Graphics 2009/2010, period 1. Lecture 6: perspective projection

Size: px
Start display at page:

Download "Graphics 2009/2010, period 1. Lecture 6: perspective projection"

Transcription

1 Graphics 2009/2010, period 1 Lecture 6 Perspective projection

2 Orthographic vs. perspective projection Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform Goal: Projecting the 3D model to a 2D viewing window 2 approaches: Orthographic vs. perspective projection

3 From 3D worlds to 2D screens Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform Given an arbitrary camera position, we want to display the objects in the model in an image

4 From 3D worlds to 2D screens Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform The projection should be perspective projection.

5 From 3D worlds to 2D screens Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform First, we define a view frustum that contains everything we want to project onto the image.

6 Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform We simplify by moving the camera viewpoint to the origin, such that we look into the direction of the negative z-axis. Z

7 Orthographic projection Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform Orthographic projection is a lot simpler than perspective projection, so we transform the clipped view frustum to an axis-parallel box Z

8 The canonical view volume Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform To simplify our calculations, we transform to the canonical view volume (1, 1) ( 1, 1)

9 Windowing transform Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform We apply a windowing transform to display the square [ 1, 1] [ 1, 1] onto an m n image.

10 The graphics pipeline (part I) Every step in the sequence can be represented by a matrix operation, so the whole process can be applied by performing a single matrix operation! (Well: almost.) We call this sequence a graphics pipeline. Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform

11 The graphics pipeline (part I) Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view volume Windowing transform Graphics pipeline = a special software or hardware subsystem that efficiently draws 3D primitives in perspective.

12 The canonical view volume The canonical view volume The orthographic view volume The orthographic projection matrix The canonical view volume is a box, centered at the origin. The clipped view frustum is transformed to this box (and the objects within the view frustum undergo the same transformation). y z x (1, 1, 1) (1, 1, 1) Vertices in the canonical view volume are orthographically projected onto an m n image. ( 1, 1, 1)

13 Mapping the canonical view volume The canonical view volume The orthographic view volume The orthographic projection matrix We need to map the square [ 1, 1] 2 onto a rectangle [ 1 2, m 1 2 ] [ 1 2, n 1 2 ]. (1, 1) The following matrix takes care of that: m m n n ( 1, 1) n m

14 Mapping the canonical view volume The canonical view volume The orthographic view volume The orthographic projection matrix We need to map the square [ 1, 1] 2 onto a rectangle [ 1 2, m 1 2 ] [ 1 2, n 1 2 ]. (1, 1) The following matrix takes care of that: m m n n ( 1, 1) n m

15 The orthographic view volume The canonical view volume The orthographic view volume The orthographic projection matrix The orthographic view volume is an axis-aligned box [l, r] [b, t] [n, f]. (r, t, f) (l, b, n) y (1, 1, 1) z x (1, 1, 1) ( 1, 1, 1)

16 The orthographic view volume The canonical view volume The orthographic view volume The orthographic projection matrix Transformation to canonical view volume is done by 2 r l l+r t b b+t n f n+f (l, b, n) y z x (r, t, f) (1, 1, 1) (1, 1, 1) ( 1, 1, 1)

17 The orthographic projection matrix The canonical view volume The orthographic view volume The orthographic projection matrix We can combine the matrices into one: m m n n M o = r l l+r t b b+t n f n+f Given a point p in the orthographic view volume, we map it to a pixel [i, j] as follows: i j z canonical 1 = M o x p y p z p 1

18 Transforming the view frustum Transforming the view frustum matrix Homogeneous coordinates (cf. book, fig. 7.12)

19 Transforming the view frustum Transforming the view frustum matrix Homogeneous coordinates (cf. book, fig. 7.10)

20 Transforming the view frustum Transforming the view frustum matrix Homogeneous coordinates We have to transform the view frustum into the orthographic view volume. The transformation needs to Map lines through the origin to lines parallel to the z axis Map points on the viewing plane to themselves. Map points on the far plane to (other) points on the far plane. Preserve the near-to-far order of points on a line.

