Synthetic Aperture Radar (SAR) Polarimetry for Wetland Mapping & Change Detection

Size: px
Start display at page:

Download "Synthetic Aperture Radar (SAR) Polarimetry for Wetland Mapping & Change Detection"

Transcription

1 Synthetic Aperture Radar (SAR) Polarimetry for Wetland Mapping & Change Detection Jennifer M. Corcoran, M.S. Remote Sensing & Geospatial Analysis Laboratory Natural Resource Science & Management PhD Program

2 Modified title: Data Integration using Synthetic Aperture Radar (SAR) & Optical Data for Wetland Mapping Jennifer M. Corcoran, M.S. Remote Sensing & Geospatial Analysis Laboratory Natural Resource Science & Management PhD Program

3 Outline Background, Motivation, & Study Site Objectives, Data & Methodology Radar Introduction Polarimetric decompositions, CIR aerial photos, DEM, and decision tree classification Results & Conclusions Decompositions & decision tree classification Future work

4 Background & Motivation Why should we care about wetlands? Maintain & improve water quality, preserve wildlife habitat, reduce runoff, provide floodwater retention, reduce stream sedimentation, etc Existing wetland maps are out of date Original maps based on photos from 70 s and 80 s, often B&W and very coarse scale You can t manage what you don t measure Ephemeral and forested wetlands are particularly inaccurate due to timing of imagery used to delineate

5 Study Site

6 Study Site

7 Hypotheses Multi-temporal data provides information to discriminate wetlands from uplands Multi-frequency data provides more information to classify wetland types Incorporation of topographical characteristics reduces misclassification

8 Objectives Evaluate polarimetric decompositions Classify wetland from upland areas and wetland type (Cowardin Class) using a combination of: Leaf-on & leaf-off optical imagery Elevation and slope Radar polarizations (HH, HV, VH, & VV) Polarimetric decompositions Identify key input layers for an accurate decision tree classification of wetlands

9 Radar Introduction Radio Detection And Ranging: microwave portion of the EM Radar sensors range from a frequency of 0.3 GHz 300 GHz, or 1 m 1 mm wavelength This study focuses on C-band (5.6 cm)

10 Radar Introduction, cont Polarization = orientation of the transmitted signals and received backscatter Constructive and destructive interference = bright and dark speckles Intensity (real) Phase (imaginary)

11 Radar Introduction, cont Active remote sensing = transmits signals and receives backscatter Systems vary in their incidence/look angle, swath width and spatial resolution This study uses 27 incidence angle, 50 km swath, & ~5m resolution

12 Radar Introduction, cont SAR = Synthetic Aperture Radar Side looking, accumulates data along a path Resolution of a cell is dependant on range and azimuth direction

13 Radar Introduction Transmitted radar signal reacts to the surface and the backscatter is received by the sensor The brightness on an image directly relates to the type of backscatter

14 Data & Methodology Used RADARSAT-2 Fine Quad Two dates in 2009: June 15 & September 19 Intensity (real) & polarization (imaginary) Polarimetric decompositions for each date Van Zyl Freeman-Durden Cloude-Pottier

15 Polarimetric Decomposition Van Zyl Discrete categorization of scattering mechanisms: Odd bounce Even bounce Diffuse scattering Scatterers create a number of bounces or reflections that create a recognizable phase difference between the HH and the VV channels

16 Polarimetric Decomposition, cont Freeman-Durden Similar to Van Zyl Surface/Single bounce Double bounce Volume scattering Based on a physical model that separates the scattering mechanisms of the target Computes a ratio of each type of scatterer in each pixel

17 Polarimetric Decomposition, cont Cloude-Pottier Entropy, alpha angle, and anisotropy are calculated from eigenvalues and eigenvectors of the coherency matrix Entropy is the randomness of scattering (low and high values indicate single and mixed scattering, respectively) Alpha angle is indicative of the dominant scattering mechanism (low, mid, and high angles indicate surface, dipole and multiple scattering, respectively) Anisotropy indicates multiple scattering mechanisms

18 Data & Methodology Used, cont Additional Data Color Infra-red (CIR) Aerial Photos leaf-on (summer 2008) leaf-off (spring 2009) USGS National Elevation Dataset (10 m DEM) Elevation Derived Slope Data Integration with Decision Tree Classification: R Statistical Package

19 Decision Tree Classification Land Classification Example: Classes: - Agriculture - Forest - Rangeland - Riparian - Urban - Water - Wetland Datasets: - Elevation (30m DEM) - Landsat ETM+ - Tasseled Cap (ETM+) - Slope (30m DEM) - NRCS hydric soils data Source: Baker et al. (2006, Wetlands)

20 Decision Tree Classification, cont Rule-based technique using training data Algorithms designed to reduce intra- and inter-class variability through binary splitting of training values Result of splitting is a branching dichotomous tree Rules are applied to a set of data to classify

21 RandomForest randomforest ~ many classification trees Each tree has a vote and RF chooses the classification having the most votes Out of bag (OOB) sampling allows statistical Out of bag (OOB) sampling allows statistical freedom and cross validation

22 RandomForest, cont Outputs Gini Index: Every time a split is made, the Gini Index value is less than the parent node sum indicates relative importance of each input Cross Validation: relative percent accuracy of all runs in the forest of decision trees Classification and Confidence Maps: using all input layers, classify all pixels with the best decision tree and plot the relative confidence

23 Data & Methodology Used, cont Total = 32 input rasters Leaf-on Aerial Photo 2008 (blue, green, red, NIR) Leaf-off Aerial Photo 2009 (blue, green, red, NIR) National Elevation Dataset Elevation National Elevation Dataset Slope Radar polar channels June 15, 2009 (HH, HV, VH, VV) Radar polar channels September 19, 2009 (HH, HV, VH, VV) Polarimetric decompositions June 15, 2009 (Van Zyl: odd, even, diffuse scattering; Freman-Durden: single, double, volume scattering; Cloude- Pottier: alpha, entropy, anisotropy) Polarimetric decompositions September 19, 2009 (Van Zyl: odd, even, diffuse scattering; Freman-Durden: single, double, volume scattering; Cloude-Pottier: alpha, entropy, anisotropy)

