Geometric and Combinatorial Weighted Voting: Some Open Problems

Size: px
Start display at page:

Download "Geometric and Combinatorial Weighted Voting: Some Open Problems"

Transcription

1 Geometric and Combinatorial Weighted Voting: Some Open Problems Sarah K. Mason and R. Jason Parsley Winston Salem, NC Encuentro Colombiano de Combinatoria 2016

2 Types of voting In voting for most political offices, e.g., congressman, senator, governor but not president(!), the election runs on the idea of Every voter has the same role. one person, one vote However there are plenty of situations where different people have different numbers of votes: governments (city council, UN) corporations (stockholders) groups of friends Different voters have different roles, different amounts of weight.

3 Weighted games A weighted game is a situation in which n players, each with a certain weight, vote on a yes or no motion. For one coalition to win, the weights of its players must reach a certain fixed quota q. Example (A company with 3 stockholders) Voter 1 has 25 shares Voter 2 has 30 shares Voter 3 has 45 shares Quota Winning Coalitions 50 12, 13, 23, , 23, ,

4 Weighted games A weighted game is a situation in which n players, each with a certain weight, vote on a yes or no motion. For one coalition to win, the weights of its players must reach a certain fixed quota q. Example (A company with 3 stockholders) Voter 1 has 25 shares 21 shares Voter 2 has 30 shares 28 shares Voter 3 has 45 shares 51 shares Quota Winning Coalitions Winning Coalitions 50 12, 13, 23, 123 3, 13, 23, , 23, , 23, , ,

5 The right definition of a weighted game Definition Two sets of quotas & weights are isomorphic (represent the same weighted game) iff they have the same winning coalitions. Example. These games (q : w 1, w 2, w 3, w 4 ) are all isomorphic. (8 : 5, 3, 3, 1) (4 : 3, 2.1, 1, 0.5) (65 : 40, 30, 29, 1) (1002 : 1000, 998, 2, 1) (7.4 : 5.8, 3.2, 2.3, 1.4) (11 : 10, 1, 1, 0) Winning Coalitions: {4, 2}, {4, 3}, {4, 3, 2}, {4, 3, 1}, {4, 2, 1} {4, 3, 2, 1}. Definition (The right definition of a weighted game.) We should really only discuss isomorphism classes of weighted games. There are only 5 games for n = 3 players.

6 Simple games Definition A simple game g is a pair ([n], W g ) in which [n] = {1, 2,..., n} is a finite set of players, W g is the set of winning coalitions for g, and if S W g and S R [n], then R W g. (monotonicity) A simple game is proper if A W g A c / W g. Example (All proper simple games with 3 players) winning coals. description # wc s 3, 31, 32, 321 dictator 4 21, 31, 32, 321 majority rule 4 31, 32, veto power 3 32, 321 1=dummy consenus 1

7 n = 3: poset M(3) of coalitions {a 1, a 2,... a j } {b 1, b 2,..., b k } j k and a i b i ( i j) Ranked, symmetric, SCD, lattice, Sperner (Richard Stanley) If a coalition is winning, so is everything above it. The filter A 1, A 2,..., A k generated by A 1, A 2,..., A k consists of all elements above and including A 1, A 2,..., A k. Every simple game can be described in terms of a filter. (Note that not all such games are weighted.) The minimal elements of a simple game are called the generating winning coalitions (gwc s) of that game.

8 Games poset J(M(4)) for n = 4 (Krohn-Sudhölter) 21 Coalitions Games (filters) poset J(M(4)) {321, 43} {321, 42} 32 {321, 41} 43 {421, 43}

9 Games poset J(M(4)) for n = 4 (Krohn-Sudhölter) 21 Coalitions Games (filters) poset J(M(4)) {321, 43} {321, 42} 32 {321, 41} 43 {421, 43}

10 Counting games on n players Theorem (M-Parsley) The number of games with one generating winning coalition is s(2j + 1) = j k=0 4j k C k, s(2j) = 2 s(2j 1) where C k is the k th Catalan number. Equivalently, ( ) n s(n) = 2 n. n/2 Open Problem # 1 What is the number of simple games on n players with two generators? (with k generators?)