21 Transforming the view frustum Transforming the view frustum matrix Homogeneous coordinates How do we calculate this? (cf. book, fig. 7.9)

22 Transforming the view frustum Transforming the view frustum matrix Homogeneous coordinates So we need a matrix that gives us x = nx z y = ny z and a z-value that stays the same for all points on the near and fare planes does not change the order along the z-axis for all other points Problem: we can t do division with matrix multiplication

23 matrix Transforming the view frustum matrix Homogeneous coordinates But the following matrix M p does the trick: x y n+f 0 0 n f z = n 0 z n+f n z n Hmmmm... is that what we want...? x y f

24 Homogeneous coordinates Transforming the view frustum matrix Homogeneous coordinates We have seen homogeneous coordinates before, but so far, the fourth coordinate of a 3D point has alway been 1. In general, however, the homogeneous representation of a point (x, y, z) in 3D is (hx, hy, hz, h). Choosing h = 1 has just been a convenience. So we have: x M p y z = 1 z n+f n z n nx x z y f homogenize ny z n + f fn z 1

25 Transforming the view frustum matrix Homogeneous coordinates Homogeneous coordinates and perspective transformation x y n+f 0 0 n f z = n 0 z n+f n z n nx x z y f homogenize ny z n + f fn z 1

26 Transforming the view frustum matrix Homogeneous coordinates Homogeneous coordinates and perspective transformation x y n+f 0 0 n f z = n 0 z n+f n z n nx x z y f homogenize ny z n + f fn z 1

27 Homogeneous coordinates Transforming the view frustum matrix Homogeneous coordinates Note: this fits well in our existing framework For example: translation t x hx hx + ht x x + t x t y hy t z hz = hy + ht y hz + ht z homogenize y + t y z + t z h h 1

28 Aligning coordinate systems Aligning coordinate systems Transformation matrix The only thing left: Given a camera coordinate system with origin e and orthonormal base (u, v, w), we need to tranform objects in world space coordinates into objects in camera coordinates. This can alternatively be considered as aligning the canonical coordinate system with the camera coordinate system.

29 Aligning coordinate systems Transformation matrix The required transformation is taken care of by x u y u z u x e M v = x v y v z v y e x w y w z w z e

30 The graphics pipeline: part I If we combine all steps, we get: compute M o compute M v compute M p M = M o M p M v for each line segment (a i, b i ) do p = Ma i q = Mb i drawline(x p /h p, y p /h p, x q /h q, y q /h q )

31 Some announcements... I was asked to draw your attention to the Master-voorlichtingsavond that takes place tomorrow at 18h00. More info on the website (which is linked from the news section of this course s website).

32 Some announcements... When will the results from the midterm exam be ready? Exact date unpredictable due to illness and interesting answers from some participants which need to be checked carefully. But we are working on it... A general hint for future exams (not only in graphics): Most exercises are easier to solve if you read them first!!! For example, if it starts with Assume v and w are two unit vectors..., it is rather unlikely that One of them must be the nullvector is a correct answer.

33 Some announcements... Remember the deadline for the programming assignment P1: Friday, October 2, 12h00 Submit online (via link on website) Read the instructions (and follow them) If you have problems finishing, make sure you upload what you have and give a clear description of problems, gaps, etc. in the README file

34 Some announcements... Finally, there s a change of the schedule: Lectures: I have to go to a PhD defense on October 19, therefore: No lecture on October 19 [old schedule: lecture 11] Lecture 11 on October 21 [old schedule: lecture 12] Lecture 12 on October 26 [old schedule: no lecture] No lecture on October 28 [as before] You find the updated schedule online.