24 Results: Van Zyl May 2009 August 2008

25 Results: Van Zyl May 2009 August 2008

26 Results: Freeman-Durden

27 Results: Freeman-Durden

28 Results: Cloude-Pottier Entropy, alpha, & anisotropy

29 Results: Cloude-Pottier

30 Results: Cloude-Pottier

31 Results: Cloude-Pottier

32 Results: randomforest Decision rules: upland, water, wetland classification Program for visualization: Orange

33 Results: randomforest

34 Results: randomforest

35 Results: randomforest

36 Results: randomforest

37 Results: randomforest

38 Results: randomforest

39 Results: randomforest Decision rules: water, emergent wetland, forested wetland, scrub/shrub wetland, upland classification Program for visualization: Orange

40 Results: randomforest

41 Results: randomforest

42 Results: randomforest, cont

43 Results: randomforest, cont

44 Results: randomforest, cont

45 Results: randomforest, cont

46 Conclusions Polarimetric decompositions are complicated and seem beneficial, but require further analysis It is more accurate to classify wetland from upland areas than wetland type using this data The key input layers for decision tree classification of wetlands & wetland classes include (order of importance): Leaf-on NIR Leaf-off green, blue, red, NIR Slope & elevation HV early & late season VH late season

47 Ongoing Work Field reference data collect & analysis Statewide LiDAR collect underway Assessment of polarimetric decompositions Object oriented analysis: Training polygons & additional parameters

48 Future Work Other study areas: Minnesota & Red Rivers Additional datasets: Radar sensors ALOS PALSAR (L-Band, 23 cm) & TerraSAR-X (X-Band, 3 cm) More dates of imagery Hyperspectral optical Applications for emergency response and wetland restoration

49 Project funded & supported by: US Fish & Wildlife Service MN Department of Natural Resources Legislative Citizen Commission on Minnesota Resources Environment and Natural Resources Trust Fund Canadian Center for Remote Sensing Canadian Space Agency SOAR Program University of Minnesota Academic Advisers: Joe Knight and Marvin Bauer

50 Thank you for your attention! Any questions?

Assessment of Polarimetric and Spatial Features for Built-up Mapping using ALOS PALSAR Polarimetric SAR Data

Assessment of Polarimetric and Spatial Features for Built-up Mapping using ALOS PALSAR Polarimetric SAR Data Assessment of Polarimetric and patial Features for Built-up Mapping using ALO PALAR Polarimetric AR Data hucheng YOU, China Key words: ALO PALAR, support vector machine, random forest, built-up mapping

More information

Flood detection using radar data Basic principles

Flood detection using radar data Basic principles Flood detection using radar data Basic principles André Twele, Sandro Martinis and Jan-Peter Mund German Remote Sensing Data Center (DFD) 1 Overview Introduction Basic principles of flood detection using

More information

Polarimetric Radar Remote Sensing

Polarimetric Radar Remote Sensing Proceedings of ISAP2007, Niigata, Japan 1A2 Polarimetric Radar Remote Sensing Yoshio Yamaguchi Department of Information Engineering, Niigata University Ikarashi 2-8050, Niigata, 950-2181, Japan yamaguch@ie.niigata-u.ac.jp

More information

SAR Polarimetry Workstation

SAR Polarimetry Workstation Technical Specifications SAR Polarimetry Workstation The SAR Polarimetry Workstation provides a complete set of tools and applications designed specifically for the processing and analysis of Polarimetric

More information

SAR Polarimetry Workstation

SAR Polarimetry Workstation SAR Polarimetry Workstation The PCI Geomatics SAR Polarimetry Workstation provides a complete set of tools and applications designed specifically for the processing and analysis of Polarimetric SAR (POLSAR)

More information

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI AT09.98 Applied GIS and Remote Sensing for Disaster Mitigation #6 Data Acquisition for Built Environment 9 October, 2002 Fumio YAMAZAKI yamazaki@ait.ac.th http://www.star.ait.ac.th/~yamazaki/ Course Outline

More information

Signal Processing Laboratory

Signal Processing Laboratory C.S.L Liege Science Park Avenue du Pré-Aily B-4031 ANGLEUR Belgium Tel: +32.4.382.46.00 Fax: +32.4.367.56.13 Signal Processing Laboratory Anne Orban VITO June 16, 2011 C. Barbier : the team Remote Sensing

More information

CLASSIFICATION OF EARTH TERRAIN COVERS USING THE MODIFIED FOUR- COMPONENT SCATTERING POWER DECOMPOSITION,

CLASSIFICATION OF EARTH TERRAIN COVERS USING THE MODIFIED FOUR- COMPONENT SCATTERING POWER DECOMPOSITION, CLASSIFICATION OF EARTH TERRAIN COVERS USING THE MODIFIED FOUR- COMPONENT SCATTERING POWER DECOMPOSITION, Boularbah Souissi (1), Mounira Ouarzeddine (1),, Aichouche Belhadj-Aissa (1) USTHB, F.E.I, BP N

More information

CLASSIFICATION STRATEGIES FOR POLARIMETRIC SAR SEA ICE DATA

CLASSIFICATION STRATEGIES FOR POLARIMETRIC SAR SEA ICE DATA CLASSIFICATION STRATEGIES FOR POLARIMETRIC SAR SEA ICE DATA Bernd Scheuchl (), Irena Hajnsek (), Ian Cumming () () Department of Electrical and Computer Engineering, University of British Columbia 56 Main

More information

Exploiting the High Dimensionality of Polarimetric Interferometric Synthetic Aperture Radar Observations