11 n = 5: Poset M(5) of coalitions

12 n = 5: Games poset J(M(5)) of 62 possible games , , , , , , , , , , , 532, , , , , 532, , , , , 531, , , , , 531, , 521, , , , , , , 521, , , 521, , 521, , , 521, , , 52 51, , , 521, 53 5

13 n = 5: Games poset J(M(5)) of 119 possible games

14 n = 6: Poset M(6) of coalitions

15 n = 6: Games poset J(M(6)) of 1171 possible games Open Problem # 2 How many simple games on n players exist? How many weighted games on n players exist? Open Problem # 3 Which poset properties does J(M(n)) posess? What do these properties tell us about real-world voting situations?

16 Geometry of weighted games Idea: using coords (q : w n,... w 2, w 1 ), graph these games in R n+1 weighted voting is scale invariant normalize so that total weight W = 1 call the configuration region C n := (0, 1] n Definition. The region of allowable weights n consists of w n w n 1 w 2 w 1 0 w n + w n w 2 + w 1 = 1 n an (n 1)-dimensional simplex in R n, with vertices at (1, 0, 0,...) ( 1 2, 1 2, 0, 0,...) ( 1 3, 1 3, 1 3, 0, 0,...)..., ( 1 n, 1 n,..., 1 n ) p 1 p 2 p 3... p n

17 3 and C 3 3 lies in the plane w 3 + w 2 + w 1 = 1 intersection of 3 half-planes in (w 3, w 2, w 1 ) ( 1 2, 1 2, 0) in (q : w 3, w 2 )-space q = 1 ( 1 3, 1 3, 1 3 ) 3 C 3 (1,0,0) q = 0.0

18 Each weighted game is a polytope The set of points where a coalition A s weight equals the quota forms a hyperplane h A which intersects C n. Hyperplane h A : q = w A := v i A w i Each weighted game g is a polytope P g : for each winning coalition A, take all points below or on h A for each losing coalition B, take all points above h B The polytopes P g are convex and n-dimensional. Open Problem # 4 An n-dimensional polytope is said to be simple if n facets meet at each vertex. For which games g is P g simple?

19 Example 1 The face p 1 p 3 of C The games poset J(M(3)) /3 1/ /3 <3,21> {3,21} 0 p3 1 p1 2 1

20 Geometry Games poset Call a point (w n,... w 2, w 1 ) generic if none of its partial sums equal each other. Theorem (M-Parsley) Above any generic point, the line from q = 0.5 to q = 1 passes through precisely the polyhedra representing voting games as along some maximal saturated chain in the weighted games poset. i.e., The geometry of weighted games in (q : w)-space represents combinatorics of the weighted games poset. Open Problem # 5 What do the poset properties tell us about the geometry?

21 A vertical line and its corresponding chain The point P = (0.45, 0.3, 0.25) is generic. P Games poset n = Example results q (0.75, 1] 321 q (0.7, 0.75] 32 q (0.55, 0.7] 31 q (0.5, 0.55] 21

22 Equivalence classes of players Definition Players v i and v j are equivalent (written v i v j ) in a game g iff switching v i and v j fixes the winning coalitions in g. Example: gwc winning coals. equivalence classes # of equiv classes 3 3, 31, 32, 321 (v 1 v 2 ), (v 3 ) , 31, 32, 321 (v 1 v 2 v 3 ) , 32, 321 (v 1 v 2 ), (v 3 ) , 321 (v 1 ), (v 2 v 3 ) (v 1 v 2 v 3 ) 1

23 Facets of the polytope associated to a weighted game Theorem (M-Parsley) Let g be an arbitrary weighted game whose n players form k equivalence classes. If the degree of g in the Hasse diagram of the poset of weighted games is d, then the polytope corresponding to g has n k + d facets. * equivalence classes, covers, and # covered gives # of facets* Corollary Every saturated chain in the weighted games poset may be achieved by some piecewise linear motion through C n. Open Problem # 6 How many vertices do the polytopes P g have? (Upper bound?)

