Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebas5an Thrun, and Silvio Savarese

Size: px
Start display at page:

Download "Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebas5an Thrun, and Silvio Savarese"

Transcription

1 Goal: Fast and Robust Velocity Es5ma5on Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebas5an Thrun, and Silvio Savarese Our Approach: Alignment Probability P 1 P 2 p(x t z 1...z t )=ηp(z t x t,z t 1 )p(x t z 1...z t 1 ) Annealed Dynamic Histograms P 3 P 4 Spatial Distance Color Distance (if available) Probability of Occlusion

2 Goal: Fast and Robust Velocity Es5ma5on Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebas5an Thrun, and Silvio Savarese Baseline: Centroid Kalman Filter t+1 t p(x t z 1...z t )=ηp(z t x t,z t 1 )p(x t z 1...z t 1 ) Annealed Dynamic Histograms Baseline: ICP Local Search Poor Local Optimum!

3 Goal: Fast and Robust Velocity Es5ma5on Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebas5an Thrun, and Silvio Savarese Our Approach: Alignment Probability P 1 P 2 p(x t z 1...z t )=ηp(z t x t,z t 1 )p(x t z 1...z t 1 ) Annealed Dynamic Histograms P 3 P 4 Spatial Distance Color Distance (if available) Probability of Occlusion

4 Mo#va#on Quickly and robustly estimate the speed of nearby objects

5 Camera Images System Laser Data

6 Camera Images System Laser Data Previous Work (Teichman, et al)

7 Camera Images System Velocity Estimation Laser Data This Work Previous Work (Teichman, et al)

8 Velocity Es#ma#on t

9 Velocity Es#ma#on t+1 t

10 Velocity Es#ma#on t+1 t

11 Velocity Es#ma#on t+1 t

12 Velocity Es#ma#on t+1 t

13 ICP Baseline

14 ICP Baseline

15 ICP Baseline

16 ICP Baseline

17 ICP Baseline Local Search Poor Local Optimum!

18 Tracking Probability

19 Velocity Es#ma#on t

20 Velocity Es#ma#on t+1 t

21 Velocity Es#ma#on t+1 t

22 Velocity Es#ma#on t+1 t

23 Velocity Es#ma#on t+1 t

24 Velocity Es#ma#on t+1 t

25 Velocity Es#ma#on t+1 t X t

26 Velocity Es#ma#on t+1 t X t

27 Tracking Probability Measurement Model Motion Model

28 Tracking Probability Measurement Model Motion Model Constant velocity Kalman filter

29 Tracking Probability Measurement Model Motion Model

30 Tracking Probability Measurement Model Motion Model

31 Tracking Probability Measurement Model Motion Model

32 Tracking Probability Measurement Model Motion Model

33 Tracking Probability Measurement Model Motion Model

34 Tracking Probability Measurement Model Motion Model

35 Tracking Probability Measurement Model Motion Model

36 Tracking Probability Measurement Model Motion Model

37 Tracking Probability Measurement Model Motion Model

38 Tracking Probability Measurement Model Motion Model

39 Tracking Probability Measurement Model Motion Model

40 Tracking Probability Measurement Model Motion Model k

41 Tracking Probability Measurement Model Motion Model k Sensor noise Sensor resolution

42

43 Color Probability Probability Delta Color Value

44 Including Color

45 Including Color ( ) η z i z exp( 1 t 2 (z i z j ) T Σ 1 (z i z j )) + k

46 Including Color ( ) η z i z exp( 1 t 2 (z i z j ) T Σ 1 (z i z j )) + k

47 Including Color

48 Including Color

49 Including Color Probability Delta Color Value

50 Including Color Probability Delta Color Value

51 Including Color Probability Delta Color Value

52 Probabilis#c Framework 3D Shape Color Motion History Tracking

53 Tracking Probability P 1 P 2 P 3 P 4

54 Tracking Probability v y????? v x

55 Tracking Probability v y v x

56 Dynamic Decomposi#on v y v x

57 Dynamic Decomposi#on v y v x

58 Dynamic Decomposi#on v y v x

59 Dynamic Decomposi#on v y Derived from minimizing KL-divergence between approximate distribution and true posterior v x

60 Inflate the measurement model Annealing

61 Inflate the measurement model Annealing

62 Inflate the measurement model Annealing

63 Algorithm 1. For each hypothesis A. Compute the probability of the alignment Measurement Model Motion Model

64 Algorithm 1. For each hypothesis A. Compute the probability of the alignment Measurement Model B. Finely sample high probability regions Motion Model