Exploiting the High Dimensionality of Polarimetric Interferometric Synthetic Aperture Radar Observations Exploiting the High Dimensionality of Polarimetric Interferometric Synthetic Aperture Radar Observations Robert Riley rriley@sandia.gov R. Derek West rdwest@sandia.gov SAND2017 11133 C This work was supported

More information

K&C Phase 3. Earth Observation Research Group (EO), CSIR, PO Box 395, Pretoria, 0001, b

K&C Phase 3. Earth Observation Research Group (EO), CSIR, PO Box 395, Pretoria, 0001,  b WOODY STRUCTURAL MODELLING IN SOUTHERN AFRICAN SAVANNAHS USING MULTI-FREQUENCY SAR AND OPTICAL INTEGRATED DATA APPROACHES: ONE STEP TO REGIONAL MAPPING K&C Phase 3 Renaud Mathieu a, Laven Naidoo a, Konrad

More information

Automated feature extraction by combining polarimetric SAR and object-based image analysis for monitoring of natural resource exploitation

Automated feature extraction by combining polarimetric SAR and object-based image analysis for monitoring of natural resource exploitation DLR.de Chart 1 Automated feature extraction by combining polarimetric SAR and object-based image analysis for monitoring of natural resource exploitation Simon Plank, Alexander Mager, Elisabeth Schoepfer

More information

CLASSIFICATION OF FULLY POLARIMETRIC SAR SATELLITE DATA USING GENETIC ALGORITHM AND NEURAL NETWORKS

CLASSIFICATION OF FULLY POLARIMETRIC SAR SATELLITE DATA USING GENETIC ALGORITHM AND NEURAL NETWORKS CLASSIFICATION OF FULLY POLARIMETRIC SAR SATELLITE DATA USING GENETIC ALGORITHM AND NEURAL NETWORKS Iman Entezari 1, Babak Mansouri 2, and Mahdi Motagh 1 1 Department of Geomatics Engineering, College

More information

Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived from a Geodesic Distance

Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived from a Geodesic Distance 1 Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived from a Geodesic Distance Debanshu Ratha Student Member, IEEE, Avik Bhattacharya, Senior Member, IEEE arxiv:1712.00427v1

More information

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE HYPERSPECTRAL (e.g. AVIRIS) SLAR Real Aperture

More information

Utilization of four-component scattering power decomposition method for glaciated terrain classification

Utilization of four-component scattering power decomposition method for glaciated terrain classification Utilization of four-component scattering power decomposition method for glaciated terrain classification Gulab Singh, Y. Yamaguchi, and S-E. Park Graduate School of Science and Technology, Niigata University,

More information

SENTINEL-1 Toolbox. SAR Basics Tutorial Issued March 2015 Updated August Luis Veci

SENTINEL-1 Toolbox. SAR Basics Tutorial Issued March 2015 Updated August Luis Veci SENTINEL-1 Toolbox SAR Basics Tutorial Issued March 2015 Updated August 2016 Luis Veci Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ http://step.esa.int SAR Basics Tutorial The goal

More information

Decision Fusion of Classifiers for Multifrequency PolSAR and Optical Data Classification

Decision Fusion of Classifiers for Multifrequency PolSAR and Optical Data Classification Decision Fusion of Classifiers for Multifrequency PolSAR and Optical Data Classification N. Gökhan Kasapoğlu and Torbjørn Eltoft Dept. of Physics and Technology University of Tromsø Tromsø, Norway gokhan.kasapoglu@uit.no

More information

Four-component Scattering Power Decomposition with Rotation of Coherency Matrix

Four-component Scattering Power Decomposition with Rotation of Coherency Matrix 1 Four-component Scattering Power Decomposition with Rotation of Coherency Matrix Yoshio Yamaguchi, Fellow, IEEE, Akinobu Sato, Wolfgang Martin Boerner, Life Fellow, IEEE, Ryoichi Sato, Member, IEEE, and

More information

A Hybrid Entropy Decomposition and Support Vector Machine Method for Agricultural Crop Type Classification

A Hybrid Entropy Decomposition and Support Vector Machine Method for Agricultural Crop Type Classification PIERS ONLINE, VOL. 3, NO. 5, 2007 620 A Hybrid Entropy Decomposition and Support Vector Machine Method for Agricultural Crop Type Classification Chue-Poh Tan 1, Hong-Tat Ewe 2, and Hean-Teik Chuah 1 1

More information

Land Cover Classification Techniques

Land Cover Classification Techniques Land Cover Classification Techniques supervised classification and random forests Developed by remote sensing specialists at the USFS Geospatial Technology and Applications Center (GTAC), located in Salt

More information

The Open Statistics & Probability Journal

The Open Statistics & Probability Journal Send Orders for Reprints to reprints@benthamscience.ae 10 The Open Statistics & Probability Journal, 2016, 7, 10-19 The Open Statistics & Probability Journal Content list available at: www.benthamopen.com/tospj/

More information

Sang Hoon Hong (1)(2)(3) and Shimon Wdowinski (2)

Sang Hoon Hong (1)(2)(3) and Shimon Wdowinski (2) Revising vegetation scattering theories: Adding a rotated dihedral double bounce scattering to Explain cross polarimetric SAR observations over wetlands Sang Hoon Hong (1)()(3) and Shimon Wdowinski ()

More information

Classifying UAVSAR Polarimetric Synthetic Aperture Radar (PolSAR) Imagery Using Target Decomposition Features

Classifying UAVSAR Polarimetric Synthetic Aperture Radar (PolSAR) Imagery Using Target Decomposition Features Proceedings Classifying UAVSAR Polarimetric Synthetic Aperture Radar (PolSAR) Imagery Using Target Decomposition Features Ghazaleh Alijani 1, *, Mahdi Hasanlou 2 and Zahra Azizi 1 1 Department of GIS/RS,

More information

Forest Structure Estimation in the Canadian Boreal forest

Forest Structure Estimation in the Canadian Boreal forest Forest Structure Estimation in the Canadian Boreal forest Michael L. Benson Leland E.Pierce Kathleen M. Bergen Kamal Sarabandi Kailai Zhang Caitlin E. Ryan The University of Michigan, Radiation Lab & School