24 Example: n = /3 1/ , 21 1/3 <3,21> p3 1 p1

25 Summary of open problems: 1 What is the number of simple games on n players with two generators? With k generators? 2 How many simple/weighted games on n players exist? 3 Which poset properties does J(M(n)) posess? 4 An n-dimensional polytope is said to be simple if n facets meet at each vertex. For which games g is P g simple? 5 What do the poset properties tell us about the geometry? 6 How many vertices do the polytopes P g have? Are these polytopes with few ( n 4) vertices? 7 Choose your own favorite polytope/poset question! (f -vectors, shellability, etc) 8 Translate the poset properties (and geometric properties) into real-world information about voting situations. Muchas Gracias!

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Noncrossing sets and a Graßmann associahedron

Noncrossing sets and a Graßmann associahedron Noncrossing sets and a Graßmann associahedron Francisco Santos, Christian Stump, Volkmar Welker (in partial rediscovering work of T. K. Petersen, P. Pylyavskyy, and D. E. Speyer, 2008) (in partial rediscovering

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Linear programming and the efficiency of the simplex algorithm for transportation polytopes

Linear programming and the efficiency of the simplex algorithm for transportation polytopes Linear programming and the efficiency of the simplex algorithm for transportation polytopes Edward D. Kim University of Wisconsin-La Crosse February 20, 2015 Loras College Department of Mathematics Colloquium

More information

A combinatorial proof of a formula for Betti numbers of a stacked polytope

A combinatorial proof of a formula for Betti numbers of a stacked polytope A combinatorial proof of a formula for Betti numbers of a staced polytope Suyoung Choi Department of Mathematical Sciences KAIST, Republic of Korea choisy@aistacr (Current Department of Mathematics Osaa

More information

The Simplex Algorithm for LP, and an Open Problem

The Simplex Algorithm for LP, and an Open Problem The Simplex Algorithm for LP, and an Open Problem Linear Programming: General Formulation Inputs: real-valued m x n matrix A, and vectors c in R n and b in R m Output: n-dimensional vector x There is one

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

Ec 181: Convex Analysis and Economic Theory

Ec 181: Convex Analysis and Economic Theory Division of the Humanities and Social Sciences Ec 181: Convex Analysis and Economic Theory KC Border Winter 2018 v. 2018.03.08::13.11 src: front KC Border: for Ec 181, Winter 2018 Woe to the author who

More information

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis Contents Chapter 1. Relations 8 1. Relations and Their Properties 8 1.1. Definition of a Relation 8 1.2. Directed Graphs 9 1.3. Representing Relations with Matrices 10 1.4. Example 1.4.1 10 1.5. Inverse

More information

Cluster algebras and infinite associahedra

Cluster algebras and infinite associahedra Cluster algebras and infinite associahedra Nathan Reading NC State University CombinaTexas 2008 Coxeter groups Associahedra and cluster algebras Sortable elements/cambrian fans Infinite type Much of the

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements Paul Renteln California State University San Bernardino and Caltech April, 2008 Outline Hyperplane Arrangements Counting Regions

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Elementary Combinatorial Topology

Elementary Combinatorial Topology Elementary Combinatorial Topology Frédéric Meunier Université Paris Est, CERMICS, Ecole des Ponts Paristech, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex E-mail address: frederic.meunier@cermics.enpc.fr

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

Constructing self-dual chiral polytopes

Constructing self-dual chiral polytopes Constructing self-dual chiral polytopes Gabe Cunningham Northeastern University, Boston, MA October 25, 2011 Definition of an abstract polytope Let P be a ranked poset, whose elements we call faces. Then

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Vertex-Maximal Lattice Polytopes Contained in 2-Simplices

Vertex-Maximal Lattice Polytopes Contained in 2-Simplices Vertex-Maximal Lattice Polytopes Contained in 2-Simplices Christoph Pegel Institut für Algebra, Zahlentheorie und Diskrete Mathematik Leibniz Universität Hannover November 14, 2018 joint with Jan Philipp

More information

Counting Faces of Polytopes

Counting Faces of Polytopes Counting Faces of Polytopes Carl Lee University of Kentucky James Madison University March 2015 Carl Lee (UK) Counting Faces of Polytopes James Madison University 1 / 36 Convex Polytopes A convex polytope