65 Algorithm 1. For each hypothesis A. Compute the probability of the alignment Measurement Model B. Finely sample high probability regions Motion Model C. Go to step 1 to compute the probability of new hypotheses

66 Annealing More time More accurate

67 Any#me Tracker RMS error (m/s) Mean runtime (ms)

68 Any#me Tracker 0.6 RMS error (m/s) Choose runtime based on: Total runtime requirements Importance of tracked object Mean runtime (ms)

69 Comparisons 1.2 RMS error (m/s) Kalman Filter Mean runtime (ms) Mean

70 Comparisons 1.2 RMS error (m/s) Kalman Filter ICP Kalman ICP with Centroid Init Kalman ICP with Kalman Init Mean runtime (ms) Mean

71 Comparisons 1.2 RMS error (m/s) Kalman Filter ICP Kalman ICP with Centroid Init Kalman ICP with Kalman Init Annealed Dynamic Histograms Mean runtime (ms)

72 Kalman Filter

73 Kalman Filter ADH Tracker (Ours)

74 Models

75 Quan#ta#ve Evalua#on Crispness Kalman Filter Kalman ICP ADH Tracker (Ours) 0 People Bikes Cars

76 Sampling Strategies RMS error (m/s) ADH Tracker (Ours) Dense sampling Dense sampling with motion prediction Top cell sampling Mean runtime (ms)

77 Advantages over Radar

78 Conclusions 3D Shape Color Motion History Tracking Robust to Occlusions, Viewpoint Changes

79 Conclusions 3D Shape Color Motion History Tracking Robust to Occlusions, Viewpoint Changes Runs in Real-time Robust to Initialization Errors

80

81 Color Probability Probability Delta Color Value

82 Error vs Number of Points 1.5 Kalman Filter ADH Tracker (Ours) RMS error (m/s) Number of points

83 RMS error (m/s) Error vs Distance Kalman Filter ADH Tracker (Ours) Distance to tracked vehicle (m)

84 Error vs Number of Frames 2 RMS error (m/s) Number of frames tracked

85 Error vs Number of Frames 2 ADH Tracker ADH Tracker without motion model RMS error (m/s) Number of frames tracked

86 RMS error (m/s) No color No motion model No 3D shape

Combining 3D Shape, Color, and Motion for Robust Anytime Tracking

Combining 3D Shape, Color, and Motion for Robust Anytime Tracking Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebastian Thrun, Silvio Savarese Computer Science Department, Stanford University {davheld, jessel, thrun,

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

Lecture 20: Tracking. Tuesday, Nov 27

Lecture 20: Tracking. Tuesday, Nov 27 Lecture 20: Tracking Tuesday, Nov 27 Paper reviews Thorough summary in your own words Main contribution Strengths? Weaknesses? How convincing are the experiments? Suggestions to improve them? Extensions?

More information

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm Robot Mapping FastSLAM Feature-based SLAM with Particle Filters Cyrill Stachniss Particle Filter in Brief! Non-parametric, recursive Bayes filter! Posterior is represented by a set of weighted samples!

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration of robot

More information

Eppur si muove ( And yet it moves )

Eppur si muove ( And yet it moves ) Eppur si muove ( And yet it moves ) - Galileo Galilei University of Texas at Arlington Tracking of Image Features CSE 4392-5369 Vision-based Robot Sensing, Localization and Control Dr. Gian Luca Mariottini,

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem 10/03/11 Model Fitting Computer Vision CS 143, Brown James Hays Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem Fitting: find the parameters of a model that best fit the data Alignment:

More information

Social Robotics Seminar

Social Robotics Seminar SS 2015 Social Robotics Seminar Welcome! Prof. Kai Arras Timm Linder, Billy Okal, Luigi Palmieri 1 SS 2015 Social Robotics Seminar Contents Brief presentation of the Social Robotics Lab Introduction How

More information

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to the Bayes Filter and Related Models Gian Diego Tipaldi, Wolfram Burgard 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Recursive

More information

Monocular Human Motion Capture with a Mixture of Regressors. Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France

Monocular Human Motion Capture with a Mixture of Regressors. Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France Monocular Human Motion Capture with a Mixture of Regressors Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France IEEE Workshop on Vision for Human-Computer Interaction, 21 June 2005 Visual

