Introduction. Optimization

Size: px
Start display at page:

Download "Introduction. Optimization"

Transcription

1 Introduction to Optimization Amy Langville SAMSI Undergraduate Workshop N.C. State University SAMSI 6/1/05

2 GOAL: minimize f(x 1, x 2, x 3, x 4, x 5 ) = x 2 1.5x 2x 3 + x 4 /x 5 PRIZE: $1 million # of independent variables = z = f(x 1, x 2, x 3, x 4, x 5 ) lives in R?

3 GOAL: minimize f(x 1, x 2, x 3, x 4, x 5 ) = x 2 1.5x 2x 3 + x 4 /x 5 PRIZE: $1 million # of independent variables = z = f(x 1, x 2, x 3, x 4, x 5 ) lives in R? Suppose you know little to nothing about Calculus or Optimization, could you win the prize? How?

4 GOAL: minimize f(x 1, x 2, x 3, x 4, x 5 ) = x 2 1.5x 2x 3 + x 4 /x 5 PRIZE: $1 million # of independent variables = z = f(x 1, x 2, x 3, x 4, x 5 ) lives in R? Suppose you know little to nothing about Calculus or Optimization, could you win the prize? How? Trial and Error, repeated function evaluations

5 Calculus III Review local min vs. global min vs. saddle point CPs and horizontal T. planes Local Mins and 2nd Derivative Test Global Mins and CPs and BPs Gradient = Direction of?

6 Constrained vs. Unconstrained Opt. Unconstrained min f(x, y) = x 2 + y 2 Constrained min f(x, y) = x 2 + y 2 s.t. x 0, y 0 min f(x, y) = x 2 + y 2 s.t. x > 0, y > 0 min f(x, y) = x 2 + y 2 s.t. 1 x 2,0 y 3 EVT min f(x, y) = x 2 + y 2 s.t. y = x + 2

7 Gradient Descent Methods Hillclimbers on Cloudy Day: max f(x, y) = min f(x, y) Initializations 1st-order and 2nd-order info. from partials: Gradient + Hessian Matlab function: gd(α, x 0 )

8 Iterative Methods Issues Convergence Test: what is it for gd.m? Convergence Proof: is gd.m guaranteed to converge to local min? For α > 0? For α < 0? Rate of Convergence: how many iterations? How do starting points x 0 affect number of iterations? Worst starting point for α = 4? Best?

9 Convergence of Optimization Methods global vs. local vs. stationary point vs. none Most optimization algorithms cannot guarantee convergence to global min, much less local min. However, some classes of optim. problems are particularly nice. Convex objective EX: z =.5(α x 2 + y 2 ), α > 0 Every local min is global min! Even for particularly tough optim. problems, sometimes the most popular, successful algorithms perform well on many problems, despite lack of convergence theory. Must qualify statements: I found best global min to date.

10 Your Least Squares Problem how many variables/unknowns n =? z = f(x 1, x 2,..., x n ) lives in R? can we graph z?

11 Nonsmooth, Nondifferentiable Surfaces Can t compute gradient f can t use GD Methods Line Search Methods Method of Alternating Variables (Coordinate Descent): solve series of 1-D problems what would these steps look like on contour map?

12 fminsearch and Nelder-Mead maintain basis of n + 1 points where n = # variables form simplex using these points; convex hull idea: move in direction away from worst of these points EX: n = 2, so maintain basis of 3 points living in xy-plane simplex is triangle create new simplex by moving away from worst point: reflect, expand, contract, shrink steps

13 PROPERTIES OF NELDER MEAD 117 x 3 x 3 x x x r x r x e Fig. 1. Nelder Mead simplices after a reflection and an expansion step. The original simplex is shown with a dashed line. x 3 x 3 x cc x x x 1 x c x r Fig. 2. Nelder Mead simplices after an outside contraction, an inside contraction, and a shrink. The original simplex is shown with a dashed line. then x (k+1) 1 = x (k) 1. Beyond this, whatever rule is used to define the original ordering may be applied after a shrink. We define the change index k of iteration k as the smallest index of a vertex that differs between iterations k and k + 1: (2.8) k = min{ i x (k) i x (k+1) i }. (Tie-breaking rules are needed to define a unique value of k.) When Algorithm NM terminates in step 2, 1 <k n; with termination in step 3, k = 1; with termination in step 4, 1 k n + 1; and with termination in step 5, k = 1 or 2. A statement that x j changes means that j is the change index at the relevant iteration. The rules and definitions given so far imply that, for a nonshrink iteration,