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

A Zonotopal Interpretation of Power in Weighted Voting Systems. Catherine Stenson, Juniata College

A Zonotopal Interpretation of Power in Weighted Voting Systems. Catherine Stenson, Juniata College A Zonotopal Interpretation of Power in Weighted Voting Systems Party No. of seats Kadima 28 Likud - Ahi 27 Yisrael Beytenu 15 Labor 13 Shas 11 United Torah Judaism 5 (6 other parties with 4 or fewer seats)

More information

Polyhedral Combinatorics of Coxeter Groups 2

Polyhedral Combinatorics of Coxeter Groups 2 3 s 2 s 6 s 4 s 5 s 1 s 3 s 2 s 6 s 4 s 5 s 1 s 3 s Polyhedral Combinatorics of Coxeter Groups 2 s 6 s 5 s 1 s Dissertation s Defense 3 s 2 s 6 Jean-Philippe Labbé s 1 s s 2 s 1 α u ut(α s ) u(α t ) ut(α

More information

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes.

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes. POLYTOPES MARGARET A. READDY 1. Lecture I: Introduction to Polytopes and Face Enumeration Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

Lecture 4: Linear Programming

Lecture 4: Linear Programming COMP36111: Advanced Algorithms I Lecture 4: Linear Programming Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2017 18 Outline The Linear Programming Problem Geometrical analysis The Simplex

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Math 130 Final Exam Study Guide. 1. Voting

Math 130 Final Exam Study Guide. 1. Voting 1 Math 130 Final Exam Study Guide 1. Voting (a) Be able to interpret a top choice ballot, preference ballot and preference schedule (b) Given a preference schedule, be able to: i. find the winner of an

More information

arxiv: v1 [math.co] 12 Dec 2017

arxiv: v1 [math.co] 12 Dec 2017 arxiv:1712.04381v1 [math.co] 12 Dec 2017 Semi-reflexive polytopes Tiago Royer Abstract The Ehrhart function L P(t) of a polytope P is usually defined only for integer dilation arguments t. By allowing

More information

Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs

Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs MIT PRIMES Conference Nicholas Guo Mentor: Guangyi Yue May 21, 2016 Nicholas Guo (Mentor: Guangyi Yue) PRIMES Presentation

More information

An example of LP problem: Political Elections

An example of LP problem: Political Elections Linear Programming An example of LP problem: Political Elections Suppose that you are a politician trying to win an election. Your district has three different types of areas: urban, suburban, and rural.

More information

A Course in Convexity

A Course in Convexity A Course in Convexity Alexander Barvinok Graduate Studies in Mathematics Volume 54 American Mathematical Society Providence, Rhode Island Preface vii Chapter I. Convex Sets at Large 1 1. Convex Sets. Main

More information

Triangulations Of Point Sets

Triangulations Of Point Sets Triangulations Of Point Sets Applications, Structures, Algorithms. Jesús A. De Loera Jörg Rambau Francisco Santos MSRI Summer school July 21 31, 2003 (Book under construction) Triangulations Of Point Sets

More information

Regular polytopes with few flags

Regular polytopes with few flags Regular polytopes with few flags Marston Conder University of Auckland mconder@aucklandacnz Introduction: Rotary and regular maps A map M is a 2-cell embedding of a connected graph or multigraph (graph

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

arxiv: v1 [math.co] 24 Aug 2009

arxiv: v1 [math.co] 24 Aug 2009 SMOOTH FANO POLYTOPES ARISING FROM FINITE PARTIALLY ORDERED SETS arxiv:0908.3404v1 [math.co] 24 Aug 2009 TAKAYUKI HIBI AND AKIHIRO HIGASHITANI Abstract. Gorenstein Fano polytopes arising from finite partially

More information

arxiv: v2 [math.co] 24 Aug 2016

arxiv: v2 [math.co] 24 Aug 2016 Slicing and dicing polytopes arxiv:1608.05372v2 [math.co] 24 Aug 2016 Patrik Norén June 23, 2018 Abstract Using tropical convexity Dochtermann, Fink, and Sanyal proved that regular fine mixed subdivisions