More information

A generic architecture for dynamic outdoor environment

A generic architecture for dynamic outdoor environment A generic architecture for dynamic outdoor environment Olivier Aycard, Trung-Dung Vu, Qadeer Baig, and Thierry Fraichard Laboratoire d Informatique de Grenoble - University of Grenoble1, France firstname.lastname@imag.fr

More information

Monte Carlo Localization for Mobile Robots

Monte Carlo Localization for Mobile Robots Monte Carlo Localization for Mobile Robots Frank Dellaert 1, Dieter Fox 2, Wolfram Burgard 3, Sebastian Thrun 4 1 Georgia Institute of Technology 2 University of Washington 3 University of Bonn 4 Carnegie

More information

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Motion and Tracking Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Motion Segmentation Segment the video into multiple coherently moving objects Motion and Perceptual Organization

More information

SHRP 2 Safety Research Symposium July 27, Site-Based Video System Design and Development: Research Plans and Issues

SHRP 2 Safety Research Symposium July 27, Site-Based Video System Design and Development: Research Plans and Issues SHRP 2 Safety Research Symposium July 27, 2007 Site-Based Video System Design and Development: Research Plans and Issues S09 Objectives Support SHRP2 program research questions: Establish crash surrogates

More information

On Board 6D Visual Sensors for Intersection Driving Assistance Systems

On Board 6D Visual Sensors for Intersection Driving Assistance Systems On Board 6D Visual Sensors for Intersection Driving Assistance Systems S. Nedevschi, T. Marita, R. Danescu, F. Oniga, S. Bota, I. Haller, C. Pantilie, M. Drulea, C. Golban Sergiu.Nedevschi@cs.utcluj.ro

More information

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa 3D Scanning Qixing Huang Feb. 9 th 2017 Slide Credit: Yasutaka Furukawa Geometry Reconstruction Pipeline This Lecture Depth Sensing ICP for Pair-wise Alignment Next Lecture Global Alignment Pairwise Multiple

More information

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013 Live Metric 3D Reconstruction on Mobile Phones ICCV 2013 Main Contents 1. Target & Related Work 2. Main Features of This System 3. System Overview & Workflow 4. Detail of This System 5. Experiments 6.

More information

Egomotion Estimation by Point-Cloud Back-Mapping

Egomotion Estimation by Point-Cloud Back-Mapping Egomotion Estimation by Point-Cloud Back-Mapping Haokun Geng, Radu Nicolescu, and Reinhard Klette Department of Computer Science, University of Auckland, New Zealand hgen001@aucklanduni.ac.nz Abstract.

More information

Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles

Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles Eingebettete Systeme Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles 25/6/2018, Vikas Agrawal, Marcel

More information

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping CSE-571 Probabilistic Robotics Fast-SLAM Mapping Particle Filters Represent belief by random samples Estimation of non-gaussian, nonlinear processes Sampling Importance Resampling (SIR) principle Draw

More information

Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014

Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014 Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014 Problem Definition Viewpoint estimation: Given an image, predicting viewpoint for object of

More information

Learning to Track at 100 FPS with Deep Regression Networks - Supplementary Material

Learning to Track at 100 FPS with Deep Regression Networks - Supplementary Material Learning to Track at 1 FPS with Deep Regression Networks - Supplementary Material David Held, Sebastian Thrun, Silvio Savarese Department of Computer Science Stanford University {davheld,thrun,ssilvio}@cs.stanford.edu

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1 Robot Mapping SLAM Front-Ends Cyrill Stachniss Partial image courtesy: Edwin Olson 1 Graph-Based SLAM Constraints connect the nodes through odometry and observations Robot pose Constraint 2 Graph-Based

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

Maintaining accurate multi-target tracking under frequent occlusion

Maintaining accurate multi-target tracking under frequent occlusion Maintaining accurate multi-target tracking under frequent occlusion Yizheng Cai Department of Computer Science University of British Columbia Vancouver, V6T 1Z4 Email:yizhengc@cs.ubc.ca Homepage: www.cs.ubc.ca/~yizhengc

More information

Research Motivations

Research Motivations Intelligent Video Surveillance Stan Z. Li Center for Biometrics and Security Research (CBSR) & National Lab of Pattern Recognition (NLPR) Institute of Automation, Chinese Academy of Sciences ASI-07, Hong

More information

Efficient Techniques for Dynamic Vehicle Detection

Efficient Techniques for Dynamic Vehicle Detection Efficient Techniques for Dynamic Vehicle Detection Anna Petrovskaya and Sebastian Thrun Computer Science Department Stanford University Stanford, California 94305, USA { anya, thrun }@cs.stanford.edu Summary.