14 N-M Algorithm

15 N-M Algorithm

16 .! / #! $% ( % 10 0 SN1939A SN1939A, Residual norm as a function of λ 1 and λ Residual norm luminosity days λ λ 2 6 % 10 0 SN1939A SN1939A, Residual norm as a function of λ 1 and λ Residual norm luminosity days λ λ 2 6)

17 8 % 10 0 SN1939A SN1939A, Residual norm as a function of λ 1 and λ Residual norm luminosity days λ λ 2 Q % 10 0 SN1939A SN1939A, Residual norm as a function of λ 1 and λ Residual norm luminosity days λ λ 2 6

18 % 10 0 SN1939A SN1939A, Residual norm as a function of λ 1 and λ Residual norm luminosity days λ λ 2 68 % 10 0 SN1939A SN1939A, Residual norm as a function of λ 1 and λ Residual norm luminosity days λ λ 2 8(

19 Q(! % 10 0 SN1939A SN1939A, Residual norm as a function of λ 1 and λ Residual norm Starting guess λ 0 luminosity Optimizer λ * days λ λ 2 7 / 7, ( % * " - ( ) - * +( " $ $ " - * - * ( $,* * ( $,* ("/ - * ( $,* * ( $,* ("/ --"- ( $,* - * - * *+ ( "-$ --"- - * - ( ) + ( " $ $ " ( $,* * ( $,* * *+ ( "-$ 86

20 N-M Algorithm not proven to converge in general but, widely used easy to implement inexpensive: usually only 1-2 function evaluations/iteration no derivatives needed makes good progress at beginning of iteration history Assignments: Display N-M steps using options.display= iter ; fminsearch(fun,[x0],options); Write nested for loops in Matlab to generate grid of starting points (and later random starting points) for fminsearch to find best global min

21 Genetic/Evolutionary Algorithms at each iteration either mate or mutate possible solution vectors based on fitness of possible solution vectors as measured by objective function

Simplex of Nelder & Mead Algorithm

Simplex of Nelder & Mead Algorithm Simplex of N & M Simplex of Nelder & Mead Algorithm AKA the Amoeba algorithm In the class of direct search methods Unconstrained (although constraints can be added as part of error function) nonlinear

More information

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient Optimization Last time Root finding: definition, motivation Algorithms: Bisection, false position, secant, Newton-Raphson Convergence & tradeoffs Example applications of Newton s method Root finding in

More information

Introduction to unconstrained optimization - derivative-free methods

Introduction to unconstrained optimization - derivative-free methods Introduction to unconstrained optimization - derivative-free methods Jussi Hakanen Post-doctoral researcher Office: AgC426.3 jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Quantitative Macroeconomics Raül Santaeulàlia-Llopis MOVE-UAB and Barcelona GSE Fall 2018 Raül Santaeulàlia-Llopis (MOVE-UAB,BGSE) QM: Numerical Optimization Fall 2018 1 / 46 1 Introduction

More information

A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems

A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems 1 / 33 A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems Speaker: Julie Nutini Joint work with Warren Hare University of British Columbia (Okanagan) III Latin American

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

Multivariate Numerical Optimization

Multivariate Numerical Optimization Jianxin Wei March 1, 2013 Outline 1 Graphics for Function of Two Variables 2 Nelder-Mead Simplex Method 3 Steepest Descent Method 4 Newton s Method 5 Quasi-Newton s Method 6 Built-in R Function 7 Linear

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information

Fast oriented bounding box optimization on the rotation group SO(3, R)

Fast oriented bounding box optimization on the rotation group SO(3, R) Fast oriented bounding box optimization on the rotation group SO(3, R) Chia-Tche Chang 1, Bastien Gorissen 2,3 and Samuel Melchior 1,2 chia-tche.chang@uclouvain.be bastien.gorissen@cenaero.be samuel.melchior@uclouvain.be

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture XV (04.02.08) Contents: Function Minimization (see E. Lohrmann & V. Blobel) Optimization Problem Set of n independent variables Sometimes in addition some constraints