35 Some announcements... Tutorials: We have the impression that covering the content of a lecture in the tutorial directly afterwards is not optimal. Therefore, tutorials move one step, i.e. No tutorial on Mon, October 5 Lecture 6 and 7 will be covered in the tutorials on Thu, Oct 7 and Mon, Oct 12 Lecture 8 and 9 will be covered in the tutorials on Thu, Oct 14 and Mon, Oct 19 and so on You find the updated schedule online.

3D Viewing. CS 4620 Lecture 8

3D Viewing. CS 4620 Lecture 8 3D Viewing CS 46 Lecture 8 13 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene projects to pixel explicitly construct

More information

3D Viewing. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 9

3D Viewing. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 9 3D Viewing CS 46 Lecture 9 Cornell CS46 Spring 18 Lecture 9 18 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene

More information

CSC 305 The Graphics Pipeline-1

CSC 305 The Graphics Pipeline-1 C. O. P. d y! "#"" (-1, -1) (1, 1) x z CSC 305 The Graphics Pipeline-1 by Brian Wyvill The University of Victoria Graphics Group Perspective Viewing Transformation l l l Tools for creating and manipulating

More information

Linear transformations Affine transformations Transformations in 3D. Graphics 2009/2010, period 1. Lecture 5: linear and affine transformations

Linear transformations Affine transformations Transformations in 3D. Graphics 2009/2010, period 1. Lecture 5: linear and affine transformations Graphics 2009/2010, period 1 Lecture 5 Linear and affine transformations Vector transformation: basic idea Definition Examples Finding matrices Compositions of transformations Transposing normal vectors

More information

Computer Graphics. Lecture 04 3D Projection and Visualization. Edirlei Soares de Lima.

Computer Graphics. Lecture 04 3D Projection and Visualization. Edirlei Soares de Lima. Computer Graphics Lecture 4 3D Projection and Visualization Edirlei Soares de Lima Projection and Visualization An important use of geometric transformations in computer

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline Computer Graphics CSE 67 [Win 9], Lecture 5: Viewing Ravi Ramamoorthi http://viscomp.ucsd.edu/classes/cse67/wi9 To Do Questions/concerns about assignment? Remember it is due tomorrow! (Jan 6). Ask me or

More information

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Project 2 due Friday, October 12

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing Foundations of Computer Graphics (Fall 0) CS 84, Lecture 5: Viewing http://inst.eecs.berkele.edu/~cs84 To Do Questions/concerns about assignment? Remember it is due Sep. Ask me or TAs re problems Motivation

More information

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Project 2 due Friday, October 11

More information

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics Foundations of Computer Graphics Online Lecture 5: Viewing Orthographic Projection Ravi Ramamoorthi Motivation We have seen transforms (between coord sstems) But all that is in 3D We still need to make

More information

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

More information

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 6: Viewing Transformations Tamar Shinar Computer Science & Engineering UC Riverside Rendering approaches 1. image-oriented foreach pixel... 2. object-oriented foreach

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D Viewing and Projection Yong Cao Virginia Tech Objective We will develop methods to camera through scenes. We will develop mathematical tools to handle perspective projection.

More information

Lecture 4. Viewing, Projection and Viewport Transformations

Lecture 4. Viewing, Projection and Viewport Transformations Notes on Assignment Notes on Assignment Hw2 is dependent on hw1 so hw1 and hw2 will be graded together i.e. You have time to finish both by next monday 11:59p Email list issues - please cc: elif@cs.nyu.edu

More information

CS 112 The Rendering Pipeline. Slide 1

CS 112 The Rendering Pipeline. Slide 1 CS 112 The Rendering Pipeline Slide 1 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages (for POLYGON pipeline) n Model view Transformation n

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

Lecture 4: 3D viewing and projections

Lecture 4: 3D viewing and projections Lecture 4: 3D viewing and projections Today s lecture Rotations around an arbitrary axis (Continuation from the last lecture) The view coordinate system Change of coordinate system (same origin) Change