More information

PolSARpro v4.03 Forest Applications

PolSARpro v4.03 Forest Applications PolSARpro v4.03 Forest Applications Laurent Ferro-Famil Lecture on polarimetric SAR Theory and applications to agriculture & vegetation Thursday 19 April, morning Pol-InSAR Tutorial Forest Application

More information

INVESTIGATING THE PERFORMANCE OF SAR POLARIMETRIC FEATURES IN LAND-COVER CLASSIFICATION

INVESTIGATING THE PERFORMANCE OF SAR POLARIMETRIC FEATURES IN LAND-COVER CLASSIFICATION INVESTIGATING THE PERFORMANCE OF SAR POLARIMETRIC FEATURES IN LAND-COVER CLASSIFICATION Liang Gao & Yifang Ban Division of Geoinformatics, Royal Institute of Technology (KTH) Drottning Kristinas väg 30,

More information

InSAR Operational and Processing Steps for DEM Generation

InSAR Operational and Processing Steps for DEM Generation InSAR Operational and Processing Steps for DEM Generation By F. I. Okeke Department of Geoinformatics and Surveying, University of Nigeria, Enugu Campus Tel: 2-80-5627286 Email:francisokeke@yahoo.com Promoting

More information

ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) 1 INTRODUCTION

ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) 1 INTRODUCTION ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) Eric POTTIER (1), Jong-Sen LEE (2), Laurent FERRO-FAMIL (1) (1) I.E.T.R UMR CNRS 6164 University of Rennes1 Image and Remote

More information

FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR

FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR P. Pasquali (1), A. Monti Guarnieri (2), D. D Aria (3), L. Costa (3), D. Small (4), M. Jehle (4) and B. Rosich (5) (1) sarmap s.a., Cascine di Barico,

More information

RICE FIELD INTERPRETATION WITH TEMPORAL SENTINEL-1 SYNTHETIC APERTURE RADAR IMAGE DATA

RICE FIELD INTERPRETATION WITH TEMPORAL SENTINEL-1 SYNTHETIC APERTURE RADAR IMAGE DATA RICE FIELD INTERPRETATION WITH TEMPORAL SENTINEL-1 SYNTHETIC APERTURE RADAR IMAGE DATA 1 Chia-Hao Chang ( 張家豪 ) 2 Chiou-Shann Fuh ( 傅楸善 ) 2 Shi-Wei Wang ( 王熹偉 ) 1 Dept. of Geography, 2 Dept. of Computer

More information

SAR IMAGE PROCESSING FOR CROP MONITORING

SAR IMAGE PROCESSING FOR CROP MONITORING SAR IMAGE PROCESSING FOR CROP MONITORING Anne Orban, Dominique Derauw, and Christian Barbier Centre Spatial de Liège Université de Liège cbarbier@ulg.ac.be Agriculture and Vegetation at a Local Scale Habay-La-Neuve,

More information

Incidence Angle Normalization of Backscatter Data. I. Mladenova and T. J. Jackson Feb. 25, 2011

Incidence Angle Normalization of Backscatter Data. I. Mladenova and T. J. Jackson Feb. 25, 2011 Incidence Angle Normalization of Backscatter Data I. Mladenova and T. J. Jackson Feb. 25, 2011 Introduction SMAP: Soil Moisture Active Passive (NASA/JPL, 2014) We need backscatter data for algorithm development

More information

ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) 1 INTRODUCTION

ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) 1 INTRODUCTION ADVANCED CONCEPTS IN POLARIMETRY PART 2 (Polarimetric Target Classification) Eric POTTIER (1), Jong-Sen LEE (2), Laurent FERRO-FAMIL (1) (1) I.E.T.R UMR CNRS 6164 University of Rennes1 Image and Remote

More information

ALOS PALSAR. Orthorectification Tutorial Issued March 2015 Updated August Luis Veci

ALOS PALSAR. Orthorectification Tutorial Issued March 2015 Updated August Luis Veci ALOS PALSAR Orthorectification Tutorial Issued March 2015 Updated August 2016 Luis Veci Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ http://step.esa.int ALOS PALSAR Orthorectification

More information

Design and Analysis of an Euler Transformation Algorithm Applied to Full-Polarimetric ISAR Imagery

Design and Analysis of an Euler Transformation Algorithm Applied to Full-Polarimetric ISAR Imagery Design and Analysis of an Euler Transformation Algorithm Applied to Full-Polarimetric ISAR Imagery Christopher S. Baird Advisor: Robert Giles Submillimeter-Wave Technology Laboratory (STL) Presented in

More information

Processing and Analysis of ALOS/Palsar Imagery

Processing and Analysis of ALOS/Palsar Imagery Processing and Analysis of ALOS/Palsar Imagery Yrjö Rauste, Anne Lönnqvist, and Heikki Ahola Kaukokartoituspäivät 6.11.2006 NewSAR Project The newest generation of space borne SAR sensors have polarimetric

More information

Do It Yourself 2. Representations of polarimetric information

Do It Yourself 2. Representations of polarimetric information Do It Yourself 2 Representations of polarimetric information The objectives of this second Do It Yourself concern the representation of the polarimetric properties of scatterers or media. 1. COLOR CODED

More information

LIDAR and Terrain Models: In 3D!