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

Algoritmi di Ottimizzazione: Parte A Aspetti generali e algoritmi classici

Algoritmi di Ottimizzazione: Parte A Aspetti generali e algoritmi classici Identificazione e Controllo Intelligente Algoritmi di Ottimizzazione: Parte A Aspetti generali e algoritmi classici David Naso A.A. 2006-2007 Identificazione e Controllo Intelligente 1 Search and optimization

More information

Nelder-Mead Enhanced Extreme Learning Machine

Nelder-Mead Enhanced Extreme Learning Machine Philip Reiner, Bogdan M. Wilamowski, "Nelder-Mead Enhanced Extreme Learning Machine", 7-th IEEE Intelligent Engineering Systems Conference, INES 23, Costa Rica, June 9-2., 29, pp. 225-23 Nelder-Mead Enhanced

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

NEW CERN PROTON SYNCHROTRON BEAM OPTIMIZATION TOOL

NEW CERN PROTON SYNCHROTRON BEAM OPTIMIZATION TOOL 16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing NEW CERN PROTON SYNCHROTRON BEAM OPTIMIZATION TOOL E. Piselli, A. Akroh CERN, Geneva,

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015 CPSC 340: Machine Learning and Data Mining Robust Regression Fall 2015 Admin Can you see Assignment 1 grades on UBC connect? Auditors, don t worry about it. You should already be working on Assignment

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Non-Derivative Optimization: Mathematics or Heuristics?

Non-Derivative Optimization: Mathematics or Heuristics? Non-Derivative Optimization: Mathematics or Heuristics? Margaret H. Wright Computer Science Department Courant Institute of Mathematical Sciences New York University Kovalevskaya Colloquium Berlin Mathematical

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Delaunay-based Derivative-free Optimization via Global Surrogate. Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley

Delaunay-based Derivative-free Optimization via Global Surrogate. Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley Delaunay-based Derivative-free Optimization via Global Surrogate Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley May 23, 2014 Delaunay-based Derivative-free Optimization via Global Surrogate Pooriya

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

PARALLELIZATION OF THE NELDER-MEAD SIMPLEX ALGORITHM

PARALLELIZATION OF THE NELDER-MEAD SIMPLEX ALGORITHM PARALLELIZATION OF THE NELDER-MEAD SIMPLEX ALGORITHM Scott Wu Montgomery Blair High School Silver Spring, Maryland Paul Kienzle Center for Neutron Research, National Institute of Standards and Technology

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Lecture 3: Convex sets

Lecture 3: Convex sets Lecture 3: Convex sets Rajat Mittal IIT Kanpur We denote the set of real numbers as R. Most of the time we will be working with space R n and its elements will be called vectors. Remember that a subspace

More information

An Evolutionary Algorithm for Minimizing Multimodal Functions

An Evolutionary Algorithm for Minimizing Multimodal Functions An Evolutionary Algorithm for Minimizing Multimodal Functions D.G. Sotiropoulos, V.P. Plagianakos and M.N. Vrahatis University of Patras, Department of Mamatics, Division of Computational Mamatics & Informatics,

More information

Chapter 14 Global Search Algorithms

Chapter 14 Global Search Algorithms Chapter 14 Global Search Algorithms An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Introduction We discuss various search methods that attempts to search throughout the entire feasible set.

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Key points. Assume (except for point 4) f : R n R is twice continuously differentiable. strictly above the graph of f except at x

Key points. Assume (except for point 4) f : R n R is twice continuously differentiable. strictly above the graph of f except at x Key points Assume (except for point 4) f : R n R is twice continuously differentiable 1 If Hf is neg def at x, then f attains a strict local max at x iff f(x) = 0 In (1), replace Hf(x) negative definite

More information

Variations on Regression Models. Prof. Bennett Math Models of Data Science 2/02/06

Variations on Regression Models. Prof. Bennett Math Models of Data Science 2/02/06 Variations on Regression Models Prof. Bennett Math Models of Data Science 2/02/06 Outline Steps in modeling Review of Least Squares model Model in E & K pg 24-29 Aqualsol version of E&K Other loss functions

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

B553 Lecture 12: Global Optimization

B553 Lecture 12: Global Optimization B553 Lecture 12: Global Optimization Kris Hauser February 20, 2012 Most of the techniques we have examined in prior lectures only deal with local optimization, so that we can only guarantee convergence