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Spring 2016 Lecture 6 February 11, 2016 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to get

More information

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52 cs337 It looks like a matrix Sort of Viewing III Projection in Practice / 52 cs337 Arbitrary 3D views Now that we have familiarity with terms we can say that these view volumes/frusta can be specified

More information

CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling

CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 4 due tomorrow Project

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Spring 2017 Lecture 6 February 2, 2017 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to get

More information

INTRODUCTION TO COMPUTER GRAPHICS. cs123. It looks like a matrix Sort of. Viewing III. Projection in Practice 1 / 52

INTRODUCTION TO COMPUTER GRAPHICS. cs123. It looks like a matrix Sort of. Viewing III. Projection in Practice 1 / 52 It looks like a matrix Sort of Viewing III Projection in Practice 1 / 52 Arbitrary 3D views } view volumes/frusta spec d by placement and shape } Placement: } Position (a point) } look and up vectors }

More information

CS488. Implementation of projections. Luc RENAMBOT

CS488. Implementation of projections. Luc RENAMBOT CS488 Implementation of projections Luc RENAMBOT 1 3D Graphics Convert a set of polygons in a 3D world into an image on a 2D screen After theoretical view Implementation 2 Transformations P(X,Y,Z) Modeling

More information

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620 Affine and 3D Transformations Professor: Kavita Bala 1 Announcements Updated schedule on course web page 2 Prelim days finalized and posted Oct 11, Nov 29 No final exam, final project will

More information

CSE 167: Introduction to Computer Graphics Lecture #9: Visibility. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018

CSE 167: Introduction to Computer Graphics Lecture #9: Visibility. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018 CSE 167: Introduction to Computer Graphics Lecture #9: Visibility Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018 Announcements Midterm Scores are on TritonEd Exams to be

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE45 Computer Graphics Lecture 8: Computer Projection CSE45 Lecture 8: Computer Projection 1 Review In the last lecture We set up a Virtual Camera Position Orientation Clipping planes Viewing angles Orthographic/Perspective

More information

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #2 due this Friday, October

More information

Computer Graphics: Viewing in 3-D. Course Website:

Computer Graphics: Viewing in 3-D. Course Website: Computer Graphics: Viewing in 3-D Course Website: http://www.comp.dit.ie/bmacnamee 2 Contents Transformations in 3-D How do transformations in 3-D work? 3-D homogeneous coordinates and matrix based transformations

More information

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer

Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer Midterm Exam Fundamentals of Computer Graphics (COMP 557) Thurs. Feb. 19, 2015 Professor Michael Langer The exam consists of 10 questions. There are 2 points per question for a total of 20 points. You

More information

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical views are based

More information

CS251 Spring 2014 Lecture 7

CS251 Spring 2014 Lecture 7 CS251 Spring 2014 Lecture 7 Stephanie R Taylor Feb 19, 2014 1 Moving on to 3D Today, we move on to 3D coordinates. But first, let s recap of what we did in 2D: 1. We represented a data point in 2D data

More information

file:///c /Documents%20and%20Settings/Jason%20Raftery/My%20Doc...e%20184%20-%20Spring%201998%20-%20Sequin%20-%20Midterm%202.htm

file:///c /Documents%20and%20Settings/Jason%20Raftery/My%20Doc...e%20184%20-%20Spring%201998%20-%20Sequin%20-%20Midterm%202.htm UNIVERSITY OF CALIFORNIA Dept. EECS/CS Div. CS 184 - Spring 1998 FOUNDATIONS OF COMPUTER GRAPHICS Prof. C.H.Sequin TAKE HOME QUIZ #2 Your Name: Your Class Computer Account: cs184- INSTRUCTIONS ( Read carefully!)