More information

Chapter 9 Object Tracking an Overview

Chapter 9 Object Tracking an Overview Chapter 9 Object Tracking an Overview The output of the background subtraction algorithm, described in the previous chapter, is a classification (segmentation) of pixels into foreground pixels (those belonging

More information

Cs : Computer Vision Final Project Report

Cs : Computer Vision Final Project Report Cs 600.461: Computer Vision Final Project Report Giancarlo Troni gtroni@jhu.edu Raphael Sznitman sznitman@jhu.edu Abstract Given a Youtube video of a busy street intersection, our task is to detect, track,

More information

Car tracking in tunnels

Car tracking in tunnels Czech Pattern Recognition Workshop 2000, Tomáš Svoboda (Ed.) Peršlák, Czech Republic, February 2 4, 2000 Czech Pattern Recognition Society Car tracking in tunnels Roman Pflugfelder and Horst Bischof Pattern

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

Probabilistic Sensor Models for Virtual Validation Use Cases and Benefits

Probabilistic Sensor Models for Virtual Validation Use Cases and Benefits Probabilistic Sensor Models for Virtual Validation Use Cases and Benefits Dr. Robin Schubert Co-Founder & CEO BASELABS GmbH 2 BASELABS enables data fusion results. 3 Who we are What we do We partner Data

More information

EE565:Mobile Robotics Lecture 3

EE565:Mobile Robotics Lecture 3 EE565:Mobile Robotics Lecture 3 Welcome Dr. Ahmad Kamal Nasir Today s Objectives Motion Models Velocity based model (Dead-Reckoning) Odometry based model (Wheel Encoders) Sensor Models Beam model of range

More information

3D Photography: Stereo

3D Photography: Stereo 3D Photography: Stereo Marc Pollefeys, Torsten Sattler Spring 2016 http://www.cvg.ethz.ch/teaching/3dvision/ 3D Modeling with Depth Sensors Today s class Obtaining depth maps / range images unstructured

More information

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore Particle Filtering CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore (CS6240) Particle Filtering 1 / 28 Introduction Introduction

More information

Grid-based Localization and Online Mapping with Moving Objects Detection and Tracking: new results

Grid-based Localization and Online Mapping with Moving Objects Detection and Tracking: new results Grid-based Localization and Online Mapping with Moving Objects Detection and Tracking: new results Trung-Dung Vu, Julien Burlet and Olivier Aycard Laboratoire d Informatique de Grenoble, France firstname.lastname@inrialpes.fr

More information

Robust tracking of dynamic objects in LIDAR point clouds

Robust tracking of dynamic objects in LIDAR point clouds Robust tracking of dynamic objects in LIDAR point clouds Master s Thesis in Engineering Mathematics JOHAN VILLYSSON Department of Mathematical Sciences Mathematical Statistics Chalmers University of Technology

More information

Multi-Camera Target Tracking in Blind Regions of Cameras with Non-overlapping Fields of View

Multi-Camera Target Tracking in Blind Regions of Cameras with Non-overlapping Fields of View Multi-Camera Target Tracking in Blind Regions of Cameras with Non-overlapping Fields of View Amit Chilgunde*, Pankaj Kumar, Surendra Ranganath*, Huang WeiMin *Department of Electrical and Computer Engineering,

More information

Vehicle Localization. Hannah Rae Kerner 21 April 2015

Vehicle Localization. Hannah Rae Kerner 21 April 2015 Vehicle Localization Hannah Rae Kerner 21 April 2015 Spotted in Mtn View: Google Car Why precision localization? in order for a robot to follow a road, it needs to know where the road is to stay in a particular

More information

Fusion Between Laser and Stereo Vision Data For Moving Objects Tracking In Intersection Like Scenario

Fusion Between Laser and Stereo Vision Data For Moving Objects Tracking In Intersection Like Scenario Fusion Between Laser and Stereo Vision Data For Moving Objects Tracking In Intersection Like Scenario Qadeer Baig, Olivier Aycard, Trung Dung Vu and Thierry Fraichard Abstract Using multiple sensors in