More information

Convex Optimization Lecture 2

Convex Optimization Lecture 2 Convex Optimization Lecture 2 Today: Convex Analysis Center-of-mass Algorithm 1 Convex Analysis Convex Sets Definition: A set C R n is convex if for all x, y C and all 0 λ 1, λx + (1 λ)y C Operations that

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

LocalSolver 4.0: novelties and benchmarks

LocalSolver 4.0: novelties and benchmarks LocalSolver 4.0: novelties and benchmarks Thierry Benoist Julien Darlay Bertrand Estellon Frédéric Gardi Romain Megel www.localsolver.com 1/18 LocalSolver 3.1 Solver for combinatorial optimization Simple

More information

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems FIFTH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS 1-5 July 2002, Cardiff, UK C05 - Evolutionary algorithms in hydroinformatics An evolutionary annealing-simplex algorithm for global optimisation of water

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15.

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15. ICS 161 Algorithms Winter 1998 Final Exam Name: ID: 1: out of 15 2: out of 15 3: out of 20 4: out of 15 5: out of 20 6: out of 15 total: out of 100 1. Solve the following recurrences. (Just give the solutions;

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

A Direct Search Algorithm for Global Optimization

A Direct Search Algorithm for Global Optimization Article A Direct Search Algorithm for Global Optimization Enrique Baeyens, *, Alberto Herreros and José R. Perán 2 Instituto de las Tecnologías Avanzadas de la Producción (ITAP), Universidad de Valladolid,

More information

Key Concepts: Economic Computation, Part II

Key Concepts: Economic Computation, Part II Key Concepts: Economic Computation, Part II Brent Hickman Fall, 2009 The purpose of the second section of these notes is to give you some further practice with numerical computation in MATLAB, and also

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

5. GENERALIZED INVERSE SOLUTIONS

5. GENERALIZED INVERSE SOLUTIONS 5. GENERALIZED INVERSE SOLUTIONS The Geometry of Generalized Inverse Solutions The generalized inverse solution to the control allocation problem involves constructing a matrix which satisfies the equation

More information

Optimizing the TracePro Optimization Process

Optimizing the TracePro Optimization Process Optimizing the TracePro Optimization Process A TracePro Webinar December 17, 2014 Presenter Presenter Dave Jacobsen Sr. Application Engineer Lambda Research Corporation Moderator Mike Gauvin Vice President

More information

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods.

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods. CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 25. NLP algorithms ˆ Overview ˆ Local methods ˆ Constrained optimization ˆ Global methods ˆ Black-box methods ˆ Course wrap-up Laurent Lessard

More information

An Improvement of Incremental Conductance MPPT Algorithm for PV Systems Based on the Nelder Mead Optimization

An Improvement of Incremental Conductance MPPT Algorithm for PV Systems Based on the Nelder Mead Optimization An Improvement of Incremental Conductance MPPT Algorithm for PV Systems Based on the Nelder Mead Optimization Tomislav Pavlović, and Željko Ban E-mail: tomislav.pavlovic@fer.hr University of Zagreb Faculty

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Multidimensional Minimization

Multidimensional Minimization C. C. Kankelborg, 1999-11-18 (rev. 2009-Mar-24) I. INTRODUCTION Multidimensional Minimization This lecture is devoted to the task of minimization in N dimensions, which may be stated as follows: For a

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

More information

Optimization and least squares. Prof. Noah Snavely CS1114

Optimization and least squares. Prof. Noah Snavely CS1114 Optimization and least squares Prof. Noah Snavely CS1114 http://cs1114.cs.cornell.edu Administrivia A5 Part 1 due tomorrow by 5pm (please sign up for a demo slot) Part 2 will be due in two weeks (4/17)

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

CS281 Section 3: Practical Optimization

CS281 Section 3: Practical Optimization CS281 Section 3: Practical Optimization David Duvenaud and Dougal Maclaurin Most parameter estimation problems in machine learning cannot be solved in closed form, so we often have to resort to numerical

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

Package optimsimplex

Package optimsimplex Package optimsimplex February 15, 2013 Type Package Title R port of the Scilab optimsimplex module Version 1.0-4 Date 2011-03-30 Author Sebastien Bihorel, Michael Baudin (author of the original module)

More information

Short Reminder of Nonlinear Programming

Short Reminder of Nonlinear Programming Short Reminder of Nonlinear Programming Kaisa Miettinen Dept. of Math. Inf. Tech. Email: kaisa.miettinen@jyu.fi Homepage: http://www.mit.jyu.fi/miettine Contents Background General overview briefly theory