LIDAR and Terrain Models: In 3D! LIDAR and Terrain Models: In 3D! Stuart.green@teagasc.ie http://www.esri.com/library/whitepapers/pdfs/lidar-analysis-forestry.pdf http://www.csc.noaa.gov/digitalcoast/_/pdf/refinement_of_topographic_lidar_to_create_a_bare_e

More information

Automated Feature Extraction from Aerial Imagery for Forestry Projects

Automated Feature Extraction from Aerial Imagery for Forestry Projects Automated Feature Extraction from Aerial Imagery for Forestry Projects Esri UC 2015 UC706 Tuesday July 21 Bart Matthews - Photogrammetrist US Forest Service Southwestern Region Brad Weigle Sr. Program

More information

POLARIMETRIC synthetic aperture radar (SAR) is a

POLARIMETRIC synthetic aperture radar (SAR) is a IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 8, AUGUST 2016 4445 Soil Moisture Retrieval in Agricultural Fields Using Adaptive Model-Based Polarimetric Decomposition of SAR Data Lian

More information

4-Component Scattering Power Decomposition with Phase Rotation of Coherency Matrix

4-Component Scattering Power Decomposition with Phase Rotation of Coherency Matrix 4-Component Scattering Power Decomposition with Phase Rotation o Coherency Matrix Gulab Singh*, Yoshio Yamaguchi and S.-E. Park Niigata University *g.singh@wave.ie.niigata-u.ac.jp Outline Introduction:

More information

In addition, the image registration and geocoding functionality is also available as a separate GEO package.

In addition, the image registration and geocoding functionality is also available as a separate GEO package. GAMMA Software information: GAMMA Software supports the entire processing from SAR raw data to products such as digital elevation models, displacement maps and landuse maps. The software is grouped into

More information

Hydrological network detection for SWOT data. S. Lobry, F. Cao, R. Fjortoft, JM Nicolas, F. Tupin

Hydrological network detection for SWOT data. S. Lobry, F. Cao, R. Fjortoft, JM Nicolas, F. Tupin Hydrological network detection for SWOT data S. Lobry, F. Cao, R. Fjortoft, JM Nicolas, F. Tupin IRS SPU avril 2016 SWOT mission Large water bodies detection Fine network detection Further works page 1

More information

Coherence Based Polarimetric SAR Tomography

Coherence Based Polarimetric SAR Tomography I J C T A, 9(3), 2016, pp. 133-141 International Science Press Coherence Based Polarimetric SAR Tomography P. Saranya*, and K. Vani** Abstract: Synthetic Aperture Radar (SAR) three dimensional image provides

More information

Lidar Talking Points Status of lidar collection in Pennsylvania Estimated cost and timeline

Lidar Talking Points Status of lidar collection in Pennsylvania Estimated cost and timeline Lidar Talking Points Pennsylvania has an immediate need for new lidar (topographic) data coverage. Some uses of the data are enumerated later in this document. USGS has calculated an average return on

More information

Polarimetric SAR Image Classification Using Radial Basis Function Neural Network

Polarimetric SAR Image Classification Using Radial Basis Function Neural Network PIERS ONLINE, VOL. 6, NO. 5, 2010 470 Polarimetric SAR Image Classification Using Radial Basis Function Neural Network Turker Ince Izmir University of Economics, Izmir, Turkey Abstract This paper presents

More information

Lecture 11. LiDAR, RADAR

Lecture 11. LiDAR, RADAR NRMT 2270, Photogrammetry/Remote Sensing Lecture 11 Calculating the Number of Photos and Flight Lines in a Photo Project LiDAR, RADAR Tomislav Sapic GIS Technologist Faculty of Natural Resources Management

More information

Study of the Effects of Target Geometry on Synthetic Aperture Radar Images using Simulation Studies

Study of the Effects of Target Geometry on Synthetic Aperture Radar Images using Simulation Studies Study of the Effects of Target Geometry on Synthetic Aperture Radar Images using Simulation Studies K. Tummala a,*, A. K. Jha a, S. Kumar b a Geoinformatics Dept., Indian Institute of Remote Sensing, Dehradun,

More information

Disaster Monitoring by Fully Polarimetric SAR Data Acquired with ALOS-PALSAR

Disaster Monitoring by Fully Polarimetric SAR Data Acquired with ALOS-PALSAR 1 Disaster Monitoring by Fully Polarimetric SAR Data Acquired with ALOS-PALSAR Yoshio Yamaguchi, Fellow, IEEE Abstract This paper presents scattering power decomposition images of fully polarimetric synthetic

More information

Defining Remote Sensing

Defining Remote Sensing Defining Remote Sensing Remote Sensing is a technology for sampling electromagnetic radiation to acquire and interpret non-immediate geospatial data from which to extract information about features, objects,

More information

MODELLING OF THE SCATTERING BY A SMOOTH DIELECTRIC CYLINDER: STUDY OF THE COMPLEX SCATTERING MATRIX

MODELLING OF THE SCATTERING BY A SMOOTH DIELECTRIC CYLINDER: STUDY OF THE COMPLEX SCATTERING MATRIX MODELLING OF THE SCATTERING BY A SMOOTH DIELECTRIC CYLINDER: STUDY OF THE COMPLEX SCATTERING MATRIX L Thirion 1, C Dahon 2,3, A Lefevre 4, I Chênerie 1, L Ferro-Famil 2, C Titin-Schnaider 3 1 AD2M, Université

More information

ALOS PALSAR VERIFICATION PROCESSOR

ALOS PALSAR VERIFICATION PROCESSOR ALOS PALSAR VERIFICATION PROCESSOR P. Pasquali (1), A. Monti Guarnieri (2), D. D Aria (3), L. Costa (3), D. Small (4), M. Jehle (4) and B. Rosich (5) (1) sarmap s.a., Cascine di Barico, 6989 Purasca, Switzerland,

More information

ADVANCED CONCEPTS IN POLARIMETRIC SAR IMAGE ANALYSIS A TUTORIAL REVIEW

ADVANCED CONCEPTS IN POLARIMETRIC SAR IMAGE ANALYSIS A TUTORIAL REVIEW ADVANCED CONCEPTS IN POLARIMETRIC SAR IMAGE ANALYSIS A TUTORIAL REVIEW ABSTRACT Eric POTTIER (), Jong-Sen LEE (2), Laurent FERRO-FAMIL () () : I.E.T.R UMR CNRS 664, University of Rennes Image and Remote