More information

Lecture 28 Intro to Tracking

Lecture 28 Intro to Tracking Lecture 28 Intro to Tracking Some overlap with T&V Section 8.4.2 and Appendix A.8 Recall: Blob Merge/Split merge occlusion occlusion split When two objects pass close to each other, they are detected as

More information

Recall: Blob Merge/Split Lecture 28

Recall: Blob Merge/Split Lecture 28 Recall: Blob Merge/Split Lecture 28 merge occlusion Intro to Tracking Some overlap with T&V Section 8.4.2 and Appendix A.8 occlusion split When two objects pass close to each other, they are detected as

More information

W4. Perception & Situation Awareness & Decision making

W4. Perception & Situation Awareness & Decision making W4. Perception & Situation Awareness & Decision making Robot Perception for Dynamic environments: Outline & DP-Grids concept Dynamic Probabilistic Grids Bayesian Occupancy Filter concept Dynamic Probabilistic

More information

Outline. EE793 Target Tracking: Lecture 2 Introduction to Target Tracking. Introduction to Target Tracking (TT) A Conventional TT System

Outline. EE793 Target Tracking: Lecture 2 Introduction to Target Tracking. Introduction to Target Tracking (TT) A Conventional TT System Outline EE793 Target Tracking: Lecture 2 Introduction to Target Tracking Umut Orguner umut@metu.edu.tr room: EZ-12 tel: 4425 Department of Electrical & Electronics Engineering Middle East Technical University

More information

Real-Time Vehicle Detection and Tracking DDDAS Using Hyperspectral Features from Aerial Video

Real-Time Vehicle Detection and Tracking DDDAS Using Hyperspectral Features from Aerial Video Real-Time Vehicle Detection and Tracking DDDAS Using Hyperspectral Features from Aerial Video Matthew J. Hoffman, Burak Uzkent, Anthony Vodacek School of Mathematical Sciences Chester F. Carlson Center

More information

Multi-Target Tracking and Occlusion Handling With Learned Variational Bayesian Clusters and a Social Force Model

Multi-Target Tracking and Occlusion Handling With Learned Variational Bayesian Clusters and a Social Force Model 1320 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 5, MARCH 1, 2016 Multi-Target Tracking and Occlusion Handling With Learned Variational Bayesian Clusters and a Social Force Model Ata Ur-Rehman,

More information

Extended target tracking using PHD filters

Extended target tracking using PHD filters Ulm University 2014 01 29 1(35) With applications to video data and laser range data Division of Automatic Control Department of Electrical Engineering Linöping university Linöping, Sweden Presentation

More information

A MATLAB TOOL FOR DEVELOPMENT AND TESTING OF TRACK INITIATION AND MULTIPLE TARGET TRACKING ALGORITHMS

A MATLAB TOOL FOR DEVELOPMENT AND TESTING OF TRACK INITIATION AND MULTIPLE TARGET TRACKING ALGORITHMS I&S A MATLAB TOOL FOR DEVELOPMENT AND TESTING OF TRACK INITIATION AND MULTIPLE TARGET TRACKING ALGORITHMS Kiril ALEXIEV 1. Introduction Digital computer simulation is a valuable tool, used for the design,

More information

Spatio temporal Segmentation using Laserscanner and Video Sequences

Spatio temporal Segmentation using Laserscanner and Video Sequences Spatio temporal Segmentation using Laserscanner and Video Sequences Nico Kaempchen, Markus Zocholl and Klaus C.J. Dietmayer Department of Measurement, Control and Microtechnology University of Ulm, D 89081

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

Robust Monte-Carlo Localization using Adaptive Likelihood Models

Robust Monte-Carlo Localization using Adaptive Likelihood Models Robust Monte-Carlo Localization using Adaptive Likelihood Models Patrick Pfaff 1, Wolfram Burgard 1, and Dieter Fox 2 1 Department of Computer Science, University of Freiburg, Germany, {pfaff,burgard}@informatik.uni-freiburg.de

More information

Tracking Soccer Ball Exploiting Player Trajectory

Tracking Soccer Ball Exploiting Player Trajectory Tracking Soccer Ball Exploiting Player Trajectory Kyuhyoung Choi and Yongdeuk Seo Sogang University, {Kyu, Yndk}@sogang.ac.kr Abstract This paper proposes an algorithm for tracking the ball in a soccer