More information

Lecture 6 - Multivariate numerical optimization

Lecture 6 - Multivariate numerical optimization Lecture 6 - Multivariate numerical optimization Björn Andersson (w/ Jianxin Wei) Department of Statistics, Uppsala University February 13, 2014 1 / 36 Table of Contents 1 Plotting functions of two variables

More information

Lecture 12: convergence. Derivative (one variable)

Lecture 12: convergence. Derivative (one variable) Lecture 12: convergence More about multivariable calculus Descent methods Backtracking line search More about convexity (first and second order) Newton step Example 1: linear programming (one var., one

More information

Simplicial Global Optimization

Simplicial Global Optimization Simplicial Global Optimization Julius Žilinskas Vilnius University, Lithuania September, 7 http://web.vu.lt/mii/j.zilinskas Global optimization Find f = min x A f (x) and x A, f (x ) = f, where A R n.

More information

Gradient LASSO algoithm

Gradient LASSO algoithm Gradient LASSO algoithm Yongdai Kim Seoul National University, Korea jointly with Yuwon Kim University of Minnesota, USA and Jinseog Kim Statistical Research Center for Complex Systems, Korea Contents

More information

LECTURE NOTES Non-Linear Programming

LECTURE NOTES Non-Linear Programming CEE 6110 David Rosenberg p. 1 Learning Objectives LECTURE NOTES Non-Linear Programming 1. Write out the non-linear model formulation 2. Describe the difficulties of solving a non-linear programming model

More information

Solving Smart Grid Operation Problems Through Variable Neighborhood Search

Solving Smart Grid Operation Problems Through Variable Neighborhood Search 1 Solving Smart Grid Operation Problems Through Variable Neighborhood Search Leonardo H. Macedo, São Paulo State University-Ilha Solteira (Brazil) John F. Franco, São Paulo State University-Rosana (Brazil)

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Parameter Estimation of DC Motor using Adaptive Transfer Function based on Nelder-Mead Optimisation

Parameter Estimation of DC Motor using Adaptive Transfer Function based on Nelder-Mead Optimisation Indonesian Journal of Electrical Engineering and Computer Science Vol. 9, No. 3, March 2018, pp. 696~702 ISSN: 2502-4752, DOI: 10.11591/ijeecs.v9.i3.pp696-702 696 Parameter Estimation of DC Motor using

More information

Generic descent algorithm Generalization to multiple dimensions Problems of descent methods, possible improvements Fixes Local minima

Generic descent algorithm Generalization to multiple dimensions Problems of descent methods, possible improvements Fixes Local minima 1 Lecture 10: descent methods Generic descent algorithm Generalization to multiple dimensions Problems of descent methods, possible improvements Fixes Local minima Gradient descent (reminder) Minimum of

More information

Constrained Optimization COS 323

Constrained Optimization COS 323 Constrained Optimization COS 323 Last time Introduction to optimization objective function, variables, [constraints] 1-dimensional methods Golden section, discussion of error Newton s method Multi-dimensional

More information

M. Sc. (Artificial Intelligence and Machine Learning)

M. Sc. (Artificial Intelligence and Machine Learning) Course Name: Advanced Python Course Code: MSCAI 122 This course will introduce students to advanced python implementations and the latest Machine Learning and Deep learning libraries, Scikit-Learn and

More information

Learning via Optimization

Learning via Optimization Lecture 7 1 Outline 1. Optimization Convexity 2. Linear regression in depth Locally weighted linear regression 3. Brief dips Logistic Regression [Stochastic] gradient ascent/descent Support Vector Machines

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

HAM: A HYBRID ALGORITHM PREDICTION BASED MODEL FOR ELECTRICITY DEMAND

HAM: A HYBRID ALGORITHM PREDICTION BASED MODEL FOR ELECTRICITY DEMAND HAM: A HYBRID ALGORITHM PREDICTION BASED MODEL FOR ELECTRICITY DEMAND 1 WAHAB MUSA, 2 SALMAWATY TANSA 1 Assoc. Prof., Department of Electrical Engineering, UNIVERSITAS NEGERI GORONTALO 2 Lektor., Department

More information

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab POSTECH. Table of Contents

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab  POSTECH. Table of Contents Optimization by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Optimization II. 2. Solving Optimization Problems III. 3. How do we Find x f(x) = 0 IV.