More information

The Charney-Davis conjecture for certain subdivisions of spheres

The Charney-Davis conjecture for certain subdivisions of spheres The Charney-Davis conjecture for certain subdivisions of spheres Andrew Frohmader September, 008 Abstract Notions of sesquiconstructible complexes and odd iterated stellar subdivisions are introduced,

More information

B r u n o S i m e o n e. La Sapienza University, ROME, Italy

B r u n o S i m e o n e. La Sapienza University, ROME, Italy B r u n o S i m e o n e La Sapienza University, ROME, Italy Pietre Miliari 3 Ottobre 26 2 THE MAXIMUM MATCHING PROBLEM Example : Postmen hiring in the province of L Aquila Panconesi Barisciano Petreschi

More information

The important function we will work with is the omega map ω, which we now describe.

The important function we will work with is the omega map ω, which we now describe. 20 MARGARET A. READDY 3. Lecture III: Hyperplane arrangements & zonotopes; Inequalities: a first look 3.1. Zonotopes. Recall that a zonotope Z can be described as the Minkowski sum of line segments: Z

More information

Voronoi Diagrams, Delaunay Triangulations and Polytopes

Voronoi Diagrams, Delaunay Triangulations and Polytopes Voronoi Diagrams, Delaunay Triangulations and Polytopes Jean-Daniel Boissonnat MPRI, Lecture 2 Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 1 / 43 Voronoi diagrams in nature

More information

Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Institutionen för matematik, KTH. Chapter 10 projective toric varieties and polytopes: definitions 10.1 Introduction Tori varieties are algebraic varieties related to the study of sparse polynomials.

More information

h-polynomials of triangulations of flow polytopes (Cornell University)

h-polynomials of triangulations of flow polytopes (Cornell University) h-polynomials of triangulations of flow polytopes Karola Mészáros (Cornell University) h-polynomials of triangulations of flow polytopes (and of reduction trees) Karola Mészáros (Cornell University) Plan

More information

On the Size of Higher-Dimensional Triangulations

On the Size of Higher-Dimensional Triangulations Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 On the Size of Higher-Dimensional Triangulations PETER BRASS Abstract. I show that there are sets of n points in three dimensions,

More information

4.2 Simplicial Homology Groups

4.2 Simplicial Homology Groups 4.2. SIMPLICIAL HOMOLOGY GROUPS 93 4.2 Simplicial Homology Groups 4.2.1 Simplicial Complexes Let p 0, p 1,... p k be k + 1 points in R n, with k n. We identify points in R n with the vectors that point

More information

Smooth Fano Polytopes Arising from Finite Partially Ordered Sets

Smooth Fano Polytopes Arising from Finite Partially Ordered Sets Discrete Comput Geom (2011) 45: 449 461 DOI 10.1007/s00454-010-9271-2 Smooth Fano Polytopes Arising from Finite Partially Ordered Sets Takayuki Hibi Akihiro Higashitani Received: 29 August 2009 / Revised:

More information

Semistandard Young Tableaux Polytopes. Sara Solhjem Joint work with Jessica Striker. April 9, 2017

Semistandard Young Tableaux Polytopes. Sara Solhjem Joint work with Jessica Striker. April 9, 2017 Semistandard Young Tableaux Polytopes Sara Solhjem Joint work with Jessica Striker North Dakota State University Graduate Student Combinatorics Conference 217 April 9, 217 Sara Solhjem (NDSU) Semistandard

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Arrangements in Computational Geometry An arrangement in R k is

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Braid groups and Curvature Talk 2: The Pieces

Braid groups and Curvature Talk 2: The Pieces Braid groups and Curvature Talk 2: The Pieces Jon McCammond UC Santa Barbara Regensburg, Germany Sept 2017 Rotations in Regensburg Subsets, Subdisks and Rotations Recall: for each A [n] of size k > 1 with

More information

Combinatorics and topology of small arrangements

Combinatorics and topology of small arrangements Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF 20-th February 2017 Complex hyperplane arrangements Main definitions A complex hyperplane arrangement is a finite collection