More information

IMAGING WITH SYNTHETIC APERTURE RADAR

IMAGING WITH SYNTHETIC APERTURE RADAR ENGINEERING SCIENCES ; t rical Bngi.net IMAGING WITH SYNTHETIC APERTURE RADAR Didier Massonnet & Jean-Claude Souyris EPFL Press A Swiss academic publisher distributed by CRC Press Table of Contents Acknowledgements

More information

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course Do It Yourself 8 Polarization Coherence Tomography (P.C.T) Training Course 1 Objectives To provide a self taught introduction to Polarization Coherence Tomography (PCT) processing techniques to enable

More information

Xiaoguang Cheng a, Wenli Huang b & Jianya Gong a a State Key Laboratory of Information Engineering in Surveying,

Xiaoguang Cheng a, Wenli Huang b & Jianya Gong a a State Key Laboratory of Information Engineering in Surveying, This article was downloaded by: [University Of Maryland] On: 20 November 2013, At: 18:34 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

ENVI Tutorial: Basic SAR Processing and Analysis

ENVI Tutorial: Basic SAR Processing and Analysis ENVI Tutorial: Basic SAR Processing and Analysis Table of Contents OVERVIEW OF THIS TUTORIAL...2 Background...2 SINGLE-BAND SAR PROCESSING...3 Read and Display RADARSAT CEOS Data...3 Review CEOS Header...3

More information

MULTI-TEMPORAL SAR DATA FILTERING FOR LAND APPLICATIONS. I i is the estimate of the local mean backscattering

MULTI-TEMPORAL SAR DATA FILTERING FOR LAND APPLICATIONS. I i is the estimate of the local mean backscattering MULTI-TEMPORAL SAR DATA FILTERING FOR LAND APPLICATIONS Urs Wegmüller (1), Maurizio Santoro (1), and Charles Werner (1) (1) Gamma Remote Sensing AG, Worbstrasse 225, CH-3073 Gümligen, Switzerland http://www.gamma-rs.ch,

More information

IMAGINE Objective. The Future of Feature Extraction, Update & Change Mapping

IMAGINE Objective. The Future of Feature Extraction, Update & Change Mapping IMAGINE ive The Future of Feature Extraction, Update & Change Mapping IMAGINE ive provides object based multi-scale image classification and feature extraction capabilities to reliably build and maintain

More information

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR)

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR) Airborne LiDAR Data Acquisition for Forestry Applications Mischa Hey WSI (Corvallis, OR) WSI Services Corvallis, OR Airborne Mapping: Light Detection and Ranging (LiDAR) Thermal Infrared Imagery 4-Band

More information

Attribute Accuracy. Quantitative accuracy refers to the level of bias in estimating the values assigned such as estimated values of ph in a soil map.

Attribute Accuracy. Quantitative accuracy refers to the level of bias in estimating the values assigned such as estimated values of ph in a soil map. Attribute Accuracy Objectives (Entry) This basic concept of attribute accuracy has been introduced in the unit of quality and coverage. This unit will teach a basic technique to quantify the attribute

More information

PROJECT BRIEFINGS: Statewide 2008 Orthoimagery LiDAR Elevation Data Program MN Geospatial Information Office. Chris Cialek

PROJECT BRIEFINGS: Statewide 2008 Orthoimagery LiDAR Elevation Data Program MN Geospatial Information Office. Chris Cialek PROJECT BRIEFINGS: Statewide 2008 Orthoimagery LiDAR Elevation Data Program MN Geospatial Information Office Chris Cialek MN Land Management Information Center (LMIC) chris.cialek@state.mn.us Mid-West

More information

Bistatic SAR coherence improvement through spatially variant polarimetry

Bistatic SAR coherence improvement through spatially variant polarimetry 1 Bistatic SAR coherence improvement through spatially variant polarimetry By Daniel Andre Centre for Electronic Warfare, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, UK. Abstract

More information

ENVI Classic Tutorial: Basic SAR Processing and Analysis

ENVI Classic Tutorial: Basic SAR Processing and Analysis ENVI Classic Tutorial: Basic SAR Processing and Analysis Basic SAR Processing and Analysis 2 Files Used in this Tutorial 2 Background 2 Single-Band SAR Processing 3 Read and Display RADARSAT CEOS Data

More information

BUILT-UP AREAS MAPPING AT GLOBAL SCALE BASED ON ADAPATIVE PARAMETRIC THRESHOLDING OF SENTINEL-1 INTENSITY & COHERENCE TIME SERIES

BUILT-UP AREAS MAPPING AT GLOBAL SCALE BASED ON ADAPATIVE PARAMETRIC THRESHOLDING OF SENTINEL-1 INTENSITY & COHERENCE TIME SERIES BUILT-UP AREAS MAPPING AT GLOBAL SCALE BASED ON ADAPATIVE PARAMETRIC THRESHOLDING OF SENTINEL-1 INTENSITY & COHERENCE TIME SERIES M. Chini, R. Pelich, R. Hostache, P. Matgen MultiTemp 2017 June 27-29,

More information

INTEGRATION OF TREE DATABASE DERIVED FROM SATELLITE IMAGERY AND LIDAR POINT CLOUD DATA

INTEGRATION OF TREE DATABASE DERIVED FROM SATELLITE IMAGERY AND LIDAR POINT CLOUD DATA INTEGRATION OF TREE DATABASE DERIVED FROM SATELLITE IMAGERY AND LIDAR POINT CLOUD DATA S. C. Liew 1, X. Huang 1, E. S. Lin 2, C. Shi 1, A. T. K. Yee 2, A. Tandon 2 1 Centre for Remote Imaging, Sensing

More information

SAR Imaging in the Time Domain for

SAR Imaging in the Time Domain for SAR Imaging in the Time Domain for Nonlinear Sensor Trajectories and SAR Tomography Othmar Frey Co-Authors: Christophe Magnard, Maurice Rüegg, Erich Meier Remote Sensing Laboratories University of Zurich,

More information

Orthorectifying ALOS PALSAR. Quick Guide

Orthorectifying ALOS PALSAR. Quick Guide Orthorectifying ALOS PALSAR Quick Guide Copyright Notice This publication is a copyrighted work owned by: PCI Geomatics 50 West Wilmot Street Richmond Hill, Ontario Canada L4B 1M5 www.pcigeomatics.com

More information

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line.