More information

The Mesh Adaptive Direct Search Algorithm for Discrete Blackbox Optimization

The Mesh Adaptive Direct Search Algorithm for Discrete Blackbox Optimization The Mesh Adaptive Direct Search Algorithm for Discrete Blackbox Optimization Sébastien Le Digabel Charles Audet Christophe Tribes GERAD and École Polytechnique de Montréal ICCOPT, Tokyo 2016 08 08 BBO:

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Constraint Satisfaction Problems II and Local Search Instructors: Sergey Levine and Stuart Russell University of California, Berkeley [These slides were created by Dan Klein

More information

2. Optimization problems 6

2. Optimization problems 6 6 2.1 Examples... 7... 8 2.3 Convex sets and functions... 9 2.4 Convex optimization problems... 10 2.1 Examples 7-1 An (NP-) optimization problem P 0 is defined as follows Each instance I P 0 has a feasibility

More information

Master of Science in Applied Geophysics Research Thesis. Triangulation for seismic modelling with optimization techniques.

Master of Science in Applied Geophysics Research Thesis. Triangulation for seismic modelling with optimization techniques. Master of Science in Applied Geophysics Research Thesis Triangulation for seismic modelling with optimization techniques Weijun Wang Triangulation for seismic modelling with optimization techniques Master

More information

Assignment 2 Master Solution. Part (a) /ESD.77 Spring 2004 Multidisciplinary System Design Optimization. (a1) Decomposition

Assignment 2 Master Solution. Part (a) /ESD.77 Spring 2004 Multidisciplinary System Design Optimization. (a1) Decomposition 16.888/ESD.77 Spring 004 Multidisciplinary System Design Optimization Assignment Master Solution Part (a) (a1) Decomposition The following system of equations must be solved: xx x + = 0 (1) 1 3 x + 3x

More information

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi Convex Programming and Efficiency In this lecture, we formalize convex programming problem, discuss what it means to solve it efficiently

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Computational Optimization. Constrained Optimization Algorithms

Computational Optimization. Constrained Optimization Algorithms Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility,

More information

Composite Self-concordant Minimization

Composite Self-concordant Minimization Composite Self-concordant Minimization Volkan Cevher Laboratory for Information and Inference Systems-LIONS Ecole Polytechnique Federale de Lausanne (EPFL) volkan.cevher@epfl.ch Paris 6 Dec 11, 2013 joint

More information

Introduction to Machine Learning Spring 2018 Note Sparsity and LASSO. 1.1 Sparsity for SVMs

Introduction to Machine Learning Spring 2018 Note Sparsity and LASSO. 1.1 Sparsity for SVMs CS 189 Introduction to Machine Learning Spring 2018 Note 21 1 Sparsity and LASSO 1.1 Sparsity for SVMs Recall the oective function of the soft-margin SVM prolem: w,ξ 1 2 w 2 + C Note that if a point x

More information

User s Guide to Climb High. (A Numerical Optimization Routine) Introduction

User s Guide to Climb High. (A Numerical Optimization Routine) Introduction User s Guide to Climb High (A Numerical Optimization Routine) Hang Qian Iowa State University Introduction Welcome to Climb High, a numerical routine for unconstrained non-linear optimization problems

More information

Camera calibration. Robotic vision. Ville Kyrki

Camera calibration. Robotic vision. Ville Kyrki Camera calibration Robotic vision 19.1.2017 Where are we? Images, imaging Image enhancement Feature extraction and matching Image-based tracking Camera models and calibration Pose estimation Motion analysis

More information

Iterative Methods for Solving Linear Problems

Iterative Methods for Solving Linear Problems Iterative Methods for Solving Linear Problems When problems become too large (too many data points, too many model parameters), SVD and related approaches become impractical. Iterative Methods for Solving

More information

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund Optimization Plugin for RapidMiner Technical Report Venkatesh Umaashankar Sangkyun Lee 04/2012 technische universität dortmund Part of the work on this technical report has been supported by Deutsche Forschungsgemeinschaft

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB

Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB Frommelt Thomas* and Gutser Raphael SGL Carbon GmbH *Corresponding author: Werner-von-Siemens Straße 18, 86405 Meitingen,

More information