More information

Shadows in the graphics pipeline

Shadows in the graphics pipeline Shadows in the graphics pipeline Steve Marschner Cornell University CS 569 Spring 2008, 19 February There are a number of visual cues that help let the viewer know about the 3D relationships between objects

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Fall 2016 Lecture 6/7 September 26-28 2016 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to

More information

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Classical and Computer Viewing Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Planar Geometric Projections Standard projections project onto a plane Projectors

More information

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard Now Playing: Vertex Processing: Viewing Coulibaly Amadou & Mariam from Dimanche a Bamako Released August 2, 2005 Rick Skarbez, Instructor COMP 575 September 27, 2007 Announcements Programming Assignment

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

Geometry: Outline. Projections. Orthographic Perspective

Geometry: Outline. Projections. Orthographic Perspective Geometry: Cameras Outline Setting up the camera Projections Orthographic Perspective 1 Controlling the camera Default OpenGL camera: At (0, 0, 0) T in world coordinates looking in Z direction with up vector

More information

Perspective transformations

Perspective transformations Perspective transformations Transformation pipeline Modelview: model (position objects) + view (position the camera) Projection: map viewing volume to a standard cube Perspective division: project D to

More information

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection Projection: Mapping 3-D to 2-D Our scene models are in 3-D space and images are 2-D so we need some wa of projecting 3-D to 2-D The fundamental approach: planar projection first, we define a plane in 3-D

More information

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics Evening s Goals Discuss the mathematical transformations that are utilized for computer graphics projection viewing modeling Describe aspect ratio and its importance Provide a motivation for homogenous

More information

On the Midterm Exam. Monday, 10/17 in class. Closed book and closed notes. One-side and one page cheat sheet is allowed. A calculator is allowed

On the Midterm Exam. Monday, 10/17 in class. Closed book and closed notes. One-side and one page cheat sheet is allowed. A calculator is allowed On the Midterm Exam Monday, 1/17 in class Closed book and closed notes One-side and one page cheat sheet is allowed A calculator is allowed Covers the topics until the class on Wednesday, 1/12 Take-home

More information

Transforms 3: Projection Christian Miller CS Fall 2011

Transforms 3: Projection Christian Miller CS Fall 2011 Transforms 3: Projection Christian Miller CS 354 - Fall 2011 Eye coordinates Eye space is the coordinate system at the camera: x right, y up, z out (i.e. looking down -z) [RTR] The setup Once we ve applied

More information

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing Chapter II Vertex Processing Rendering Pipeline Main stages in the pipeline The vertex processing stage operates on every input vertex stored in the vertex buffer and performs various operations such as

More information

Overview of Projections: From a 3D world to a 2D screen.

Overview of Projections: From a 3D world to a 2D screen. Overview of Projections: From a 3D world to a 2D screen. Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University, Birmingham, UK

More information

Prof. Feng Liu. Fall /19/2016

Prof. Feng Liu. Fall /19/2016 Prof. Feng Liu Fall 26 http://www.cs.pdx.edu/~fliu/courses/cs447/ /9/26 Last time More 2D Transformations Homogeneous Coordinates 3D Transformations The Viewing Pipeline 2 Today Perspective projection

More information

Graphics pipeline and transformations. Composition of transformations

Graphics pipeline and transformations. Composition of transformations Graphics pipeline and transformations Composition of transformations Order matters! ( rotation * translation translation * rotation) Composition of transformations = matrix multiplication: if T is a rotation

More information

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012.

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012. CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions The Midterm Exam was given in class on Tuesday, October 16, 2012. 1. [7 pts] Synthetic-Camera Model. Describe the Synthetic-Camera Model : how

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Visibility Culling

CSE 167: Introduction to Computer Graphics Lecture #11: Visibility Culling CSE 167: Introduction to Computer Graphics Lecture #11: Visibility Culling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Project 3 due Monday Nov 13 th at

More information

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

More information

Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.1~4.7

Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.1~4.7 Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.~4.7 Chap 3 View Pipeline, Comp. Graphics (U) CGGM Lab., CS Dept., NCTU Jung Hong Chuang Outline View parameters

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coodinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Albrecht Dürer, Underweysung der Messung mit

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coodinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

For this assignment, you are to expand your renderer from assignment 2 with perspective, a polygon clipper, ambient lighting, and obj file reading.