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line. Lecture 06 Raster and Vector Data Models Part (1) 1 Common Data Models Vector Raster Y Points Points ( x,y ) Line Area Line Area 2 X 1 3 Raster uses a grid cell structure Vector is more like a drawn map

More information

Memorandum. Clint Slatton Prof. Brian Evans Term project idea for Multidimensional Signal Processing (EE381k)

Memorandum. Clint Slatton Prof. Brian Evans Term project idea for Multidimensional Signal Processing (EE381k) Memorandum From: To: Subject: Date : Clint Slatton Prof. Brian Evans Term project idea for Multidimensional Signal Processing (EE381k) 16-Sep-98 Project title: Minimizing segmentation discontinuities in

More information

Preliminary Results of Polarimetric Characteristics for C-band Quad-Polarization GB-SAR Images Using H/A/a Polarimetric Decomposition Theorem

Preliminary Results of Polarimetric Characteristics for C-band Quad-Polarization GB-SAR Images Using H/A/a Polarimetric Decomposition Theorem Korean Journal of Remote Sensing, Vol.25, No.6, 2009, pp.531~546 Preliminary Results of Polarimetric Characteristics for C-band Quad-Polarization GB-SAR Images Using H/A/a Polarimetric Decomposition Theorem

More information

Workshops funded by the Minnesota Environment and Natural Resources Trust Fund

Workshops funded by the Minnesota Environment and Natural Resources Trust Fund Workshops funded by the Minnesota Environment and Natural Resources Trust Fund Conservation Applications of LiDAR Data Workshops funded by: Minnesota Environment and Natural Resources Trust Fund Presented

More information

BRIEF EXAMPLES OF PRACTICAL USES OF LIDAR

BRIEF EXAMPLES OF PRACTICAL USES OF LIDAR BRIEF EXAMPLES OF PRACTICAL USES OF LIDAR PURDUE ROAD SCHOOL - 3/9/2016 CHRIS MORSE USDA-NRCS, STATE GIS COORDINATOR LIDAR/DEM SOURCE DATES LiDAR and its derivatives (DEMs) have a collection date for data

More information

Submerged Aquatic Vegetation Mapping using Object-Based Image Analysis with Lidar and RGB Imagery

Submerged Aquatic Vegetation Mapping using Object-Based Image Analysis with Lidar and RGB Imagery Submerged Aquatic Vegetation Mapping using Object-Based Image Analysis with Lidar and RGB Imagery Victoria Price Version 1, April 16 2015 Submerged Aquatic Vegetation Mapping using Object-Based Image Analysis

More information

Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data

Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data remote sensing Article Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data Yannick Duguay 1,2,,, Monique Bernier 1,2,, Esther Lévesque 2,3 and Florent Domine 2,4 1 Centre

More information

APPENDIX E2. Vernal Pool Watershed Mapping

APPENDIX E2. Vernal Pool Watershed Mapping APPENDIX E2 Vernal Pool Watershed Mapping MEMORANDUM To: U.S. Fish and Wildlife Service From: Tyler Friesen, Dudek Subject: SSHCP Vernal Pool Watershed Analysis Using LIDAR Data Date: February 6, 2014

More information

Existing Elevation Data Sets. Quality Level 2 (QL2) Lidar Data Sets. Better Land Characterization More Accurate Results!

Existing Elevation Data Sets. Quality Level 2 (QL2) Lidar Data Sets. Better Land Characterization More Accurate Results! Existing Elevation Data Sets Out of Date: Most > 40 yrs old Data range from 15 yrs old to > 70 yrs old Spatial Resolution: 33 ft (10 m) or coarser Vertical Accuracy: 3.3 ft 6.6 ft (1 2 m) or worse Quality

More information

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA M. Lorraine Tighe Director, Geospatial Solutions Intermap Session: Photogrammetry & Image Processing

More information

Radar Target Identification Using Spatial Matched Filters. L.M. Novak, G.J. Owirka, and C.M. Netishen MIT Lincoln Laboratory

Radar Target Identification Using Spatial Matched Filters. L.M. Novak, G.J. Owirka, and C.M. Netishen MIT Lincoln Laboratory Radar Target Identification Using Spatial Matched Filters L.M. Novak, G.J. Owirka, and C.M. Netishen MIT Lincoln Laboratory Abstract The application of spatial matched filter classifiers to the synthetic

More information

A Comparison of ALOS PALSAR-2 Calibration Data by Using External DEM

A Comparison of ALOS PALSAR-2 Calibration Data by Using External DEM CEOS SAR Calibration and Validation Workshop 2016 A Comparison of ALOS PALSAR-2 Calibration Data by Using External DEM Tokyo Denki University, Japan, 7 th -9 th September 2016 *Choen KIM College of Forest

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

A knowledge based classification method for polarimetric SAR data

A knowledge based classification method for polarimetric SAR data A knowledge based classification method for polarimetric AR data M. Dabboor*, V. Karathanassi Laboratory of Remote ensing, chool of Rural and urveying Engineering, National Technical University of Athens,

More information

mechanical properties such that the waves emanated almost entirely polarisized. In a simple radar system, the same antenna is often arranged so that t

mechanical properties such that the waves emanated almost entirely polarisized. In a simple radar system, the same antenna is often arranged so that t EXTRACTING KEY FOR LANDCOVER CHANGE USING MULTITEMPORAL PALSAR IMAGES & ITS CALIBRATION TO RELEVANT OPTICAL IMAGES PI No 389 Fahmi Amhar, Antonius B. Wijanarto Geomatics Research Division National Coordinating