More information

DYNAMIC STEREO VISION FOR INTERSECTION ASSISTANCE

DYNAMIC STEREO VISION FOR INTERSECTION ASSISTANCE FISITA 2008 World Automotive Congress Munich, Germany, September 2008. DYNAMIC STEREO VISION FOR INTERSECTION ASSISTANCE 1 Franke, Uwe *, 2 Rabe, Clemens, 1 Gehrig, Stefan, 3 Badino, Hernan, 1 Barth, Alexander

More information

3D Model Acquisition by Tracking 2D Wireframes

3D Model Acquisition by Tracking 2D Wireframes 3D Model Acquisition by Tracking 2D Wireframes M. Brown, T. Drummond and R. Cipolla {96mab twd20 cipolla}@eng.cam.ac.uk Department of Engineering University of Cambridge Cambridge CB2 1PZ, UK Abstract

More information

Model-based Visual Tracking:

Model-based Visual Tracking: Technische Universität München Model-based Visual Tracking: the OpenTL framework Giorgio Panin Technische Universität München Institut für Informatik Lehrstuhl für Echtzeitsysteme und Robotik (Prof. Alois

More information

Object Tracking with an Adaptive Color-Based Particle Filter

Object Tracking with an Adaptive Color-Based Particle Filter Object Tracking with an Adaptive Color-Based Particle Filter Katja Nummiaro 1, Esther Koller-Meier 2, and Luc Van Gool 1,2 1 Katholieke Universiteit Leuven, ESAT/VISICS, Belgium {knummiar,vangool}@esat.kuleuven.ac.be

More information

Car Bed Chair Sofa Table

Car Bed Chair Sofa Table Supplementary Material for the Paper Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan yuxiang@umich.edu Silvio Savarese Stanford University ssilvio@stanford.edu

More information

3D Photography: Active Ranging, Structured Light, ICP

3D Photography: Active Ranging, Structured Light, ICP 3D Photography: Active Ranging, Structured Light, ICP Kalin Kolev, Marc Pollefeys Spring 2013 http://cvg.ethz.ch/teaching/2013spring/3dphoto/ Schedule (tentative) Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar

More information

Laserscanner Based Cooperative Pre-Data-Fusion

Laserscanner Based Cooperative Pre-Data-Fusion Laserscanner Based Cooperative Pre-Data-Fusion 63 Laserscanner Based Cooperative Pre-Data-Fusion F. Ahlers, Ch. Stimming, Ibeo Automobile Sensor GmbH Abstract The Cooperative Pre-Data-Fusion is a novel

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Multiple Model Estimation : The EM Algorithm & Applications

Multiple Model Estimation : The EM Algorithm & Applications Multiple Model Estimation : The EM Algorithm & Applications Princeton University COS 429 Lecture Nov. 13, 2007 Harpreet S. Sawhney hsawhney@sarnoff.com Recapitulation Problem of motion estimation Parametric

More information

Simultaneous Localization, Mapping and Moving Object Tracking

Simultaneous Localization, Mapping and Moving Object Tracking Simultaneous Localization, Mapping and Moving Object Tracking Chieh-Chih Wang Department of Computer Science and Information Engineering and Graduate Institute of Networking and Multimedia National Taiwan

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching

Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching Hauke Strasdat, Cyrill Stachniss, Maren Bennewitz, and Wolfram Burgard Computer Science Institute, University of

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

Real-Time Multi-Person Tracking with Detector Assisted Structure Propagation

Real-Time Multi-Person Tracking with Detector Assisted Structure Propagation Real-Time Multi-Person Tracking with Detector Assisted Structure Propagation Dennis Mitzel and Bastian Leibe UMIC Research Centre RWTH Aachen University, Germany {mitzel,leibe}@umic.rwth-aachen.de Abstract

More information

Mixed-Reality for Intuitive Photo-Realistic 3D-Model Generation

Mixed-Reality for Intuitive Photo-Realistic 3D-Model Generation Mixed-Reality for Intuitive Photo-Realistic 3D-Model Generation Wolfgang Sepp, Tim Bodenmueller, Michael Suppa, and Gerd Hirzinger DLR, Institut für Robotik und Mechatronik @ GI-Workshop VR/AR 2009 Folie

More information

Learning to Track Motion

Learning to Track Motion Learning to Track Motion Maitreyi Nanjanath Amit Bose CSci 8980 Course Project April 25, 2006 Background Vision sensor can provide a great deal of information in a short sequence of images Useful for determining