More information

CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM. Dimitrios I. Dais

CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM. Dimitrios I. Dais Séminaires & Congrès 6, 2002, p. 187 192 CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM by Dimitrios I. Dais Abstract. A necessary condition for the existence of torus-equivariant

More information

Cofinite Induced Subgraph Nim

Cofinite Induced Subgraph Nim University of California, Los Angeles October 4, 2012 Nim Nim: Game played with n heaps of beans Players alternate removing any positive number of beans from any one heap When all heaps are empty the next

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Polar Duality and Farkas Lemma

Polar Duality and Farkas Lemma Lecture 3 Polar Duality and Farkas Lemma October 8th, 2004 Lecturer: Kamal Jain Notes: Daniel Lowd 3.1 Polytope = bounded polyhedron Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem:

More information

R n a T i x = b i} is a Hyperplane.

R n a T i x = b i} is a Hyperplane. Geometry of LPs Consider the following LP : min {c T x a T i x b i The feasible region is i =1,...,m}. X := {x R n a T i x b i i =1,...,m} = m i=1 {x Rn a T i x b i} }{{} X i The set X i is a Half-space.

More information

Projection Volumes of Hyperplane Arrangements

Projection Volumes of Hyperplane Arrangements Discrete Comput Geom (2011) 46:417 426 DOI 10.1007/s00454-011-9363-7 Projection Volumes of Hyperplane Arrangements Caroline J. Klivans Ed Swartz Received: 11 February 2010 / Revised: 25 April 2011 / Accepted:

More information

Multi-tiling and equidecomposability of polytopes by lattice translates

Multi-tiling and equidecomposability of polytopes by lattice translates Multi-tiling and equidecomposability of polytopes by lattice translates Bochen Liu Bar-Ilan University, Israel Joint work with Nir Lev 1 / 19 Multi-tiling Let A R d be a polytope and denote χ A as its

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

Consensus and Synchronization of Multi-Agent Systems

Consensus and Synchronization of Multi-Agent Systems Consensus and Synchronization of Multi-Agent Systems (Combinatorial) optimization on matrix semigroups Raphaël Jungers UCLouvain L aquila, April 2016 Smart cities Consensus of multiagent systems Gossip

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information

A non-partitionable CM simplicial complex

A non-partitionable CM simplicial complex A non-partitionable Cohen-Macaulay simplicial complex Art M. Duval (University of Texas, El Paso) Bennet Goeckner (University of Kansas) Caroline J. Klivans (Brown University) Jeremy L. Martin (University

More information

Triangulated Surfaces and Higher-Dimensional Manifolds. Frank H. Lutz. (TU Berlin)

Triangulated Surfaces and Higher-Dimensional Manifolds. Frank H. Lutz. (TU Berlin) Triangulated Surfaces and Higher-Dimensional Manifolds Frank H. Lutz (TU Berlin) Topology: orientable, genus g = 3 Combinatorics: Geometry: vertex-minimal, n = 10 vertices, irreducible coordinate-minimal,

More information

(67686) Mathematical Foundations of AI July 30, Lecture 11

(67686) Mathematical Foundations of AI July 30, Lecture 11 (67686) Mathematical Foundations of AI July 30, 2008 Lecturer: Ariel D. Procaccia Lecture 11 Scribe: Michael Zuckerman and Na ama Zohary 1 Cooperative Games N = {1,...,n} is the set of players (agents).

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

MAXIMAL FLOW THROUGH A NETWORK

MAXIMAL FLOW THROUGH A NETWORK MAXIMAL FLOW THROUGH A NETWORK L. R. FORD, JR. AND D. R. FULKERSON Introduction. The problem discussed in this paper was formulated by T. Harris as follows: "Consider a rail network connecting two cities

More information

Polytopes With Large Signature

Polytopes With Large Signature Polytopes With Large Signature Joint work with Michael Joswig Nikolaus Witte TU-Berlin / TU-Darmstadt witte@math.tu-berlin.de Algebraic and Geometric Combinatorics, Anogia 2005 Outline 1 Introduction Motivation

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where LP Geometry: outline I Polyhedra I Extreme points, vertices, basic feasible solutions I Degeneracy I Existence of extreme points I Optimality of extreme points IOE 610: LP II, Fall 2013 Geometry of Linear

More information

Automorphism Groups of Cyclic Polytopes

Automorphism Groups of Cyclic Polytopes 8 Automorphism Groups of Cyclic Polytopes (Volker Kaibel and Arnold Waßmer ) It is probably well-known to most polytope theorists that the combinatorial automorphism group of a cyclic d-polytope with n

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Edge unfolding Cut sets Source foldouts Proof and algorithm Complexity issues Aleksandrov unfolding? Unfolding polyhedra.