More information

Polarimetric Decomposition of SAR Data for Forest Structure Assessment

Polarimetric Decomposition of SAR Data for Forest Structure Assessment Polarimetric Decomposition of SAR Data for Forest Structure Assessment Master s Thesis in the Master Degree Program, Wireless, Photonics and Space Engineering SHRINIWAS AGASHE Department of Earth and Space

More information

URBAN FOOTPRINT MAPPING WITH SENTINEL-1 DATA

URBAN FOOTPRINT MAPPING WITH SENTINEL-1 DATA URBAN FOOTPRINT MAPPING WITH SENTINEL-1 DATA Data: Sentinel-1A IW SLC 1SSV: S1A_IW_SLC 1SSV_20160102T005143_20160102T005208_009308_00D72A_849D S1A_IW_SLC 1SSV_20160126T005142_20160126T005207_009658_00E14A_49C0

More information

Software Tool PolSARpro v3.0

Software Tool PolSARpro v3.0 Software Tool PolSARpro v3.0 Eric POTTIER Tuesday 4 September, Lecture D2L5-2 04/09/07 Lecture D2L5 part 2 Software Tool : PolSARpro v3.0 Eric POTTIER 1 CONTEXT The initiative development of PolSARpro

More information

SAR Orthorectification and Mosaicking

SAR Orthorectification and Mosaicking White Paper SAR Orthorectification and Mosaicking John Wessels: Senior Scientist PCI Geomatics SAR Orthorectification and Mosaicking This data set was provided by Defence Research and Development Canada

More information

GEOBIA for ArcGIS (presentation) Jacek Urbanski

GEOBIA for ArcGIS (presentation) Jacek Urbanski GEOBIA for ArcGIS (presentation) Jacek Urbanski INTEGRATION OF GEOBIA WITH GIS FOR SEMI-AUTOMATIC LAND COVER MAPPING FROM LANDSAT 8 IMAGERY Presented at 5th GEOBIA conference 21 24 May in Thessaloniki.

More information

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications N.J.P.L.S. An Introduction to LiDAR Concepts and Applications Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy Airborne Laser

More information

ALOS-2 PALSAR-2 support in GAMMA Software

ALOS-2 PALSAR-2 support in GAMMA Software ALOS-2 PALSAR-2 support in GAMMA Software Urs Wegmüller, Charles Werner, Andreas Wiesmann, Gamma Remote Sensing AG CH-3073 Gümligen, http://www.gamma-rs.ch 11-Sep-2014 1. Introduction JAXA has made available

More information

GIS Data Collection. This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues.

GIS Data Collection. This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues. 9 GIS Data Collection OVERVIEW This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues. It distinguishes between primary (direct measurement)

More information

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Operations What Do I Need? Classify Merge Combine Cross Scan Score Warp Respace Cover Subscene Rotate Translators

More information

Detection of Buried Objects using GPR Change Detection in Polarimetric Huynen Spaces

Detection of Buried Objects using GPR Change Detection in Polarimetric Huynen Spaces Detection of Buried Objects using GPR Change Detection in Polarimetric Huynen Spaces Firooz Sadjadi Lockheed Martin Corporation Saint Anthony, Minnesota USA firooz.sadjadi@ieee.org Anders Sullivan Army

More information

SARscape. Table of Contents. Preface 1. Overview 3. Basic Module 5. Focusing Module 11. Gamma and Gaussian Filtering Module 11

SARscape. Table of Contents. Preface 1. Overview 3. Basic Module 5. Focusing Module 11. Gamma and Gaussian Filtering Module 11 Table of Contents Preface 1 Overview 3 Basic Module 5 Focusing Module 11 Gamma and Gaussian Filtering Module 11 Interferometry Module 13 ScanSAR Interferometry Module 18 Polarimetry and Polarimetric Interferometry

More information

AN IMPROVED SAR RADIOMETRIC TERRAIN COR- RECTION METHOD AND ITS APPLICATION IN PO- LARIMETRIC SAR TERRAIN EFFECT REDUCTION

AN IMPROVED SAR RADIOMETRIC TERRAIN COR- RECTION METHOD AND ITS APPLICATION IN PO- LARIMETRIC SAR TERRAIN EFFECT REDUCTION Progress In Electromagnetics Research B, Vol. 54, 107 128, 2013 AN IMPROVED SAR RADIOMETRIC TERRAIN COR- RECTION METHOD AND ITS APPLICATION IN PO- LARIMETRIC SAR TERRAIN EFFECT REDUCTION Peng Wang 1, 2,

More information

SYNTHETIC aperture radar (SAR) is a remote sensing

SYNTHETIC aperture radar (SAR) is a remote sensing IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Integrating Color Features in Polarimetric SAR Image Classification Stefan Uhlmann, Student Member, IEEE, and Serkan Kiranyaz Abstract Polarimetric

More information

Mission Status and Data Availability: TanDEM-X

Mission Status and Data Availability: TanDEM-X Mission Status and Data Availability: TanDEM-X Irena Hajnsek, Thomas Busche, Alberto Moreira & TanDEM-X Team Microwaves and Radar Institute, German Aerospace Center irena.hajnsek@dlr.de 26-Jan-2009 Outline

More information

Aerial photography: Principles. Visual interpretation of aerial imagery

Aerial photography: Principles. Visual interpretation of aerial imagery Aerial photography: Principles Visual interpretation of aerial imagery Overview Introduction Benefits of aerial imagery Image interpretation Elements Tasks Strategies Keys Accuracy assessment Benefits

More information

Terrain categorization using LIDAR and multi-spectral data

Terrain categorization using LIDAR and multi-spectral data Terrain categorization using LIDAR and multi-spectral data Angela M. Puetz, R. C. Olsen, Michael A. Helt U.S. Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943 ampuetz@nps.edu, olsen@nps.edu

More information