More information

Multiple Hypothesis Target Tracking Using Merge and Split of Graph s Nodes

Multiple Hypothesis Target Tracking Using Merge and Split of Graph s Nodes Multiple Hypothesis Target Tracking Using Merge and Split of Graph s Nodes Yunqian Ma 1,QianYu 2, and Isaac Cohen 1 1 Honeywell Labs, 3660 Technology Drive, Minneapolis, MN 55418 {yunqian.ma, isaac.cohen}@honeywell.com

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

Introduction to behavior-recognition and object tracking

Introduction to behavior-recognition and object tracking Introduction to behavior-recognition and object tracking Xuan Mo ipal Group Meeting April 22, 2011 Outline Motivation of Behavior-recognition Four general groups of behaviors Core technologies Future direction

More information

Differentially Private Multi- Dimensional Time Series Release for Traffic Monitoring

Differentially Private Multi- Dimensional Time Series Release for Traffic Monitoring DBSec 13 Differentially Private Multi- Dimensional Time Series Release for Traffic Monitoring Liyue Fan, Li Xiong, Vaidy Sunderam Department of Math & Computer Science Emory University 9/4/2013 DBSec'13:

More information

Multi camera tracking. Jan Baan. Content. VBM Multicamera VBM A270 test site Helmond

Multi camera tracking. Jan Baan. Content. VBM Multicamera VBM A270 test site Helmond Jan Baan Content VBM Multicamera VBM A270 test site Helmond 2 1 3 Introductie/Doel video vehicle detection image to world tracking video track filtering VBM Database Vehicle data trajectory (x,y,t) dimensions

More information

A Probabilistic Framework for Real-time 3D Segmentation using Spatial, Temporal, and Semantic Cues

A Probabilistic Framework for Real-time 3D Segmentation using Spatial, Temporal, and Semantic Cues Robotics: Science and Systems 2016 Ann Arbor, MI, USA, June 18-22, 2016 A Probabilistic Framework for Real-time 3D Segmentation using Spatial, Temporal, and Semantic Cues David Held, Devin Guillory, Brice

More information

Local Features Tutorial: Nov. 8, 04

Local Features Tutorial: Nov. 8, 04 Local Features Tutorial: Nov. 8, 04 Local Features Tutorial References: Matlab SIFT tutorial (from course webpage) Lowe, David G. Distinctive Image Features from Scale Invariant Features, International

More information

Detecting and Identifying Moving Objects in Real-Time

Detecting and Identifying Moving Objects in Real-Time Chapter 9 Detecting and Identifying Moving Objects in Real-Time For surveillance applications or for human-computer interaction, the automated real-time tracking of moving objects in images from a stationary

More information

HOW MULTI-FRAME MODEL FITTING AND DIFFERENTIAL MEASUREMENTS CAN IMPROVE LIDAR-BASED VEHICLE TRACKING ACCURACY

HOW MULTI-FRAME MODEL FITTING AND DIFFERENTIAL MEASUREMENTS CAN IMPROVE LIDAR-BASED VEHICLE TRACKING ACCURACY HOW MULTI-FRAME MODEL FITTING AND DIFFERENTIAL MEASUREMENTS CAN IMPROVE LIDAR-BASED VEHICLE TRACKING ACCURACY By Steven J. Chao A THESIS Submitted to Michigan State University in partial fulfillment of

More information

Interacting Object Tracking in Crowded Urban Areas

Interacting Object Tracking in Crowded Urban Areas Interacting Object Tracing in Crowded Urban Areas Chieh-Chih Wang, Tzu-Chien Lo and Shao-Wen Yang Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan Email:

More information

Particle Filtering for Large Dimensional Problems with Multimodal Likelihoods

Particle Filtering for Large Dimensional Problems with Multimodal Likelihoods Particle Filtering for Large Dimensional Problems with Multimodal Likelihoods Namrata Vaswani Dept of Electrical & Computer Engineering Iowa State University http://www.ece.iastate.edu/~namrata HMM Model

More information

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING By Michael Lowney Senior Thesis in Electrical Engineering University of Illinois at Urbana-Champaign Advisor: Professor Minh Do May 2015

More information

Tracking Pedestrians using Local Spatio-temporal Motion Patterns in Extremely Crowded Scenes