For this assignment, you are to expand your renderer from assignment 2 with perspective, a polygon clipper, ambient lighting, and obj file reading. SFU CMPT 361 Computer Graphics Fall 2017 Assignment 3 Assignment due Thursday November 9, by 11:59 pm. For this assignment, you are to expand your renderer from assignment 2 with perspective, a polygon

More information

Game Architecture. 2/19/16: Rasterization

Game Architecture. 2/19/16: Rasterization Game Architecture 2/19/16: Rasterization Viewing To render a scene, need to know Where am I and What am I looking at The view transform is the matrix that does this Maps a standard view space into world

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

THE VIEWING TRANSFORMATION

THE VIEWING TRANSFORMATION ECS 178 Course Notes THE VIEWING TRANSFORMATION Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview One of the most important

More information

Computer Science 426 Midterm 3/11/04, 1:30PM-2:50PM

Computer Science 426 Midterm 3/11/04, 1:30PM-2:50PM NAME: Login name: Computer Science 46 Midterm 3//4, :3PM-:5PM This test is 5 questions, of equal weight. Do all of your work on these pages (use the back for scratch space), giving the answer in the space

More information

CS Exam 1 Review Problems Fall 2017

CS Exam 1 Review Problems Fall 2017 CS 45500 Exam 1 Review Problems Fall 2017 1. What is a FrameBuffer data structure? What does it contain? What does it represent? How is it used in a graphics rendering pipeline? 2. What is a Scene data

More information

Viewing. Reading: Angel Ch.5

Viewing. Reading: Angel Ch.5 Viewing Reading: Angel Ch.5 What is Viewing? Viewing transform projects the 3D model to a 2D image plane 3D Objects (world frame) Model-view (camera frame) View transform (projection frame) 2D image View

More information

Viewing and Projection

Viewing and Projection 15-462 Computer Graphics I Lecture 5 Viewing and Projection Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective Projections [Angel, Ch. 5.2-5.4] January 30, 2003 [Red

More information

CSE 167: Introduction to Computer Graphics Lecture #3: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture #3: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture #3: Projection Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Project 1 due tomorrow (Friday), presentation

More information

Homework 1: Getting Started with WebGL and Transformations EE267 Virtual Reality 2018

Homework 1: Getting Started with WebGL and Transformations EE267 Virtual Reality 2018 Homework 1: Getting Started with WebGL and Transformations EE267 Virtual Reality 2018 Due: 04/12/2018, 11:59pm Instruction Students should use JavaScript for this assignment, building on top of the provided

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #5: Projection Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Friday: homework 1 due at 2pm Upload to TritonEd

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S 3D Viewing: the Synthetic Camera Programmer s reference model for specifying 3D view projection parameters to the computer General synthetic camera (e.g., PHIGS Camera, Computer Graphics: Principles and

More information

Culling. Computer Graphics CSE 167 Lecture 12

Culling. Computer Graphics CSE 167 Lecture 12 Culling Computer Graphics CSE 167 Lecture 12 CSE 167: Computer graphics Culling Definition: selecting from a large quantity In computer graphics: selecting primitives (or batches of primitives) that are

More information

Describe the Orthographic and Perspective projections. How do we combine together transform matrices?

