Goal of this Session Demonstrate

More information

Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer

Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer Executive Summary The NVIDIA Quadro2 line of workstation graphics solutions is the first of its kind to feature hardware support for

More information

Voxels. Tech Team - Johnny Mercado, Michael Matonis, Glen Giffey, John Jackson

Voxels. Tech Team - Johnny Mercado, Michael Matonis, Glen Giffey, John Jackson Voxels Tech Team - Johnny Mercado, Michael Matonis, Glen Giffey, John Jackson Pixel -> Voxel Appearance in Games Comanche: Maximum Overkill - 1992 Minecraft - 2011 Guncraft - 2013 CodeSpell https://www.youtube.com/watch?v=nn5mqxxzd0

More information

_ LUCIADFUSION V PRODUCT DATA SHEET _ LUCIADFUSION PRODUCT DATA SHEET

_ LUCIADFUSION V PRODUCT DATA SHEET _ LUCIADFUSION PRODUCT DATA SHEET _ LUCIADFUSION PRODUCT DATA SHEET V2016 LuciadFusion is the solution for efficient and effective use of geospatial data. It allows you to organize your data so that each user has one-click access to a

More information

Optimizing Mobile Games with ARM. Solo Chang Staff Applications Engineer, ARM

Optimizing Mobile Games with ARM. Solo Chang Staff Applications Engineer, ARM Optimizing Mobile Games with ARM Solo Chang Staff Applications Engineer, ARM 1 ARM Ecosystem My first role in ARM was in Developer Relations Developers came to us to ask for help We couldn t share their

More information

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012.

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012. CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions The Midterm Exam was given in class on Tuesday, October 16, 2012. 1. [7 pts] Synthetic-Camera Model. Describe the Synthetic-Camera Model : how

More information

Parallel Programming on Larrabee. Tim Foley Intel Corp

Parallel Programming on Larrabee. Tim Foley Intel Corp Parallel Programming on Larrabee Tim Foley Intel Corp Motivation This morning we talked about abstractions A mental model for GPU architectures Parallel programming models Particular tools and APIs This

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Copyright Khronos Group Page 1

Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Copyright Khronos Group Page 1 Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Ecosystem @neilt3d Copyright Khronos Group 2015 - Page 1 Copyright Khronos Group 2015 - Page 2 Khronos Connects Software to Silicon

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #2 due this Friday, October

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

M4G - A Surface Representation for Adaptive CPU-GPU Computation

M4G - A Surface Representation for Adaptive CPU-GPU Computation M4G - A Surface Representation for Adaptive CPU-GPU Computation Vision and Graphics Lab Institute of Pure and Applied Mathematics Trimester Program on Computational Manifolds and Applications November

More information

More frames per second. Alex Kan and Jean-François Roy GPU Software

More frames per second. Alex Kan and Jean-François Roy GPU Software More frames per second Alex Kan and Jean-François Roy GPU Software 2 OpenGL ES Analyzer Tuning the graphics pipeline Analyzer demo 3 Developer preview Jean-François Roy GPU Software Developer Technologies

More information

frame buffer depth buffer stencil buffer

frame buffer depth buffer stencil buffer Final Project Proposals Programmable GPUS You should all have received an email with feedback Just about everyone was told: Test cases weren t detailed enough Project was possibly too big Motivation could

More information

Introduction to Shaders for Visualization. The Basic Computer Graphics Pipeline

Introduction to Shaders for Visualization. The Basic Computer Graphics Pipeline Introduction to Shaders for Visualization Mike Bailey The Basic Computer Graphics Pipeline Model Transform View Transform Per-vertex Lighting Projection Transform Homogeneous Division Viewport Transform

More information

CSE 167: Introduction to Computer Graphics Lecture #8: Scene Graph. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #8: Scene Graph. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #8: Scene Graph Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Thursday: Midterm exam Friday: Project 3

More information

Programming Graphics Hardware

Programming Graphics Hardware Tutorial 5 Programming Graphics Hardware Randy Fernando, Mark Harris, Matthias Wloka, Cyril Zeller Overview of the Tutorial: Morning 8:30 9:30 10:15 10:45 Introduction to the Hardware Graphics Pipeline

More information

Building scalable 3D applications. Ville Miettinen Hybrid Graphics

Building scalable 3D applications. Ville Miettinen Hybrid Graphics Building scalable 3D applications Ville Miettinen Hybrid Graphics What s going to happen... (1/2) Mass market: 3D apps will become a huge success on low-end and mid-tier cell phones Retro-gaming New game

More information

GPU-Based Visualization of AMR and N-Body Dark Matter Simulation Data. Ralf Kähler (KIPAC/SLAC)

GPU-Based Visualization of AMR and N-Body Dark Matter Simulation Data. Ralf Kähler (KIPAC/SLAC) GPU-Based Visualization of AMR and N-Body Dark Matter Simulation Data Ralf Kähler (KIPAC/SLAC) HiPACC-Meeting 03/21/2014 COMPUTER GRAPHICS Rasterization COMPUTER GRAPHICS Assumption (for now): Input object(s)