Tracking Pedestrians using Local Spatio-temporal Motion Patterns in Extremely Crowded Scenes 1 Submitted to IEEE Trans. on Pattern Analysis and Machine Intelligence Regular Paper Tracking Pedestrians using Local Spatio-temporal Motion Patterns in Extremely Crowded Scenes Louis Kratz and Ko Nishino

More information

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Asaf Moses Systematics Ltd., Technical Product Manager aviasafm@systematics.co.il 1 Autonomous

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 11, November -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Comparative

More information

Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier

Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier Using Fast Classification of Static and Dynamic Environment for Improving Bayesian Occupancy Filter (BOF) and Tracking Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier e-motion

More information

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Lincoln Laboratory ASAP-2001 Workshop Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Shawn Kraut and Jeffrey Krolik Duke University Department of Electrical and Computer

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Volume 3, Issue 11, November 2013 International Journal of Advanced Research in Computer Science and Software Engineering

Volume 3, Issue 11, November 2013 International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 11, November 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Comparison

More information

CSE-571 Robotics. Sensors for Mobile Robots. Beam-based Sensor Model. Proximity Sensors. Probabilistic Sensor Models. Beam-based Scan-based Landmarks

CSE-571 Robotics. Sensors for Mobile Robots. Beam-based Sensor Model. Proximity Sensors. Probabilistic Sensor Models. Beam-based Scan-based Landmarks Sensors for Mobile Robots CSE-57 Robotics Probabilistic Sensor Models Beam-based Scan-based Landmarks Contact sensors: Bumpers Internal sensors Accelerometers (spring-mounted masses) Gyroscopes (spinning

More information

Exploiting Human Steering Models for Path Prediction

Exploiting Human Steering Models for Path Prediction 12th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 2009 Exploiting Human Steering Models for Path Prediction Bulent Tastan Computer Science University of Central Florida Orlando,

More information

Distributed multiple-hypothesis correlation and feedback with applications to video data

Distributed multiple-hypothesis correlation and feedback with applications to video data Distributed multiple-hypothesis correlation and feedback with applications to video data Kyle M. Tarplee, David J. Trawick, and Shawn M. Herman Numerica Corporation, 485 Hahns Peak Drive, Suite 2, Loveland,

More information

Multiple Model Estimation : The EM Algorithm & Applications

Multiple Model Estimation : The EM Algorithm & Applications Multiple Model Estimation : The EM Algorithm & Applications Princeton University COS 429 Lecture Dec. 4, 2008 Harpreet S. Sawhney hsawhney@sarnoff.com Plan IBR / Rendering applications of motion / pose

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

COMPARING GLOBAL MEASURES OF IMAGE SIMILARITY FOR USE IN TOPOLOGICAL LOCALIZATION OF MOBILE ROBOTS

COMPARING GLOBAL MEASURES OF IMAGE SIMILARITY FOR USE IN TOPOLOGICAL LOCALIZATION OF MOBILE ROBOTS COMPARING GLOBAL MEASURES OF IMAGE SIMILARITY FOR USE IN TOPOLOGICAL LOCALIZATION OF MOBILE ROBOTS Syeda Nusrat Ferdaus, Andrew Vardy, George Mann and Ray Gosine Intelligent Systems Lab, Faculty of Engineering

More information

Detection and Tracking of Moving Objects Using 2.5D Motion Grids

Detection and Tracking of Moving Objects Using 2.5D Motion Grids Detection and Tracking of Moving Objects Using 2.5D Motion Grids Alireza Asvadi, Paulo Peixoto and Urbano Nunes Institute of Systems and Robotics, University of Coimbra September 2015 1 Outline: Introduction

More information

What is the SLAM problem?

What is the SLAM problem? SLAM Tutorial Slides by Marios Xanthidis, C. Stachniss, P. Allen, C. Fermuller Paul Furgale, Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart What is the SLAM problem? The

More information

3D-Tracking of Head and Hands for Pointing Gesture Recognition in a Human-Robot Interaction Scenario

3D-Tracking of Head and Hands for Pointing Gesture Recognition in a Human-Robot Interaction Scenario 3D-Tracking of Head and Hands for Pointing Gesture Recognition in a Human-Robot Interaction Scenario Kai Nickel Edgar Seemann Rainer Stiefelhagen Interactive Systems Labs Universitt Karlsruhe (TH) Germany

More information