Edge unfolding Cut sets Source foldouts Proof and algorithm Complexity issues Aleksandrov unfolding? Unfolding polyhedra. Unfolding polyhedra Ezra Miller University of Minnesota ezra@math.umn.edu University of Nebraska 27 April 2007 Outline 1. Edge unfolding 2. Cut sets 3. Source foldouts 4. Proof and algorithm 5. Complexity

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

The Combinatorial Geometry of Rook Polytopes

The Combinatorial Geometry of Rook Polytopes University of Colorado, Boulder CU Scholar Undergraduate Honors Theses Honors Program Spring 07 The Combinatorial Geometry of Rook Polytopes Aaron Allen Aaron.R.Allen@Colorado.EDU Follow this and additional

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Graphs associated to CAT(0) cube complexes

Graphs associated to CAT(0) cube complexes Graphs associated to CAT(0) cube complexes Mark Hagen McGill University Cornell Topology Seminar, 15 November 2011 Outline Background on CAT(0) cube complexes The contact graph: a combinatorial invariant

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry Synthetic Geometry 1.1 Foundations 1.2 The axioms of projective geometry Foundations Def: A geometry is a pair G = (Ω, I), where Ω is a set and I a relation on Ω that is symmetric and reflexive, i.e. 1.

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 1 Why LP? Linear programming (LP, also called linear

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

Integer Partition Poset

Integer Partition Poset Integer Partition Poset Teena Carroll St. Norbert College Presented at the Clemson REU Summer 2010 Integer Partitions Given an integer, how can we break it down into the sum of positive integers? ex: n=5

More information

Open problems in convex optimisation

Open problems in convex optimisation Open problems in convex optimisation 26 30 June 2017 AMSI Optimise Vera Roshchina RMIT University and Federation University Australia Perceptron algorithm and its complexity Find an x R n such that a T

More information

Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes

Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes Regular polytopes Notes for talks given at LSBU, November & December 2014 Tony Forbes Flags A flag is a sequence (f 1, f 0,..., f n ) of faces f i of a polytope f n, each incident with the next, with precisely

More information

An Introduction to Computational Geometry: Arrangements and Duality

An Introduction to Computational Geometry: Arrangements and Duality An Introduction to Computational Geometry: Arrangements and Duality Joseph S. B. Mitchell Stony Brook University Some images from [O Rourke, Computational Geometry in C, 2 nd Edition, Chapter 6] Arrangement

More information

Maximal admissible faces and asymptotic bounds for the normal surface solution space

Maximal admissible faces and asymptotic bounds for the normal surface solution space Maximal admissible faces and asymptotic bounds for the normal surface solution space Benjamin A. Burton Author s self-archived version Available from http://www.maths.uq.edu.au/~bab/papers/ Abstract The

More information

TROPICAL CONVEXITY MIKE DEVELIN AND BERND STURMFELS

TROPICAL CONVEXITY MIKE DEVELIN AND BERND STURMFELS TROPICAL CONVEXITY MIKE DEVELIN AND BERND STURMFELS Abstract. The notions of convexity and convex polytopes are introduced in the setting of tropical geometry. Combinatorial types of tropical polytopes

More information

Sperner and Tucker s lemma

Sperner and Tucker s lemma Sperner and Tucker s lemma Frédéric Meunier February 8th 2010 Ecole des Ponts, France Sperner s lemma Brouwer s theorem Let B be a d-dimensional ball and f be a continuous B B map. Then always Theorem

More information

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem Chapter 8 Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem 8.1 Shellings The notion of shellability is motivated by the desire to give an inductive

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information