Describe the Orthographic and Perspective projections. How do we combine together transform matrices? Aims and objectives By the end of the lecture you will be able to Work with multiple transform matrices Describe the viewing process in OpenGL Design and build a camera control APIs Describe the Orthographic

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

GEOMETRIC TRANSFORMATIONS AND VIEWING

GEOMETRIC TRANSFORMATIONS AND VIEWING GEOMETRIC TRANSFORMATIONS AND VIEWING 2D and 3D 1/44 2D TRANSFORMATIONS HOMOGENIZED Transformation Scaling Rotation Translation Matrix s x s y cosθ sinθ sinθ cosθ 1 dx 1 dy These 3 transformations are

More information

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices Computergrafik Matthias Zwicker Universität Bern Herbst 2008 Today Transformations & matrices Introduction Matrices Homogeneous Affine transformations Concatenating transformations Change of Common coordinate

More information

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Chapter 4 of Angel Chapter 6 of Foley, van Dam, 2 Objectives What kind of camera we use? (pinhole) What projections make sense

More information

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization

Overview. Viewing and perspectives. Planar Geometric Projections. Classical Viewing. Classical views Computer viewing Perspective normalization Overview Viewing and perspectives Classical views Computer viewing Perspective normalization Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface

More information

Computer Graphics - Treasure Hunter

Computer Graphics - Treasure Hunter Computer Graphics - Treasure Hunter CS 4830 Dr. Mihail September 16, 2015 1 Introduction In this assignment you will implement an old technique to simulate 3D scenes called billboarding, sometimes referred

More information

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker CMSC427 Transformations II: Viewing Credit: some slides from Dr. Zwicker What next? GIVEN THE TOOLS OF The standard rigid and affine transformations Their representation with matrices and homogeneous coordinates

More information

Linear and Affine Transformations Coordinate Systems

Linear and Affine Transformations Coordinate Systems Linear and Affine Transformations Coordinate Systems Recall A transformation T is linear if Recall A transformation T is linear if Every linear transformation can be represented as matrix Linear Transformation

More information

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective

More information

Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to mode

Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to mode Graphic Pipeline 1 Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to model 3D world? How to render them?

More information

Virtual Cameras & Their Matrices

Virtual Cameras & Their Matrices Virtual Cameras & Their Matrices J.Tumblin-Modified, highly edited SLIDES from: Ed Angel Professor Emeritus of Computer Science University of New Mexico 1 What is Projection? Any operation that reduces

More information

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University Computer Graphics P05 Viewing in 3D Part 1 Aleksandra Pizurica Ghent University Telecommunications and Information Processing Image Processing and Interpretation Group Viewing in 3D: context Create views

More information

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1 Foundations of Computer Graphics Homogeneous Coordinates Start doing HW 1 To Do Specifics of HW 1 Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full

More information

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller Reading Chapter 4 of Angel Chapter 13 of Hughes, van Dam, Chapter 7 of Shirley+Marschner Machiraju/Zhang/Möller 2 Objectives

More information

Introduction to Computer Graphics 4. Viewing in 3D

Introduction to Computer Graphics 4. Viewing in 3D Introduction to Computer Graphics 4. Viewing in 3D National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Computer Viewing. Prof. George Wolberg Dept. of Computer Science City College of New York

Computer Viewing. Prof. George Wolberg Dept. of Computer Science City College of New York Computer Viewing Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Introduce the mathematics of projection Introduce OpenGL viewing functions Look at alternate viewing

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Logistics Update! all homework submissions:

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coordinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

Assignment 1 due 4/13/2017 at 11:59PM Topic: Getting Started with WebGL and Transformations

Assignment 1 due 4/13/2017 at 11:59PM Topic: Getting Started with WebGL and Transformations Virtual Reality EE 267, Spring 2017 Assignment 1 due 4/13/2017 at 11:59PM Topic: Getting Started with WebGL and Transformations Students should use Javascript for this assignment, building on top of the

More information

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches: Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

CS4620/5620: Lecture 14 Pipeline

CS4620/5620: Lecture 14 Pipeline CS4620/5620: Lecture 14 Pipeline 1 Rasterizing triangles Summary 1! evaluation of linear functions on pixel grid 2! functions defined by parameter values at vertices 3! using extra parameters to determine

More information