More information

Evolution of GPUs Chris Seitz

Evolution of GPUs Chris Seitz Evolution of GPUs Chris Seitz Overview Concepts: Real-time rendering Hardware graphics pipeline Evolution of the PC hardware graphics pipeline: 1995-1998: Texture mapping and z-buffer 1998: Multitexturing

More information

CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1 Markus Hadwiger, KAUST Reading Assignment #4 (until Feb. 23) Read (required): Programming Massively Parallel Processors book, Chapter

More information

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

More information

Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

More information

A Trip Down The (2011) Rasterization Pipeline

A Trip Down The (2011) Rasterization Pipeline A Trip Down The (2011) Rasterization Pipeline Aaron Lefohn - Intel / University of Washington Mike Houston AMD / Stanford 1 This talk Overview of the real-time rendering pipeline available in ~2011 corresponding

More information

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes Last Time? Programmable GPUS Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes frame buffer depth buffer stencil buffer Stencil Buffer Homework 4 Reading for Create some geometry "Rendering

More information

ArcGIS Runtime: Maximizing Performance of Your Apps. Will Jarvis and Ralf Gottschalk

ArcGIS Runtime: Maximizing Performance of Your Apps. Will Jarvis and Ralf Gottschalk ArcGIS Runtime: Maximizing Performance of Your Apps Will Jarvis and Ralf Gottschalk Agenda ArcGIS Runtime Version 100.0 Architecture How do we measure performance? We will use our internal Runtime Core

More information

Baback Elmieh, Software Lead James Ritts, Profiler Lead Qualcomm Incorporated Advanced Content Group

Baback Elmieh, Software Lead James Ritts, Profiler Lead Qualcomm Incorporated Advanced Content Group Introduction ti to Adreno Tools Baback Elmieh, Software Lead James Ritts, Profiler Lead Qualcomm Incorporated Advanced Content Group Qualcomm HW Accelerated 3D: Adreno Moving content-quality forward requires

More information

COMPUTER GRAPHICS COURSE. Rendering Pipelines

COMPUTER GRAPHICS COURSE. Rendering Pipelines COMPUTER GRAPHICS COURSE Rendering Pipelines Georgios Papaioannou - 2014 A Rendering Pipeline Rendering or Graphics Pipeline is the sequence of steps that we use to create the final image Many graphics/rendering

More information

GpuPy: Accelerating NumPy With a GPU

GpuPy: Accelerating NumPy With a GPU GpuPy: Accelerating NumPy With a GPU Washington State University School of Electrical Engineering and Computer Science Benjamin Eitzen - eitzenb@eecs.wsu.edu Robert R. Lewis - bobl@tricity.wsu.edu Presentation

More information

Hidden Surface Elimination Raytracing. Pre-lecture business. Outline for today. Review Quiz. Image-Space vs. Object-Space

Hidden Surface Elimination Raytracing. Pre-lecture business. Outline for today. Review Quiz. Image-Space vs. Object-Space Hidden Surface Elimination Raytracing Pre-lecture business Get going on pp4 Submit exam questions by Sunday CS148: Intro to CG Instructor: Dan Morris TA: Sean Walker August 2, 2005 Remote folks: let us

More information

NVIDIA Case Studies:

NVIDIA Case Studies: NVIDIA Case Studies: OptiX & Image Space Photon Mapping David Luebke NVIDIA Research Beyond Programmable Shading 0 How Far Beyond? The continuum Beyond Programmable Shading Just programmable shading: DX,

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices Hearn, Baker, Carithers Raster Display Transmissive vs. Emissive Display anode

More information

CS195V Week 1. Introduction

CS195V Week 1. Introduction CS195V Week 1 Introduction Welcome! This is CSCI1950V: Advanced GPU Programming Prerequisite: CSCI1230: Introduction to Computer Graphics CSCI2240: Interactive Computer Graphics may be helpful, but not

More information

A Conceptual and Practical Look into Spherical Curvilinear Projection By Danny Oros

A Conceptual and Practical Look into Spherical Curvilinear Projection By Danny Oros A Conceptual and Practical Look into Spherical Curvilinear Projection By Danny Oros IMPORTANT NOTE : This document and technology is the legal property of Matrox Graphics, Inc. However, this technique

More information

GPU Ray Tracing at the Desktop and in the Cloud. Phillip Miller, NVIDIA Ludwig von Reiche, mental images

GPU Ray Tracing at the Desktop and in the Cloud. Phillip Miller, NVIDIA Ludwig von Reiche, mental images GPU Ray Tracing at the Desktop and in the Cloud Phillip Miller, NVIDIA Ludwig von Reiche, mental images Ray Tracing has always had an appeal Ray Tracing Prediction The future of interactive graphics is

More information

Real-Time Universal Capture Facial Animation with GPU Skin Rendering

Real-Time Universal Capture Facial Animation with GPU Skin Rendering Real-Time Universal Capture Facial Animation with GPU Skin Rendering Meng Yang mengyang@seas.upenn.edu PROJECT ABSTRACT The project implements the real-time skin rendering algorithm presented in [1], and

More information